NATIONAL ACADEMIES Sciences Engineering Medicine

TRB TRANSPORTATION RESEARCH BOARD

TRB Webinar: Protocols for Macrotexture Measurement to Prevent Wet Weather Crashes

October 27, 2022 2:30 – 4:00 PM

PDH Certification Information

1.5 Professional Development Hours (PDH) – see follow-up email

You must attend the entire webinar.

Questions? Contact Beth Ewoldsen at TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Providers Program. Credit earned on completion of this program will be reported to RCEP. A certificate of completion will be issued to participants that have registered and attended the entire session. As such, it does not include content that may be deemed or construed to be an approval or endorsement by RCEP.

REGISTERED CONTINUING EDUCATION PROGRAM

Learning Objectives

• Collect accurate and repeatable macrotexture data

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

File View Help	_0C×
▼ Webcam	5×G
Share My Webcam	Webcams 🗸
✓ Audio	<u>ଅ</u>
Sound	Check ?
Computer audio Phone call	
🖉 MUTED	
Microphone (USB Audio De	evice) 🗸
**	
Speakers (USB Audio Device	e) ~
[Enter a question for staff]	
	Send
Updating Webinar Im	igar
Webinar ID: 922-070-9	95
	Webcam Share My Webcam Audio Sound I Or Computer audio Phone call MUTED Microphone (USB Audio Device) Speakers (USB Audio Device) Speakers (USB Audio Device) Talking: Elaine Ferrel! Questions [Enter a question for staff]

Today's presenters

Gerardo Flintsch gflintsch@vtti.vt.edu Virginia Polytechnic Institute and State University

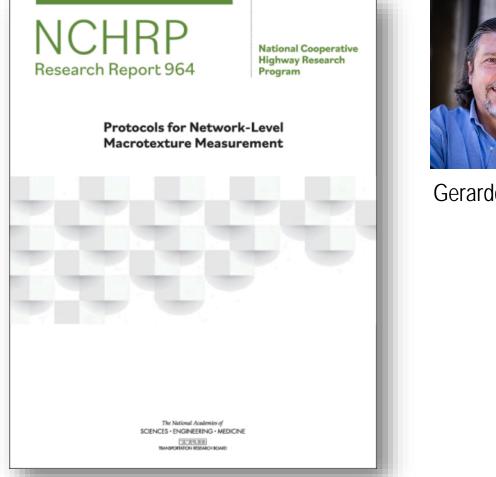
Emmanuel Fernando E-Fernando@tti.tamu.edu Texas A&M Transportation Institute

> Jenny Li Jenny.Li@txdot.gov Texas Department of Transportation

NATIONAL ACADEMIES Medicine

Sciences Engineering

TRANSPORTATION RESEARCH BOARD



NCHRP Project 10-98: Protocols for Network-Level Macrotexture Measurement

Background

NCHRP Report 964 Protocols for Network-Level Macrotexture Measurement (2021)

Gerardo Flintsch

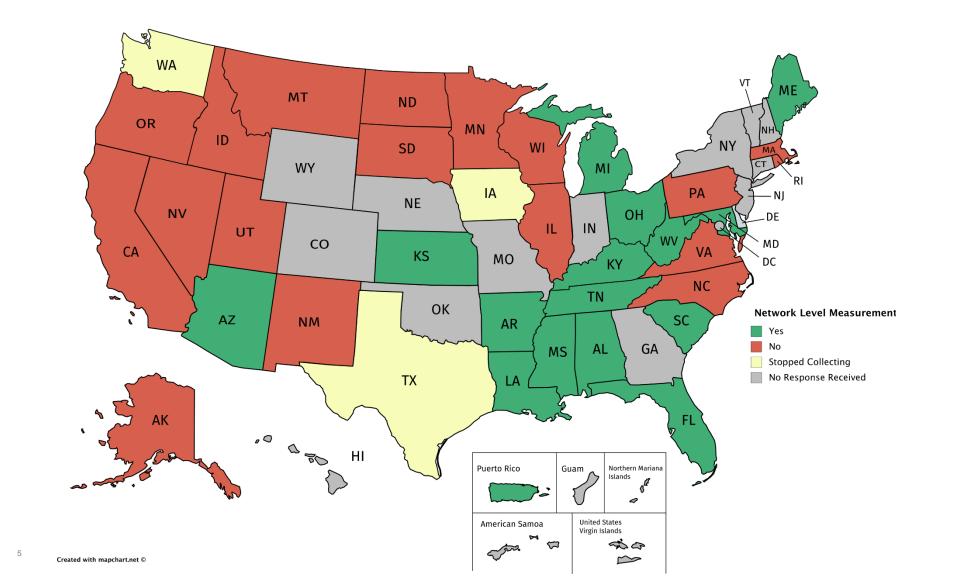
Edgar de Leon

Vincent Bongioanni

Kyle Maeger

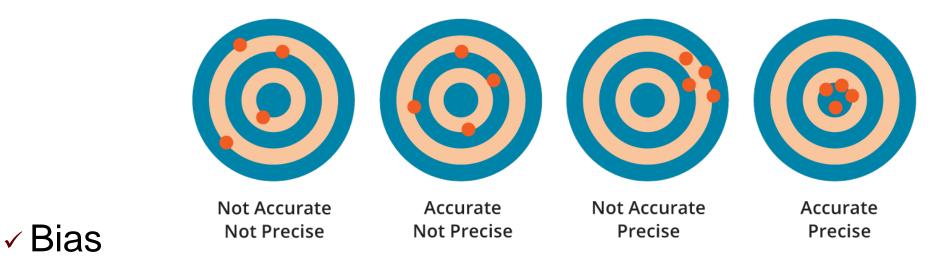
Emanuel Fernando

Rohan Perera


Kevin McGhee

https://www.nap.edu/catalog/26225/protocols-for-network-level-macrotexture-measurement

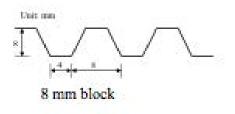
Objective


- To develop recommended protocols for test methods, equipment specifications, and data quality assurance practice for networklevel macrotexture measurement
 - 1. Identify the equipment, environmental, and operational factors that influence macrotexture measurement and the macrotexture characterization parameters used for representing the macrotexture,
 - 2. Develop improved methods for network-level macrotexture measurement that address these factors and parameters, and
 - **3**. Prepare recommended test procedures, equipment specifications, data quality assurance practices, and implementation guidelines to facilitate use of these methods.

States Collecting Network Level Macrotexture

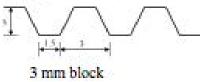
Criteria for Evaluating Measurement Technologies

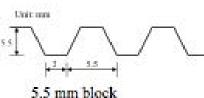
- Precision and Accuracy
 - -Sub-millimeter under harsh conditions (debris, spray, truck bounce)
 - -Precise: repeatable results under identical experimental conditions
 - -Accurate: unaffected by variations not within control of operator

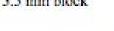


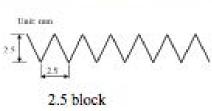
-Minimize the difference between the measured and actual profiles

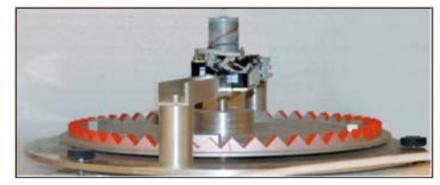
Reference Surfaces


Machined Plates









ISO "Calibrator"

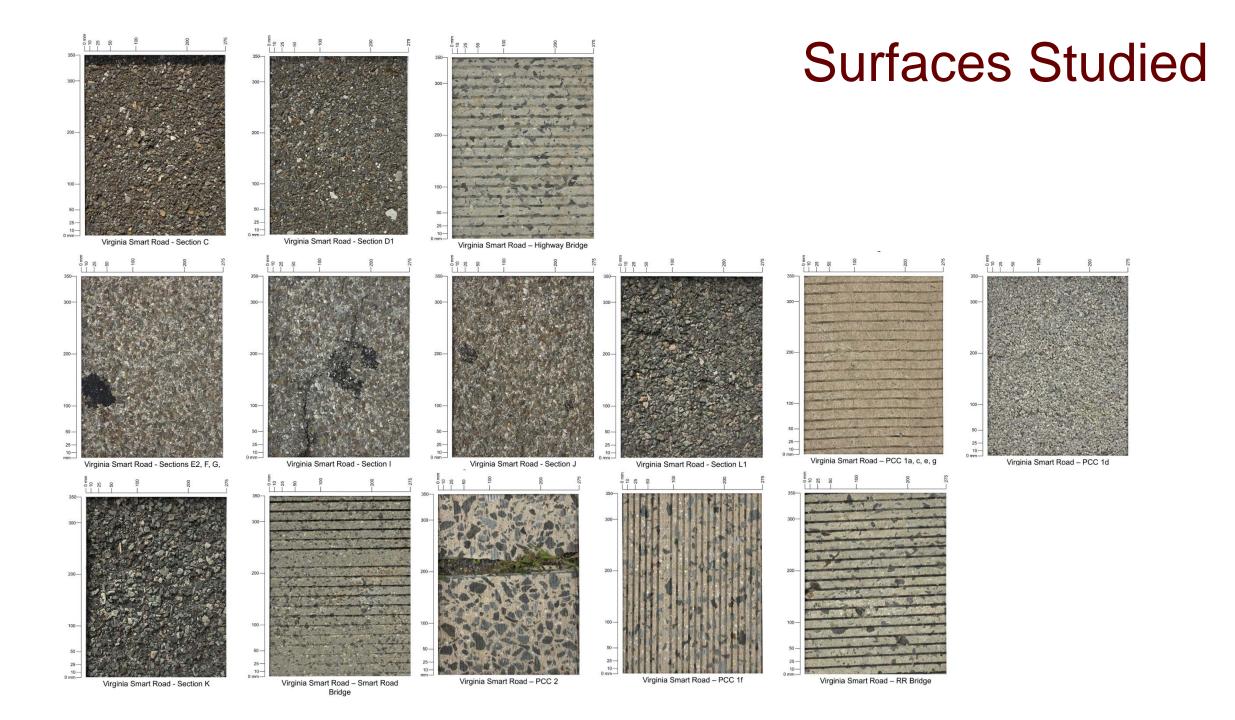
ARRB "Texture Jig"

Ames Engineering

Experiments

Experiment 1 - Equipment Comparison

The Virginia Smart Road



 Reference measurements: CT Meter, Ames Laser Texture Scanner, etc.

- ✓ "Waking" devices
- ✓ High-speed

- Single-spot vs. lane lasers
- Variable speed and acceleration
- Repeatability and reproducibility
- Emerging macrotexture parameters

High Speed Devices Tested at the SR

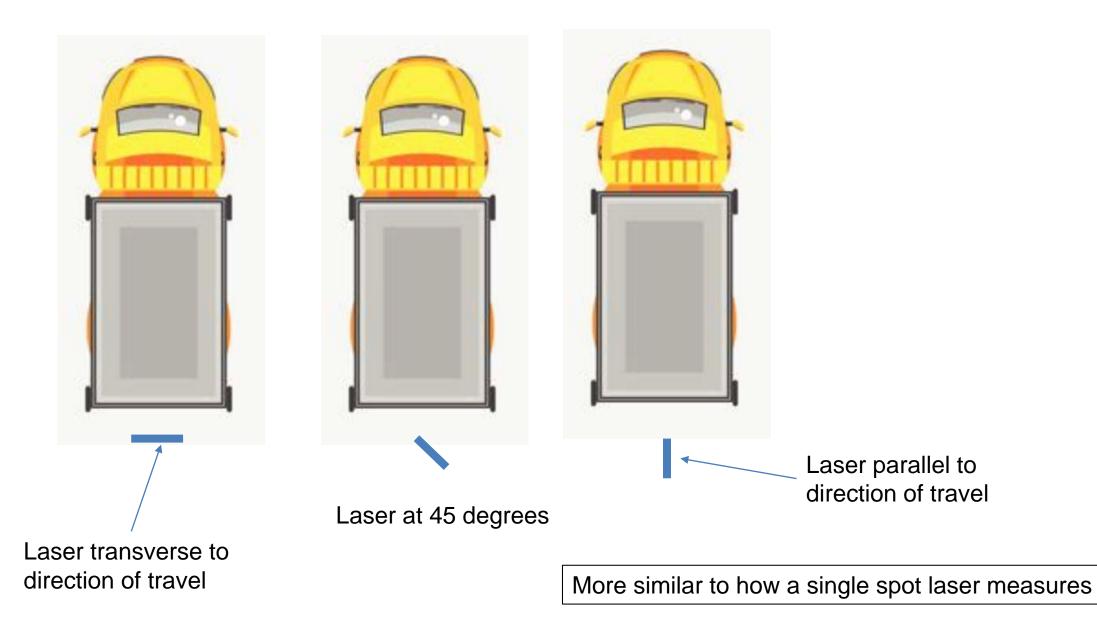
Device ID	Laser Type	Sampling Frequency	Raw Data Spatial Interval	Vertical Resolution
1*	Single Spot	100 kHz	0.25 mm	0.020 mm
2	Single Spot	32 kHz	1 mm	0.010 mm
3	Single Spot	32 kHz	0.9 mm	0.049 mm
4	Single Spot	100 kHz	0.5 mm	0.020 mm
5	Line Laser	5 kHz	0.3 mm (transverse) 25mm (longitudinal)	0.015 to 0.040 mm
15*	Single Spot	64kHz	0.25 mm	0.045 mm

* Sensors 1 and 15 mounted to the same vehicle

Experiment 2 - Verification

MnROAD facility

 To refine the data collection approaches and finalize the proposed macrotexture characterization parameter(s)



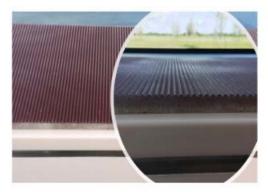
Few invited participants

- "Walking" system as reference
- Line lasers at different angles
- Different exposure times

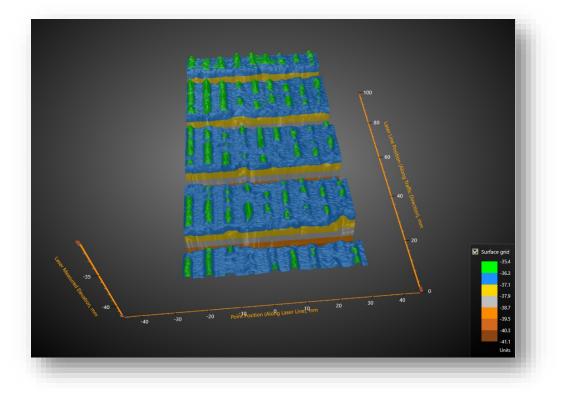
Devices Tested at MnRoad

Device ID	Device	Measurement Speed	Sampling Frequency	Raw Data Interval
1	Line	Walking	1kHz	1mm trans 1mm long
2	SSL	50 mph	32 kHz	TBD
3	SSL	50 mph	100 kHz	0.5mm
4	SSL	50 mph	100 kHz	0.25mm
5	SSL	50 mph	62.5 kHz	0.5mm
6	Line	50 mph	5 kHz	0.5 mm trans 25.4 mm long
7	SSL	50 mph	62.5 kHz	0.25mm
8	FTM	Static	NA	NA
9	Line	50 mph	5 kHz	TBD

Experiment 3 - Validation


Texas A&M RELLIS Campus

 To validate the recommended method for network-level macrotexture data collection and processing



- New reference device.
- Manufactured surfaces

TxDOT Plate #1

Examples of Results

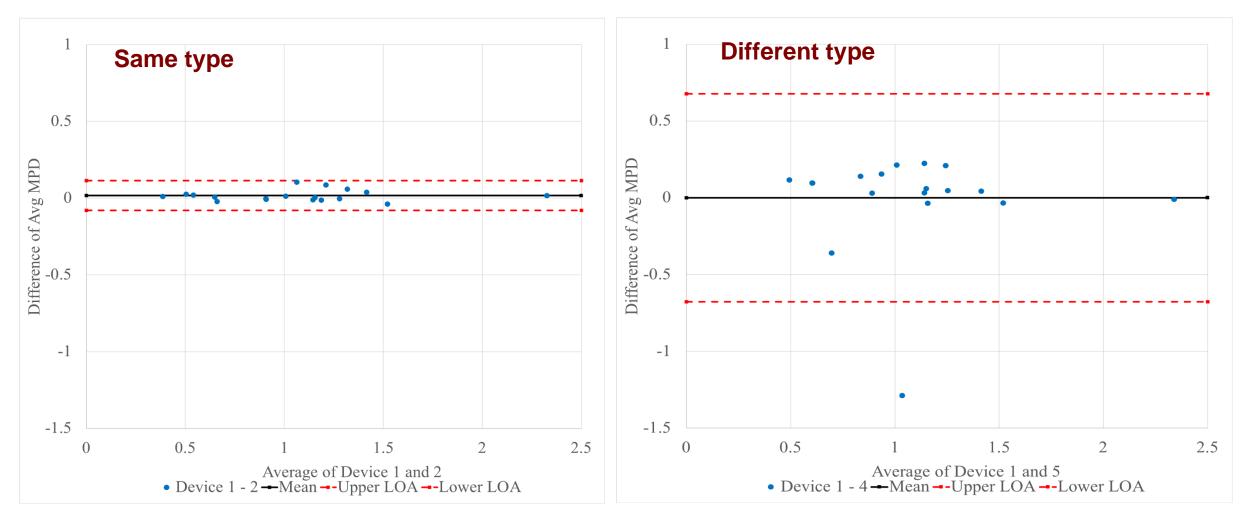
Device Repeatability @ 1 m MPD

$$\checkmark c_r = 1.96 * \sqrt{2} * SD$$

High-Speed

	Device 1	Device 2	Device 3	Device 4	Device 5	Device 15
MSE (mm)	7.3 E-4	6.7 E-4	10.07 E-4	5.27 E-4	5.2 E-4	9.38 E-4
<i>c_r</i> (mm)	0.075	0.072	0.088	0.064	0.063	0.085

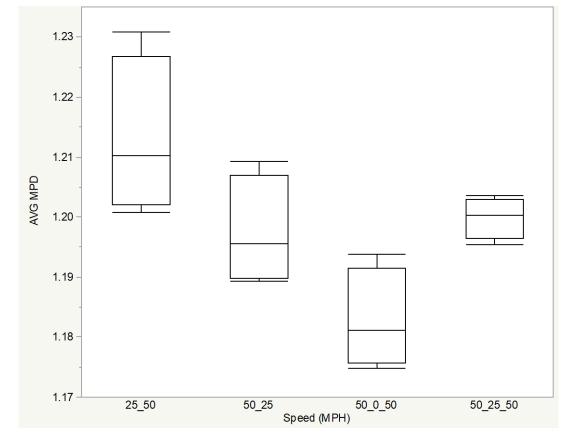
 $-C_r$ for all devices tested was in a similar range: 0.06 to 0.09


Walking devices

	Device 7	Device 9	Device 11
MSE (mm)	8.5 E-5	9.4 E-5	3.8 E-4
<i>c_r</i> (mm)	0.025	0.027	0.054

Reproducibility - Example Limits of Agreement

Device 1 and 2


Device 1 and 5

Acceleration / Deceleration Effect

- Braking and acceleration scenarios treated as nominal variable model inputs and MPD as the response
- \checkmark ANOVA with significance level of $\alpha=0.05$
- Failure to reject the null hypothesis demonstrates no effect of speed or acceleration

Device	P-Value
1	0.4653
2	0.6184
3	0.4306
4	0.8423
5	0.0051

Data range: 1.17 to 1.23mm Spread of 0.06mm $C_r = 0.06mm$

Alternative Macrotexture Parameters

Var #	Parameter	Var #	Parameter	
1	Mean Profile Depth (MPD)	14 - 21	Tire Contact Length (TCL)	
2	Root Mean Square (RMS)	26 — 55	Wavelet Transformations (w _{d x}) - Various statistical measures of Haar details	
3	Mean Difference of Elevation (MDE)	56 - 60	Enveloped Profile MPD (MPD _e)	
4 – 7 22-25	 Enveloping Profiles Empirical Physical Effective Area of Water Evacuation (EAWE) 	61	Profile Length Ratio (PLR) Peak Data Parameters - Mean Peak height above Zero (MPGZ) - Mean peak above zero Separation (MSEPGZ)	
8 – 9	(EAWE) Geometric Statistical Methods - Skewness (R_{sk}) - Kurtosis (R_{ku})	62 – 79	 Mean width of peaks above zero (MWGZ) 	
10	Maximum Height (Max H)		 Mean Prominence to Width Ratio (MPWR) Mean peak Width Mean peak Separation Ratio 	
11 – 13	11 – 13 Percentile MPD (MPD ₉₅ , MPD ₉₇ , MPD ₉₉)		(MWMSR) - Number of Peaks above zero (NPGZ)	

Single Variable Pearson Correlation Coefficients -Random Texture

SCRIM		GT		OBSI	
EAWE (filt, d*=1E-2)	-0.64	PLR (no filt)	-0.69	W _{d,, RMS} (lvl 7, no filt)	0.34
PLR (no filt)	-0.61	EAWE (filt, d*=1E-2)	-0.69	W _{d,, RMS} (lvl 9, no filt)	0.34
TCL (filt, tol = 0.1, d*=1E-2)	0.61	W _{d,, RMS} (lvl 1, no filt)	-0.68	W _{d,, RMS} (IvI 10, no filt)	0.34
	-0.56			•••	
MPD	-0.42	MPD	-0.57	MPD	0.31
RMS	-0.49	RMS	-0.61	RMS	0.33
SCRIM	1	SCRIM	0.80	SCRIM	0.07
GT	0.80	GT	1	GT	0.02
OBSI	0.07	OBSI	0.02	OBSI	1

Main Findings

NCHRP 10-98 Main Conclusions

- Single-spot and line-laser
 Mean Profile Depth results should not be used
 interchangeably
- Commercially available walking equipment with a linelaser to collect reference profiles
- Engineered surfaces can be used to test for accuracy of reference walking devices.

- Use of line-laser oriented at 45 degree angle to the travel direction appear to be the most practical solution
- Macrotexture parameters that account for the enveloped shape of the tire on the pavement's surface show promise but more testing was needed before switching.

Main Outcomes - Proposed Standards

Standard Specification for Equipment for Collecting Macrotexture Data on Pavements at Highway Speeds

- Defines the required attributes of equipment that can measure pavement macrotexture at highway speeds
- Equipment
 - Single function or component of a multifunctional system
 - Network or project level data level data.
 - Single-spot, line-lased, 3D system
- Software to compute macrotexture indices
 - -Particularly the Mean Profile Depth (MPD)
 - -Reports dropouts, spikes and total invalid

Standard Practice for Operating Equipment for Collecting Macrotexture Data on Pavements at Highway Speeds

- Procedure for operating and verifying the calibration of equipment to measure macrotexture at highway speeds
 - -Network and project level data collection
 - -Does not purport to address all the safety
- Verification
 - -Calibration of the DMI
 - -Height sensors
- Quality control and assurance
 - -Step by step procedure for QC

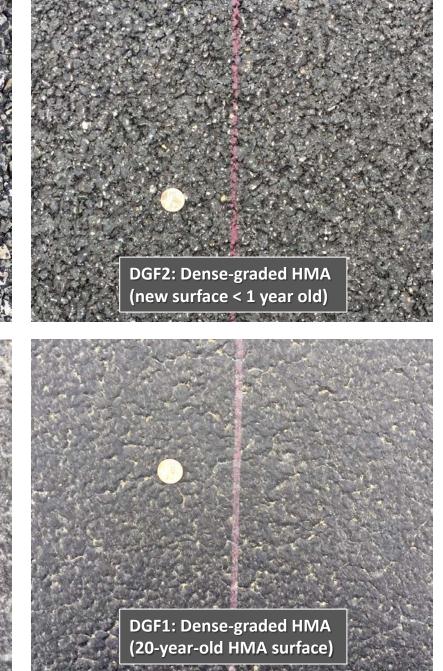
Standard Practice for Certification of High-Speed Macrotexture Measurement Equipment

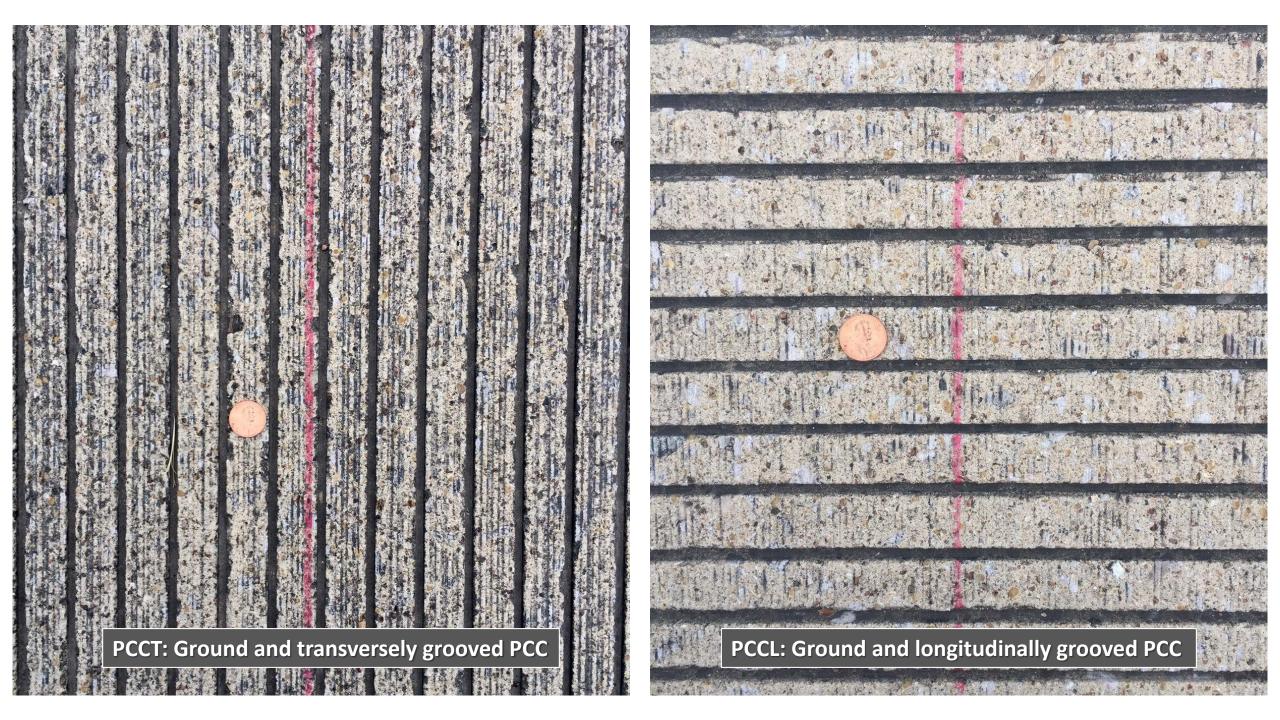
- Certification procedure for equipment used to measure macrotexture of pavements at highway speeds
 - -Minimum requirements to collect repeatable and accurate data
- Frequency of certification
- Testing (type of sections, etc.)
- Repeatability and accuracy
- Reference data with a walk along device

Optional tests


Questions?



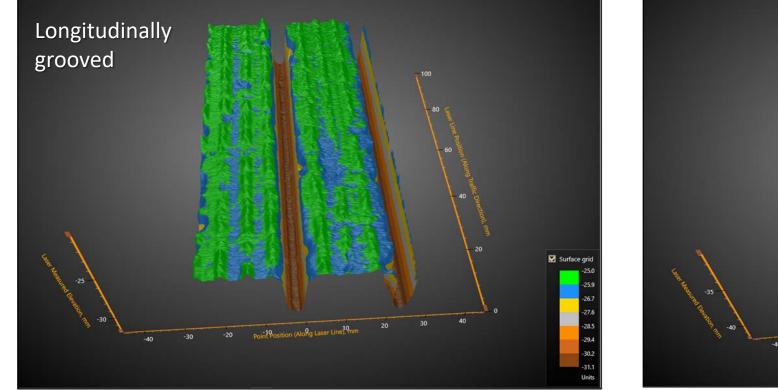


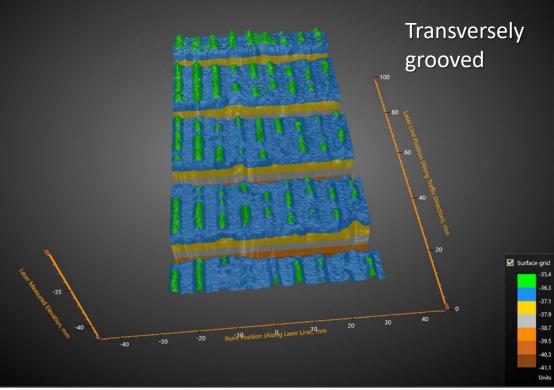

RELLIS Field Experiment

Emmanuel Fernando Texas A&M Transportation Institute Texas A&M University System

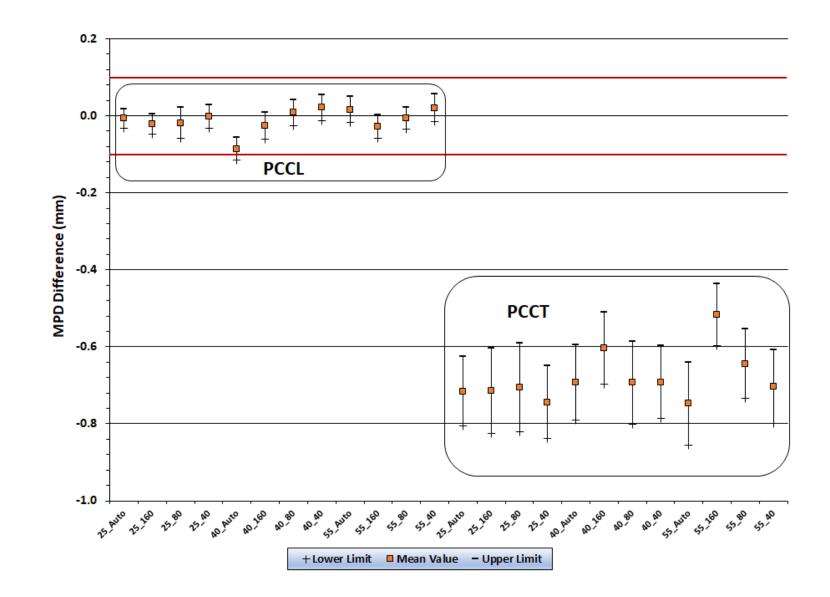
High-Speed Texture Measurements

Test Speed (mph)	<u>Test Vehicle A</u> Single-Point: Acuity 100 KHz and LMI Optocator (62.5 KHz)			<u>Test Vehicle B</u> Gocator Line Laser (LLT/LLA)			
	Exposure Time			Exposure Time			
	Normal (5 — 12 μs)	Medium (10 – 12 μs)	Long (30 – 40 μs)	Auto (30 – 300 μs)	Short (40 µs)	Medium (80 μs)	Long (160 µs)
25	X	X	X	X	X	X	X
40	X	X	X	X	X	X	X
55	X	X	X	X	X	X	X

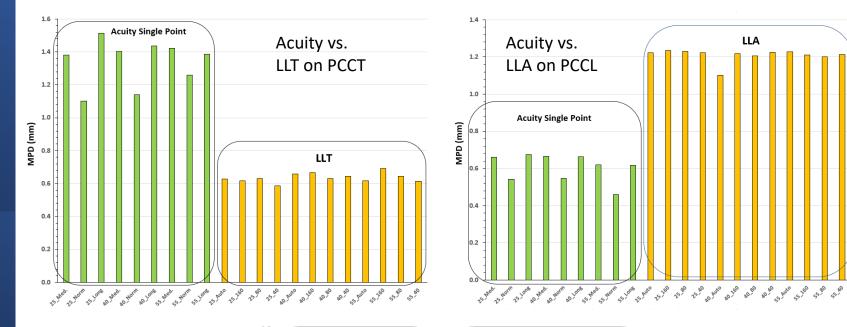

*3 repeat runs

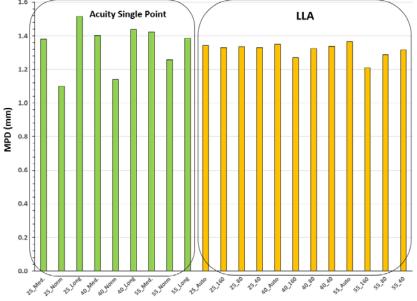


Reference Texture Measurements

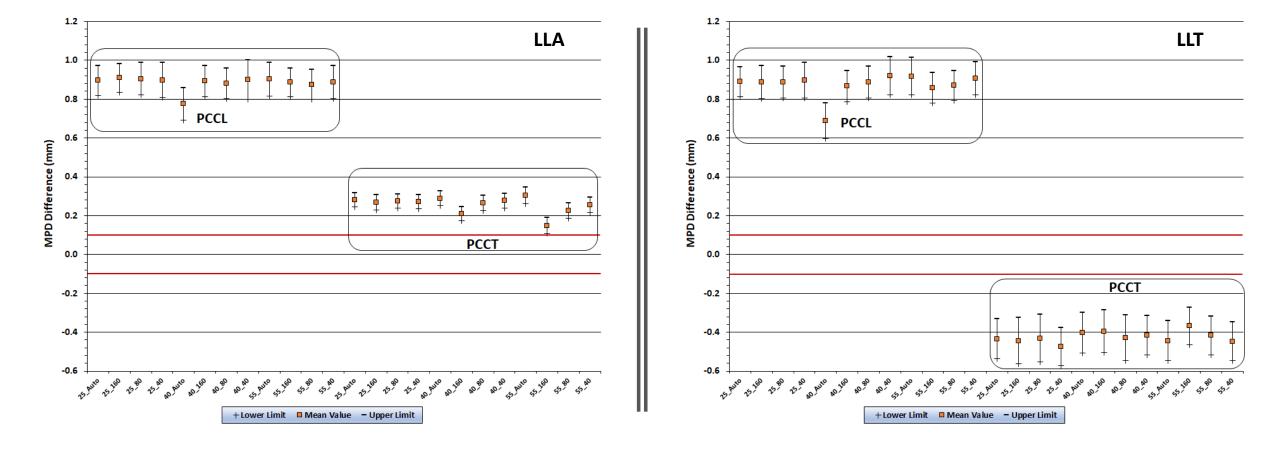

Test Results

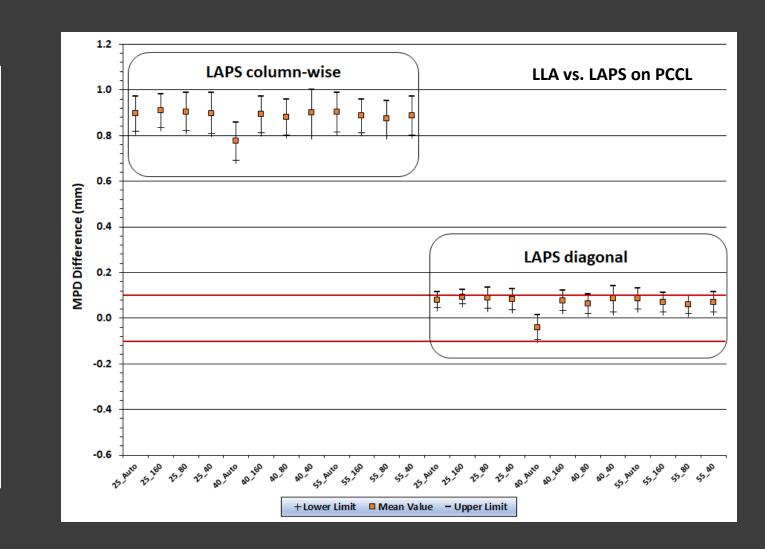
3D Plots of LAPS Measurements

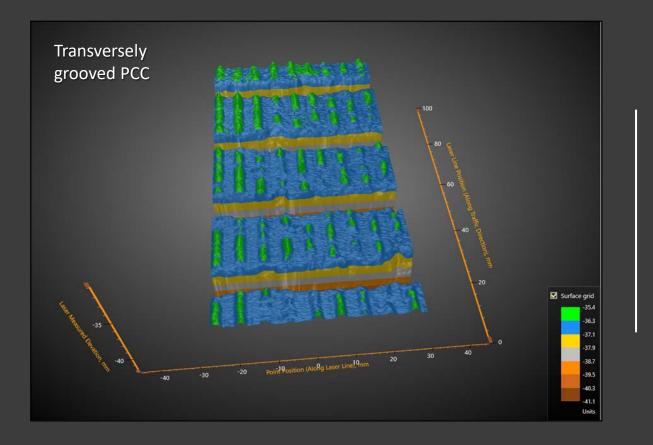

Comparison of MPDs between Line Lasers: LLA vs. LLT

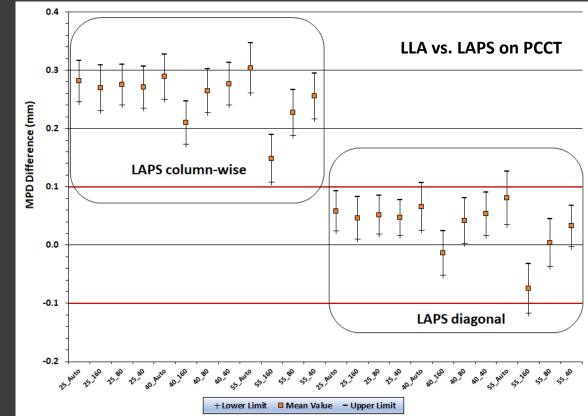


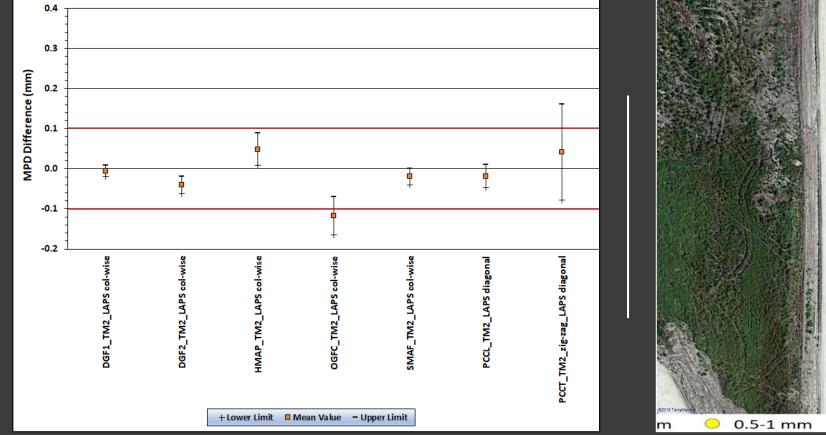
LLA vs. LLT: Line Laser Footprint Orientation


Single-Point vs. Line Laser MPDs




Acuity vs. LLA PCCT


Comparison of Line Laser and LAPS MPDs


Effect of Directional Surface Features

Effect of Directional Surface Features

Rolling Texture Meter (TM2) vs. LAPS

Summary and Conclusions

- □ Higher frequency (100 KHz) Acuity laser showed better agreement with LAPS compared to 62.4 KHz optocator.
- Test findings indicate using Acuity laser under normal exposure to measure macrotexture.
- Need to account for directional nature of PCC surfaces when measuring macrotexture.
- Between LLT and LLA, test findings favor LLA (45°) laser footprint orientation.
- Acuity and LLA gave comparable MPDs on transversely grooved surface but not on longitudinally grooved surface.
- Line laser better suited for macrotexture measurements on longitudinally grooved concrete surfaces.
- □ In general, TM2 and LAPS showed favorable agreement.
- Modifying TM2 to permit adjustment of line laser angle would help account for directional features along the test wheel path.
- Using line lasers to measure macrotexture can be implemented through modifications of existing inertial profiling systems that use the same lasers.

Thank you for your attention! Questions?

Today's presenters

Gerardo Flintsch gflintsch@vtti.vt.edu

Emmanuel Fernando E-Fernando@tti.tamu.edu

Jenny Li Jenny.Li@txdot.gov

NATIONAL ACADEMIES Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

Upcoming events for you November 30, 2022 TRB Webinar: State DOTs Perspective

on Pavement Resilience

December 5, 2022

TRB Webinar: Ruggedness Testing— Evaluating Asphalt Mixture Cracking Resistance

https://www.nationalacademies.org/trb/events

NATIONAL ACADEMIES

Register for the 2023 TRB Annual Meeting

Register to be part of the **action!**

https://www.trb.org/AnnualMeeting /Registration.aspx

ACADEMIES Medicine

Sciences Engineering

NATIONAL

Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

Spread the word and subscribe! <u>https://bit.ly/ResubscribeTRBWeekly</u>

Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!

https://mailchi.mp/nas.edu/trbwebinars

And follow #TRBwebinar on social media

Sciences

ΝΛΤΙΟΝΛΙ

Get involved

https://www.nationalacademies.org/trb/get-involved

NCHRF

Besearch Report 990

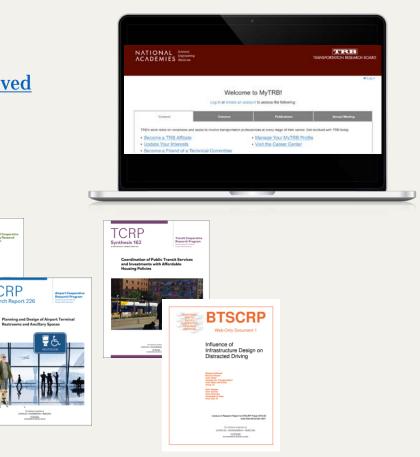
Guidebook for Effective Polici

ACRP

Research Report 226

and Practices for Managing Surface Transportation Deb

Become a Friend of a Standing Technical Committee


Network and pursue a path to Standing Committee membership

- Work with a CRP ۲
- Listen to our podcast •

https://www.nationalacademies.org/podcasts/trb

We want to hear from you

- Take our survey
- Tell us how you use TRB Webinars in your work at trbwebinar@nas.edu

