

US Army Corps of Engineers

USE OF LIGHT-WEIGHT DEFLECTOMETERS FOR QUALITY CONTROL OF BACKFILL LAYERS FOR AIRFIELD PAVEMENT REPAIRS

//CUI//

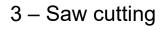
//CUI//

Jami Lynn Rushing

Airfields and Pavements Branch, Geotechnical and Structures Laboratory

DISCOVER | DEVELOP | DELIVER

Background



1 - Debris removal

2 - Upheaval marking

4 - Excavation

5 - Backfill

6 – Quality assessment

7 – Surface cap

2

US Army Corps of Engineers • Engineer Research and Development Center

UNCLASSIFIED

LWD Comparison

	Option 1	Option 2	Option 3
Manufacturer	Zorn Instruments	Olson Instruments	Dynatest
Model	ZFG 3.0	LWD-1	3032
Drop mass	22 lbm	22 lbm	22 lbm
Impulse Load	1,589 lbf	1,550 lbf	1,700 lbf
Deflection measurement	Acceleration sensor	Seismic transducer (geophone)	Seismic transducer (geophone)
Drop height	44.5 in.	24 in.	33.5 in.
Total Weight	66 lbm	59 lbm	48 lbm
Power source	4 AA batteries	Rechargeable	USB powered control box
Results display	Hand-held data collector, SD card, or thermal printer	Laptop: WinLWD Acquisition & Analysis Software	Bluetooth connection to smartphone app
ASTM E2583 Compliant			Yes
ASTM E2835 Compliant	Yes	Yes	
Optional configurations	Drop weight options: 22 or 33 lbm	Drop weight options: 11 or 22 lbm	Drop weight options: 11, 22, 33, or 44 lbm
	Diameter of base plate options: 5.9 or 11.8 in.	Diameter of base plate options: 3.9, 5.9, 7.9, or 11.8 in.	Diameter of plate options: 11.8 or 5.9 in.
		Additional geophone attachments	Additional geophone attachments

//CUI//

3

US Army Corps of Engineers • Engineer Research and Development Center

//CUI//

UNCLASSIFIED

Performing a measurement with the LWD

<u>ASTM E2583-07:</u> Standard Test Method for Measuring Deflections with a LWD (Reapproved 2020)

- **1.** Ensure the bottom of the LWD's plate is clean
- 2. Place the plate on the soil to ensure it is in full contact with the soil
 - Seat and level plate
- **3.** Raise the weight to desired drop height and release the weight
 - Record the resulting peak deflection and peak load
- 4. Perform the drop for 2 additional sequences
 - If variability is greater than 3%, note variability in report

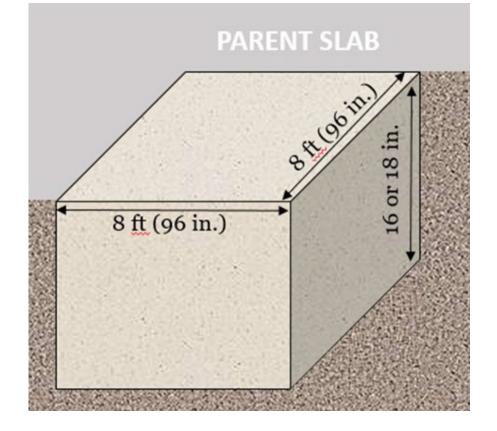
UNCLASSIFIED

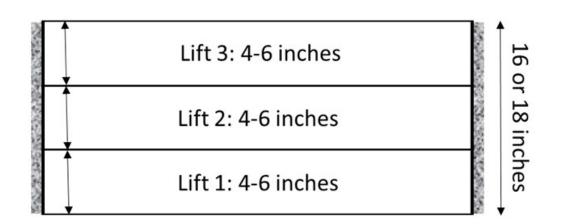
UNCLASSIFIED

Performing a measurement with the LWD

<u>ASTM E2835-21:</u> Standard Test Method for Measuring Deflections Using a Portable Impulse Plate Load Test Device

- 1. Rotate plate left and right 45 °
- 2. Perform 6 drops
 - First 3 drops are seating drops
 - Final 3 drops are used for analysis
- 3. Raise the weight to desired drop height and lock position
 - Ensure rod is vertical
- 4. Release weight (allowing it to fall freely)
 - Catch the weight after the rebound and return to locked position
- 5. Record resulting peak deflection values

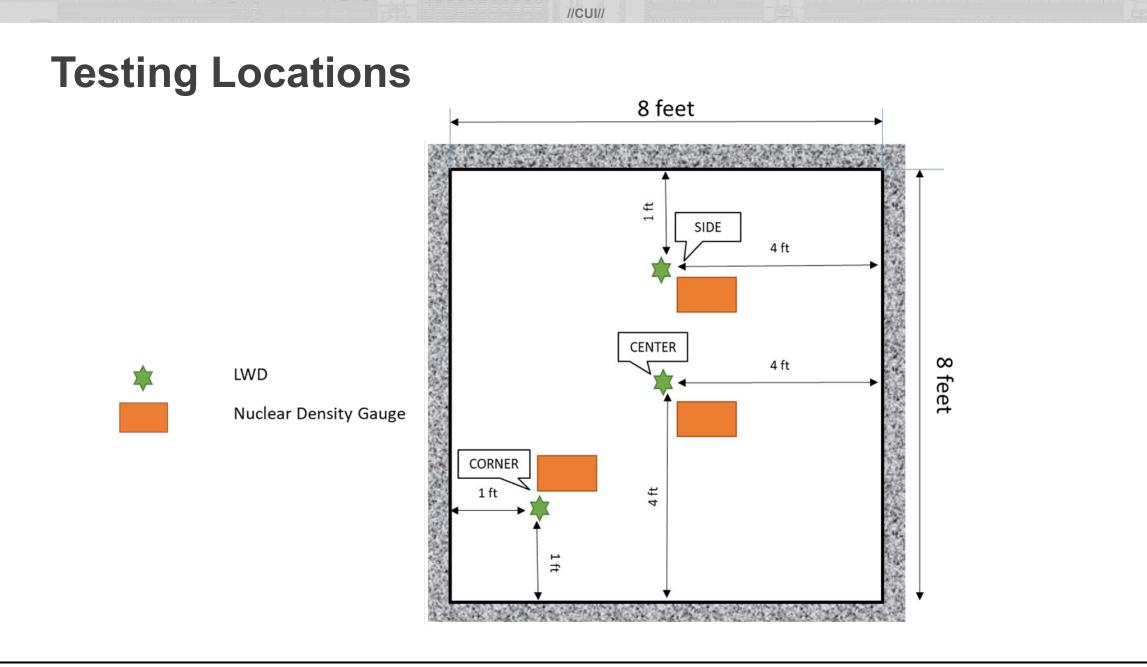




5

UNCLASSIFIED

Test section construction

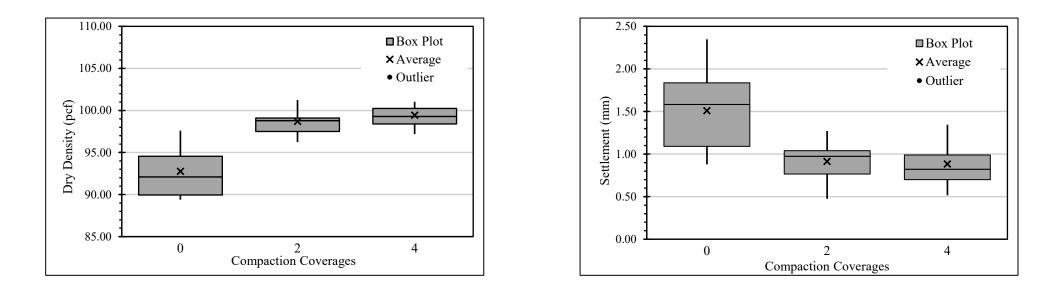


6

US Army Corps of Engineers • Engineer Research and Development Center

//CUI//

//CUI//


US Army Corps of Engineers • Engineer Research and Development Center

//CUI//

7

Criteria Development

SAND:

//CUI//

Maximum settlement: 1.000 mm

US Army Corps of Engineers • Engineer Research and Development Center

8

//CUI//

Assessment Criteria

Soil type	Compaction equipment	Compaction coverages required	Maximum settlement (mm)
Beach sand	Plate compactor	4	4.600
Natural sand Plate compact		4	1.000
Cement stabilized soil Jumping jack and plate compactor		4	3.400
PCC debris with sand Jumping jack and plate compactor		2	1.000
Limestone	Jumping jack	4	2.750
Silt	Jumping jack	4	0.900
Silty sand Jumping jack		4	2.400
Lean clay	Jumping jack	4	1.700
Clayey sand	Jumping jack	4	0.600

US Army Corps of Engineers • Engineer Research and Development Center

CLASSIFICATION STATEMENT HERE

9

Questions?

US Army Corps of Engineers • Engineer Research and Development Center

CLASSIFICATION STATEMENT HERE

TRB Webinar

Implementation of a Non-destructive Method of Compaction Quality Assurance Using Lightweight Deflectometer

Zahra (Niosha) Afsharikia, PhD WSP USA

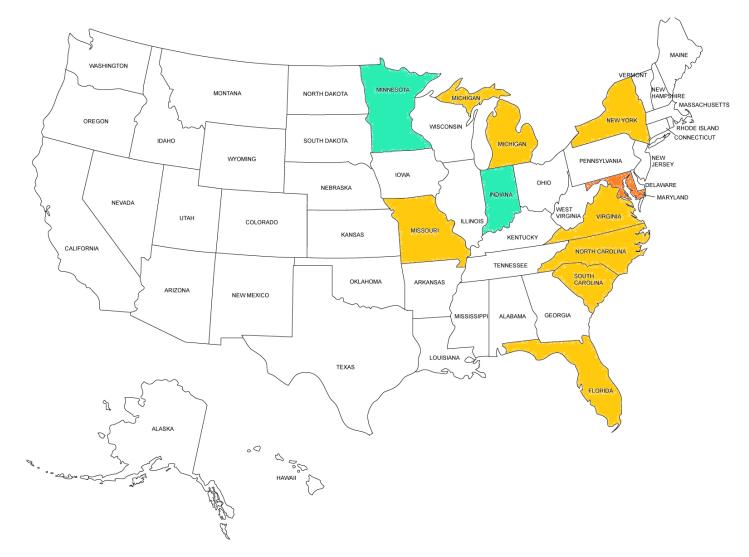
February 23, 2023

Contributing Projects

Transportation Pooled Fund Study

TPF-5(285) 2013-2017

Standardizing LWD Measurements for Compaction QA and Modulus Determination in Unbound Bases and Subgrades


MDOT SHA SPR Research Project

SHA/UM/4-51 2017-2019

Implementation of LWDs for Modulus Based Compaction Quality Assurance of Unbound Materials in the State of Maryland

Transportation Pooled Fund Study TPF-5(285) Participating Agencies

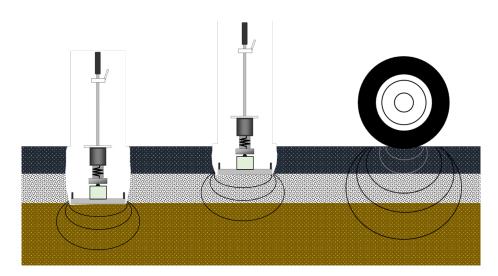
3

Motivation

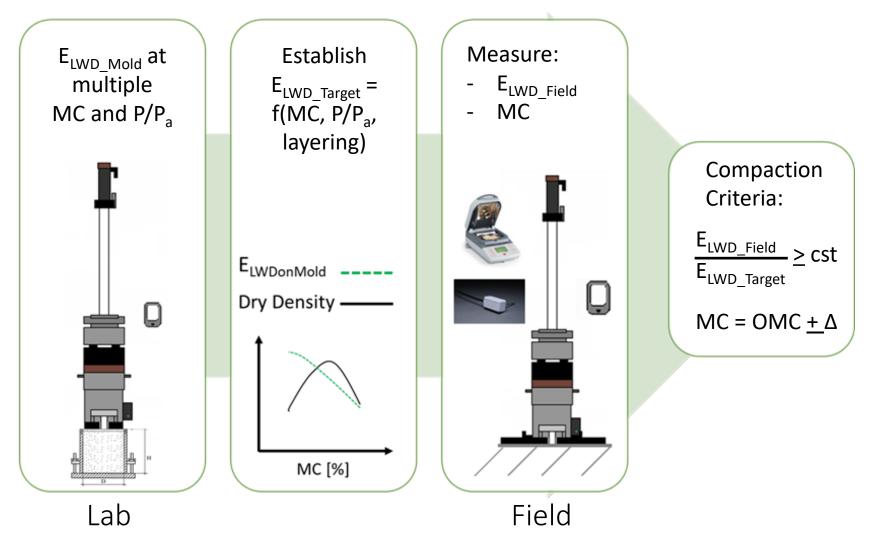
- Density is NOT an input to pavement structural design Stiffness is!
- Density and stiffness are NOT closely correlated.
- Does not monitor stiffness gain over time for stabilized or unconventional material.
- High costs and regulations associated with the radiation safe storage, transportation, and operation.
- Target MDD values from Proctor test not repeatable and often subjective.

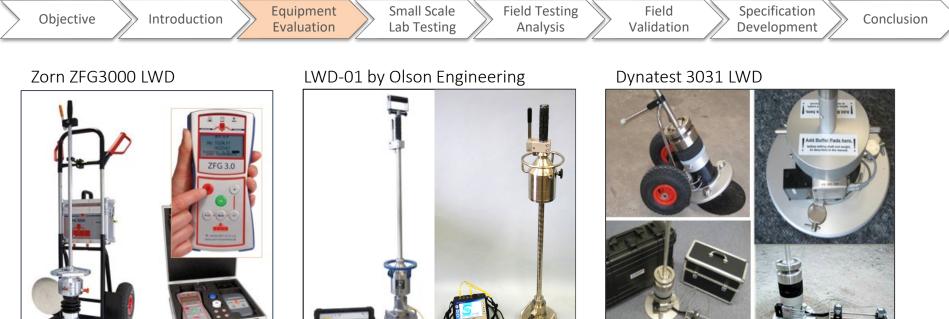
- Non-nuclear, easy to store and transport, retrieve and analyze data.
- Faster testing, more testing
- Provides better understanding of spatial variability.
- Directly measures surface modulus.
- Low maintenance cost
- ASTM E3331-22a, ASTM E2835, ASTM E2583
- X Typically, does not measure MC

Objective


Develop a straightforward procedure for stiffness-based compaction QC/QA using LWDs that is suitable for practical implementation by field inspection personnel.

Challenges


- 1. Different configurations and measurements for different LWDs
- 2. Determination of target stiffness
- 3. Moisture content: Measurement and effect on stiffness
- 4. Effect of stress level
- 5. Application to layered systems
- 6. Practicality in the lab and field



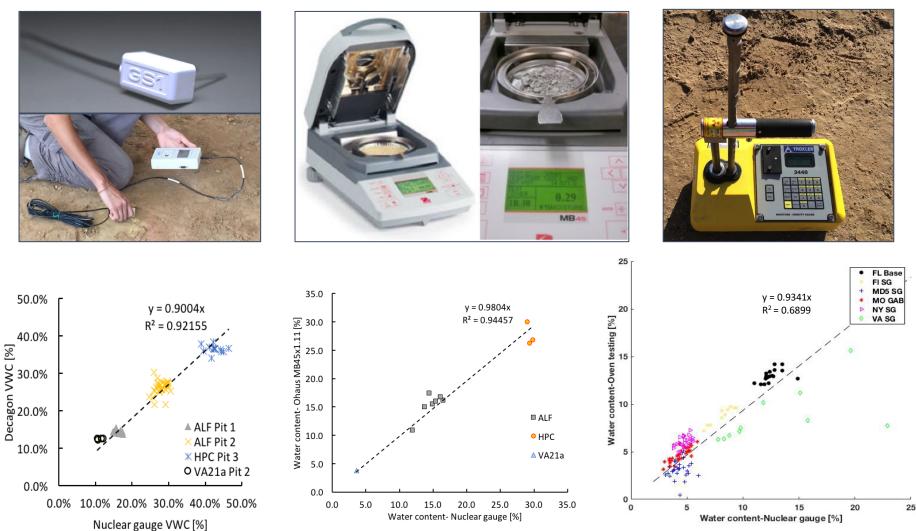
Objective

Introduction Equipment Evaluation Small Scale Lab Testing Field Testing Analysis Field Validation Specification Development Conclusion

Compaction QA Methodology

Zorn Instruments

Olson Instruments Inc.


(Circa 2016)

Device configuration			LWD				
	plate diameters	unit	Zom ZFG3000	Dynatest 3031	Olson 01		
Total device	100 mm	[kg]	30.1	19.8	27.1		
weight (10 kg	150 mm	[kg]	30.2	20.1	24.8		
weight)	200 mm	[kg]	30.4	20.5	26.7		
	300 mm	[kg]	30.2	23.3	26		
Drop weig	Drop weight		10, 5	5, 10, 15, 20	3.6, 5, 10		
Maximum drop height		[cm]	72.4	83.8 adjustable	60 adjustable		
Load cell ava	Load cell available		No	Yes	Yes		
Deformation sensor	type	[-]	Accelerometer 42 optional exter geophones		Geophone		
	range	[mm]	0.2–30 (±0.02)	0–2.2 (±0.002)	N/A		
Plate type		[-]	Solid	Annulus	Solid		
Type of buffer		[-]	Spring	Flat Rubber- adjustable	Spring		

Decagon GS-1 ruggedized volumetric water content (VWC) sensor

Ohaus MB45 moisture analyzer

Troxler 3440 Nuclear moisture-

density gauge

LWD Drops on Proctor Mold (E_{LWD_Mold})

Small Scale

Lab Testing

Field Testing

Analysis

Field

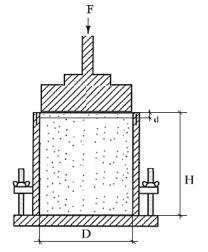
Validation

Specification

Development

Theory of elasticity for a cylinder of elastic material with constraint lateral movement imposed by the rigid mold:

Equipment


Evaluation

$$E = \left(1 - \frac{2v^2}{1 - v}\right) \frac{4H}{\pi D^2} k$$

Introduction

Objective

v = Poisson's ratio (assumed) H = height of the mold D = the diameter of the plate or mold k = soil stiffness =F/ δ as calculated by LWD device

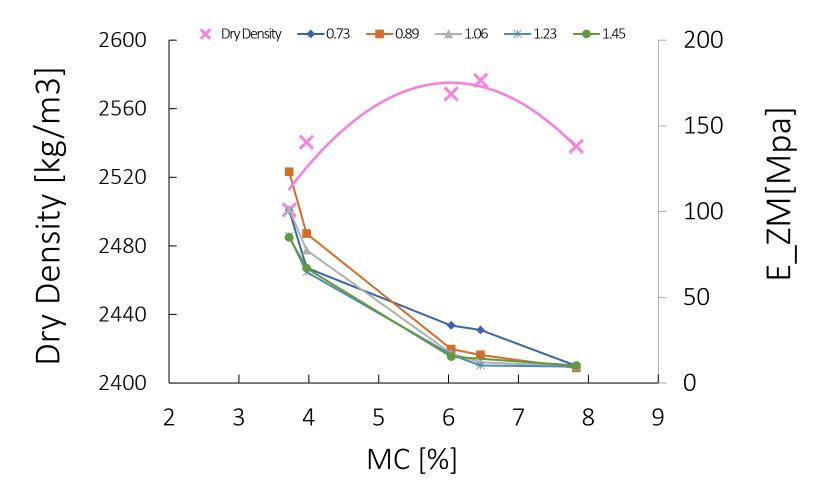
Varying Stress Levels:

2.2

LWD type	Drop Heights [inches]					
Zorn	1	2	3	4	5	12.5
Dynatest	1	2	3	4	5	7 or 12.5
Olson	1	2	3	4	5	8.5

LWD Testing on Proctor Mold – Example Results

Small Scale


Lab Testing

Equipment

Evaluation

Objective

Introduction

Field Testing

Analysis

Field

Validation

Specification

Development

Conclusion

E_ZM: Zorn LWD modulus on Proctor mold Legend shows variable P/Pa (0.73, 0.89, up to 1.45) corresponding to different drop heights (1, 2, up to 8 in.)

Field Specification Validation Development

> Conclusion

LWD Testing in the Field (E_{LWD_Field})

Equipment

Evaluation

Boussinesq equation:

Introduction

Objective

$$E = \frac{2k_s \left(1 - \upsilon^2\right)}{Ar_0}$$

v= Poisson's ratio (assumed)

Field Testing

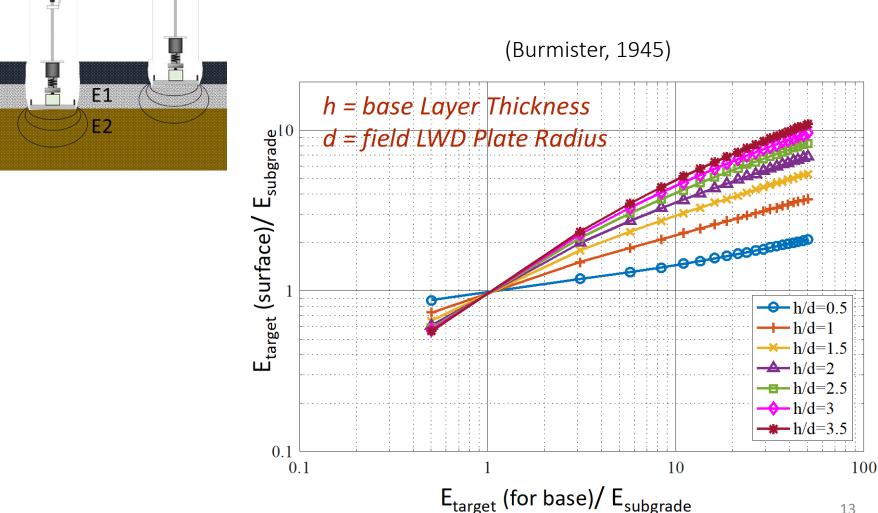
Analysis

 r_0 = plate radius

Small Scale

Lab Testing

 k_s = soil stiffness =F/ δ as calculated by LWD device


F= LWD peak applied load (measured or assumed)

 δ = LWD measured peak deflection

A= stress distribution factor (assumed)

Soil type	Factor (A)	Stress distribution Shape
Uniform (mixed soil)	π	
Granular material (parabolic)	3π/4	
Cohesive (inverse-parabolic)	4	

Equipment Small Scale **Field Testing** Field Specification Objective Introduction Conclusion Development Evaluation Lab Testing Analysis Validation LWD Testing on Layered System

Field Testing Analysis Field Validation

Specification Development Conclusion

Field Projects in the Pooled Fund Study

	Location	Soil Type	AASHTO Classification	Unified Classification		
1	Virginia	Subgrade	A-3	SP-SM	Poorly graded sand with silt	
2		MD5 Waste contaminated embankment	A-1-a	SW	Well graded sand with gravel	
3		MD5 Subgrade	A-2-7	SP	Poorly graded sand with gravel	
4	 Maryland	MD 337, Deep GAB	A-2-7	GW-GM	Well graded gravel with silt and sand	
5		MD404 sand overlaying Subgrade	A-2-7	SP	Poorly graded sand	
6		MD 404 Subgrade	A-2-6	SP	Poorly graded sand	
7		MD 404 Base	A-2-7	GP-GM	Poorly graded gravel with silt and sand	
8	New York	Embankment	A-3	SP	Poorly graded sand	
9		Cement modified Subgrade	A-2-4	SW	Well graded sand with gravel	
10	Indiana	Virgin Subgrade	A-2-4	SW-SM	Well graded sand with silt and gravel	
11		Base	A-1-a	GW	Well graded gravel with sand	
12	Missouri	Subgrade	A-3	SP	Poorly graded sand with gravel	
13	IVIISSUUT	Base	A-3	GW	Well graded gravel with sand	
14	Florida	Subgrade	A-2-7	SP	Poorly graded sand	
15	Florida	Base	A-3	SP	Poorly graded gravel with sand	

Air temperature: 15-33 C

Humidity: 40%-70%

Wind speed: 0-10 km/hr

Location of Projects for MDOT Implementation

Field Testing

Analysis

Field

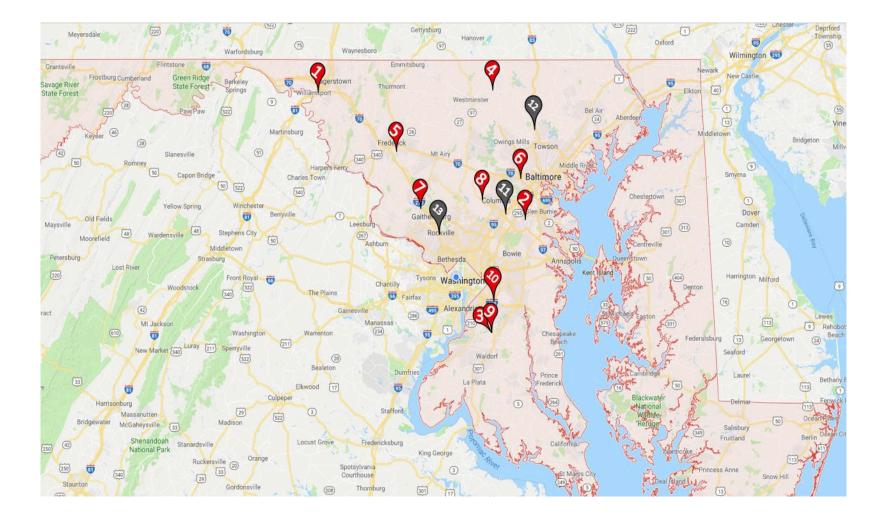
Validation

Specification

Development

Conclusion

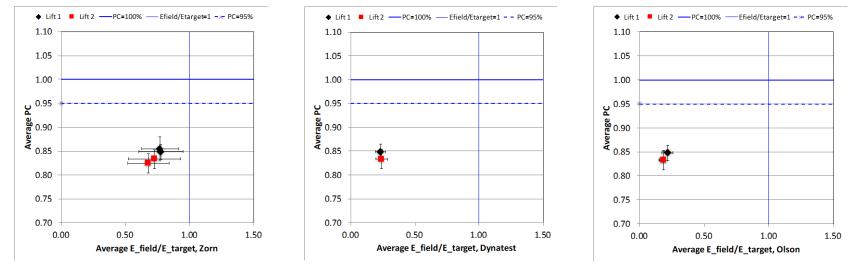
Small Scale


Lab Testing

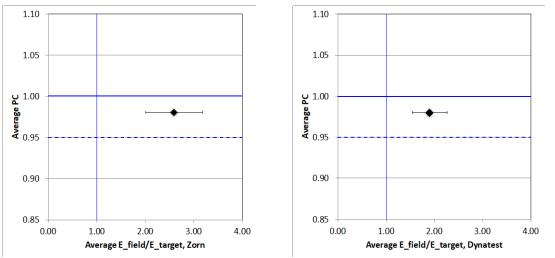
Equipment

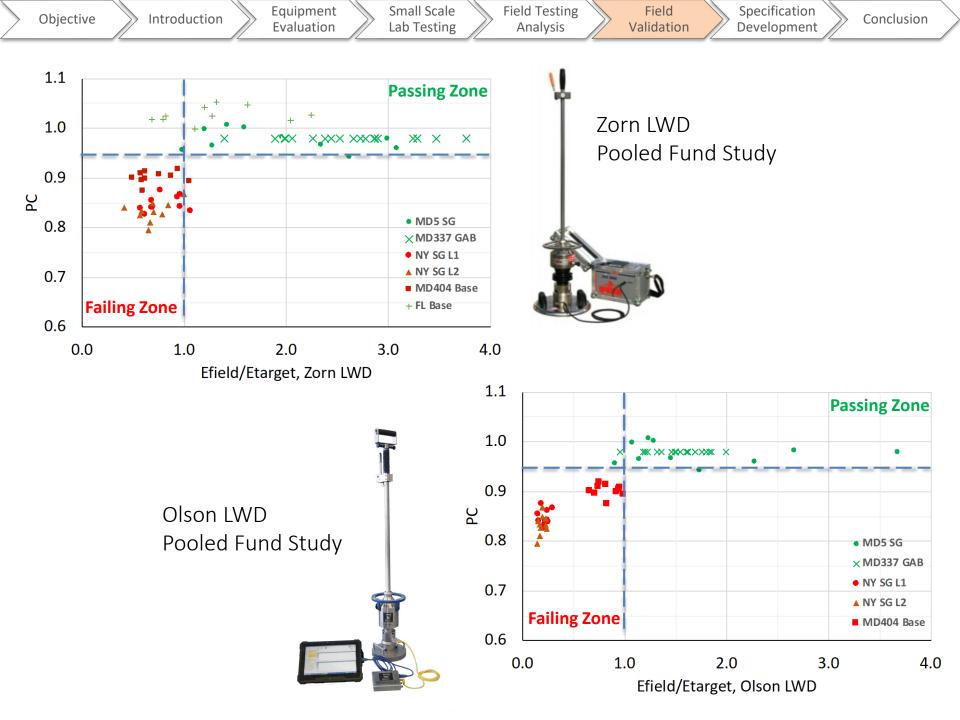
Evaluation

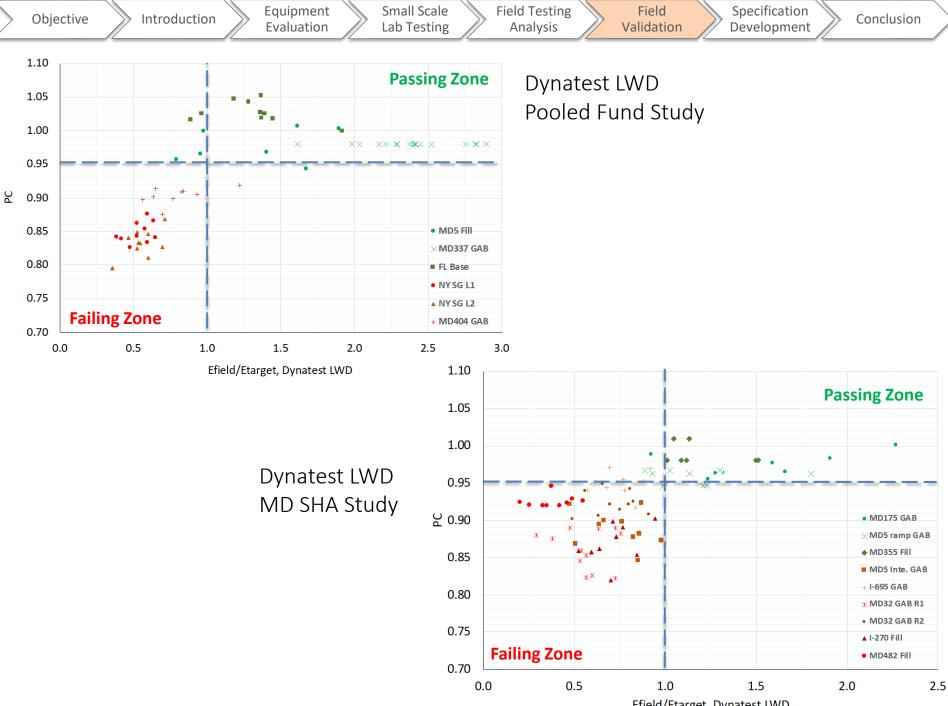
Objective


Introduction

NY embankment compaction


2 lifts of 8-12", tested right after compaction + 2 rounds at hourly increments


MD337 GAB (1 layer)


♦Failed

6" GAB placed over 2' of compacted GAB, tested after compaction

Efield/Etarget, Dynatest LWD

Objective

Introduction

Equipment Evaluation Small Scale Lab Testing Field Testing Analysis Field Validation Specification Development Conclusion

Two Proposed Specifications

1- Laboratory Determination of Target Modulus Using LWD drops on Compacted Proctor Mold:

- Sample preparation
- Testing procedure
- Determination of optimum MC
- Determination of target E_{LWD_Target}

2- Compaction Quality Control Using LWD

- In-situ LWD testing procedure and frequency
- In situ MC testing
- Target modulus adjustment for two-layer systems
- Evaluation of in situ MC for acceptance
- Evaluation of $E_{LWD_Field}/E_{LWD_Target}$ for acceptance

Standard Method of Test for Laboratory Determination of Target **Modulus Using Light-Weight** Deflectometer (LWD) Drops on **Compacted Proctor Mold** AASHTO Designation: TP 123-01 (2017) 1. SCOPE 1.1. This test method describes the procedure to determine the target modulus (or deflection) required for compaction quality control of geomaterials using Light Weight Deflectometer (LWD) drops on a compacted Proctor mold in the laboratory. The same LWD type in terms of brand name, buffer stiffness, and deflection 12 Standard Method of Test for **Compaction Quality Control Using** Light Weight Deflectometer (LWD) AASHTO Designation: TP 456-01 (2017) 1. SCOPE 1.1. This test method describes the procedure to assure the compaction quality of a road base or subgrade by comparing the field surface moduli to the laboratory determined target moduli using a Light Weight Deflectometer (LWD). 1.2. The same LWD type in terms of brand name, buffer stiffness, and deflection measurement location (on top of the plate or on top of the soil layer) used for the laboratory target modulus testing must be used during the field testing. This is to eliminate differences between measurements from different devices. 1.3. This procedure shall be performed within two hours after compaction to eliminate the effect of surface drying on the modulus values. This method does not count for post compaction wetting/drying and environmental effects. 1.4. An appropriate in situ method of soil water content measurement shall be used to rapidly determine the moisture content at the time of compaction and testing.

Link

Published ASTM E3331-22a Specification

ASTM E3331-22a (i)

Standard Test Method for Measuring Target Modulus Using Light Weight Deflectometer (LWD) on Compacted Proctor Mold Samples

Significance and Use

5.1 LWDs are intended to be used as a tool to ensure adequate compaction of unbound materials. Adequate soil compaction of infrastructure projects will provide load capacity, stability of the soil, decrease permeability, and prevent or reduce the settlement of supported pavements and structures. The target modulus or deflections are used to establish QA/QC acceptance criteria for the LWD tests in the field.

5.2 This test method covers the determination of target acceptance modulus values of unbound materials based on measuring LWD deflections on laboratory proctor mold samples at varying moisture contents.

5.3 This standard test method provides a target modulus calculation that accounts for the constrained conditions (in the compaction mold) of the test sample. The intent is to be able to compare the results from the laboratory samples to those of similar materials in the field at similar stress levels.5

5.4 The target modulus or deflections may be either correlated directly to pavement or structure performance or used to determine *in situ* material characteristics of the pavement or structure foundation layers.6

Implementation Recommendation

Local field verification/calibration:

Objective

Introduction

Equipment

Evaluation

Range of projects representing typical soil conditions (base, subgrade)

Small Scale

Lab Testing

Field Testing

Analysis

Field

Validation

Specification

Development

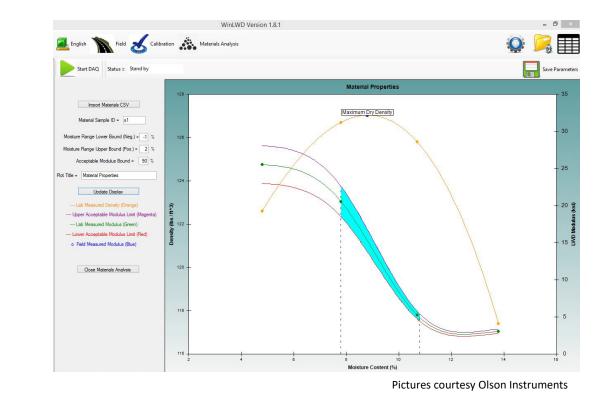
Conclusion

- LWD on mold testing in laboratory
- Both conventional nuclear gauge and LWD approaches in field
- Compare PC vs. E_{LWD_Field}/E_{LWD_Target}
- Establish appropriate compaction specification threshold (cst) or PWL:

 $\frac{E_{LWD_Field}}{E_{LWD_Target}} \ge CST$

• Develop confidence in procedures

New Designs - Zorn Lab LWD, Field LWD, and Application Link


Pictures taken during TRB 2023

LWD for Proctor mold to determine characteristics that provide a soil-specific assessment of the degree of soil compaction. Web application for a quick comparison of measurement data, for data evaluation and easy creation of high-quality test protocols.

Olson Lab LWD and Application Link

- Shorter and lighter weight (3.6 kg) lab unit
- Dell[™] sunlight viewable tablet
- WinLWD software and app

Link

- GPS
- Configuration and stress distribution input
- Stores density and MC of mold

Questions?

Zahra (Niosha) Afsharikia, PhD

Solutions Manager WSP USA Niosha.Afshar@wsp.com <u>https://www.linkedin.com/in/afsharikia/</u>

Charles W. Schwartz, PhD

Phillip J. Erdle Chair of Engineering Science DFCE, U.S. Air Force Academy schwartz@umd.edu

https://www.usafa.edu/facultyprofile/?smid=48423