NATIONAL ACADEMIES Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

TRB Webinar: Remaining In-Service Life of Culverts and Other Geotechnical Assets

April 24, 2023 1:00 – 2:30 PM

PDH Certification Information

1.5 Professional Development Hours (PDH) - see follow-up email

You must attend the entire webinar.

Questions? Contact TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

ENGINEERING

AICP Credit Information

This webinar will focus on qualitative models to assess conditional and performance of inservice assets and forecast remaining service life for geotechnical management applications. Presenters will share current practices and gaps for assessing the condition of culverts and other geotechnical assets.

Learning Objectives

At the end of this webinar, you will be able to:

- Identify the current practices and gaps in assessing conditions of culverts and other geotechnical assets
- Evaluate the methods to develop performance models for culverts based on different condition assessment data
- Implement performance forecasting to estimate remaining service life of in-service geotechnical assets

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

	File View Help	_0C×
	▼ Webcam	ย×
0	Share My Webcam	Webcams 🗸
	🔻 Audio	2
	Ocomputer audio Ophone call MUTED Microphone (USB Audio Device Speakers (USB Audio Device	vice) ~
-	Talking: Elaine Ferrell Questions	ប
	[Enter a question for staff]	
	Hodating Webinar Ima	Send
	Webinar ID: 922-070-99	95
	🛞 GoToWebir	nar

Today's presenters

Ahmad Alhasan <u>aalhasan@ara.com</u> Applied Research Associates

Benjamin George ben.george@ccilt.com Landslide Technology

Kyle Brandon Kyle.Brandon@dot.ohio.gov Ohio Department of Transportation

Jerry DiMaggio jdimaggio@ara.com Applied Research Associates

Ahmad Alhasan April 2023 Estimating remaining life of in-service geotechnical assets: A case study on culverts

Agenda

- Geotechnical Asset Management
- Condition Assessment and Performance Modeling Concepts
- Case Study
- Model Fitting and Forecasting
- Beyond this Webinar

Geotechnical Asset Management

- GAM includes several components and the agency's focus can vary.
- Generally, a GAM program includes multiple steps and requires an iterative and cyclic to improve and refine the program throughout its implementation.

Design Life and Service Life

- Design life can be defined as the period on which the statistical derivation of transient loads is based.
- Service life is the forecasted time the asset will provide desired function and remains in service.
- Service life is typically modeled based on real world observations.

Role of Performance Models

- Performance models can be used to estimate remaining service life.
- Performance models are the quantitative tool to forecast the future and manage the assets.
- Performance models are used to estimate the benefits and control the risks.

Performance Modeling Process

- Understanding deterioration mechanisms is important to select the representative model.
- It is critical use the proper statistical assumptions and the forecasting with interpretation techniques

Types of Deterioration and Performance Models

Case Study: Ohio Culverts

ODOT Manual of Bridge Inspection 2014 v8

Condition Rating Inspection

Field Manual (Chapters 7 & 8)

Culvert Seams – "ded" CONDITION RATING

ltem - Type –		47. Seams Concrete							
1-4	9-0 Summary	General	Alignment	Backfill					
1-Good	9-Excellent	Straight line between sections.							
	8-Very Good	No settlement or misalignment; Tight with no defects apparent.							
	7-Good	Minor distress to pipe material adjacent to joint. Shallow mortar deterioration at isolated locations.	Possible minor infiltration of fills no settlement.						
2-Fair	6- Satisfactory	Extensive areas of shallow deterioration; missing mortar at isolated locations; possible infiltration or exfiltration; minor cracking.	Dislocated end section.	Minor backfill infiltration due to slight opening at joints; minor cracking or spalling at joints allowing exfiltration.					
	5-Fair	Significant cracking, spalling, buckling of pipe material, loose or missing mortar at isolated locations.	Joint offset less than 3 inches. End sections dislocated about to drop off mortar generally deteriorated.	Joint open and allowing backfill to infiltrate, infiltration staining apparent.					
3-Poor	4-Poor	Voids seen in fill through offset joints. End sections dropped off at inlet. Mortar severely deteriorated, significant loss of mortar.	Differential movement and separation of joints. Joint offset less than 4 inches.	Significant infiltration or exfiltration between masonry units.					
	3-Serious	Large voids seen in fill through offset joints. Extensive areas of missing mortar.	Significant openings, dislocated joints in several locations exposing fill material with joint offsets greater than 4 inches.	Infiltration or exfiltration causing misalignment of pipe and settlement or depressions in roadway.					
	2-Critical	Culvert not functioning	due to alignment problem	is throughout. Large voids					
4-Critical	1-Imminent Failure	Pipe partially collapsed or collapse is imminent.							

Table 57 - Condition Rating: Culvert Concrete Seams

Condition Data

Common data issues:

- Sudden data drop due to performance rating variability
- Significant condition improvement without recorded reconstruction or preservation interventions
- Missing performance rating data within evaluation period

Condition Data as a Markov Chain Processes

$$P = \begin{array}{c} 9 \\ \vdots \\ 0 \\ p_{10} \\ p_{10}$$

Expected Future Condition

Expected Value of the Condition Distribution after n years is:

$$E(C|T = n, P) = M_r R$$
$$R = \begin{bmatrix} 9\\8\\ \vdots \end{bmatrix}$$
$$M_r = C_0 P^n$$

Transition Probability Matrix											
States	9	8	7	6	5	4	3	2	1	0	
9	0.28365	0.60806	0.06557	0.01994	0.01863	0.00307	0.00097	9.7E-05	1.8E-05	1.3E-06	E(C T=5,P) =
8	0.06639	0.92769	0.00471	0.00063	0.00053	4.4E-05	1.2E-05	5.8E-07	8.6E-08	1.9E-09	
7	0	0	0.33531	0.26446	0.27891	0.08378	0.03086	0.00534	0.00117	0.00019	
6	0	0	0	0.48884	0.2596	0.18069	0.05227	0.01496	0.0029	0.00074	
5	0	0	0	0	0.51384	0.2649	0.16056	0.04366	0.01339	0.00365	

Estimating Transition Probabilities

Minimize the absolute difference between the average condition at age *t* and the expected value from Markov chain by changing the probabilities:

$$\begin{split} \min_{p_{ij}} \sum_{t=1}^{n} W_t \\ W_t &= \left| \frac{\sum_{k=1}^{L} C_{k,t}}{L} \right| - C_0 \begin{bmatrix} p_{11} & \cdots & p_{1\,10} \\ \vdots & \ddots & \vdots \\ p_{10\,1} & \cdots & p_{10\,10} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & \cdots & p_{1\,10} \\ \vdots & \ddots & \vdots \\ p_{10\,1} & \cdots & p_{10\,10} \end{bmatrix} \cdot \begin{bmatrix} p_{11} & \cdots & p_{1\,10} \\ \vdots & \ddots & \vdots \\ p_{10\,1} & \cdots & p_{10\,10} \end{bmatrix} \dots R \end{split}$$

Ignoring Variability Reduces Accuracy

4-Sided CIP

Survival Models

P (T≤ 26) ≈0026

State A

Forecasting and Interpretation

Beyond this Webinar?

- 1. Develop procedures to infer performance of individual assets.
- 2. Use of physics (or engineering) based AI to develop better modeling and optimization techniques.
- 3. Incorporate uncertain extreme events in performance modeling and planning.
- 4. Quantify the resiliency of assets' performance.
- 5. Geotechnical assets are heterogeneous, can we develop a more homogeneous condition and performance scheme to incorporate multiple assets?

Corridor Health A Case Study

 TRB Webinar

 Remaining In-Service Life of Culverts and Other Geotechnical Assets

 April 24, 2023

Ben George, P.E., C.E.G.

Trevor Strait, P.E., PTOE

Project Location and Approach

- Chiniak Highway, MP 15 31
 - Two lane roadway constructed in 50s, paved circa 90s
- STIP (3R) Rehabilitation Project
 - Mitigate Safety Concerns
 - Reduce Crashes
 - Improve Sight distance
 - Improve Roadway
 - Subgrade and surface
 - Vertical/horizontal curves
 - Guardrails
 - Drainage/culverts
- Limited \$ for \$\$\$\$ work

Scope the Project

Where is poor performance occurring?

What is contributing to performance?

Inventory and Rate Assets

Variable Data, Many Sources, Non-Standardized

Critical Assets

- Identify which assets drive Scope
 - Pavement
 - Bridges
 - Culverts
 - Roadway Geometry
 - Geotechnical (slopes, retaining walls)
- Develop method to evaluate each asset within a Good/Fair/Poor, 0-100 scoring framework

- Ratings considered:
 - Safety
 - Reliability
 - General Fund Costs
 - Other impacts and considerations

Asset – Culverts

- Existing method of analysis
 - Non-Standardized
 - Based on Inspections

- Culvert Material
- Culvert Shape
- Culvert Rise
- Culvert Span
- Culvert Length
- > Pipe Physical Condition
- Pipe Structural Condition
- Flow Condition
- Embedment Depth
- > Baffles Present
- > Height of Cover
- Roadway Deflection
- > Inlet Type
- Inlet Structural Condition
- Inlet Embankment Condition
- Inlet Channel Condition
- > Outlet Type
- Outlet Structural Condition
- Outlet Embankment Condition
- Outlet Channel Condition
- > ADF&G Fish Passage Rating

Asset – Culverts

Rating Method

- 1. Fail Condition Screening
- 2. Calculate worst of Physical Condition, Structural Condition, and Flow Condition
- 3. Calculate worst of Inlet/Outlet Embankment Condition
- 4. Average these values
- 5. Adjust for Fish Passage Rating

	Attribute	Description	Rating Value
		Like new, no defects	100
		Cracked, spalled, light rust	75
	Pipe Physical Condition	Broken, rust pitted, weathered joints	50
		Deteriorated, rotted, bottom out	25
		Unknown	-
	Pipe Structural Condition	Good, no sags or deflection	100
		Fair, minor sags with no ponding, minor deflection that would inhibit the installation of a liner pipe	50
		Poor, major sag with ponding, major deflection that would inhibit the installation of a liner pipe	25
`		Pipe collapsed	0
		Unknown	-
	Flow Condition	Open	100
		< 1/2 clogged	50
		1/2 or more clogged	25
	Inlet Embankment Condition	Good no slope failure	100
		Fair, eroded slopes are localized and easily repairable	50
		Poor, eroded slopes have potential to impact roadway	25
		Unknown	-
	Outlet Embankment Condition	Good, no slope failure	100
		Fair, eroded slopes are localized and easily repairable	50
		Poor, eroded slopes have potential to impact roadway	25
		Unknown	-
		Green	100
	Fish Passage Rating	Gray	50
		Black	- 25

Asset – Culverts

• Rating Method compared to Inspection Photos

Fair Rating

Asset – Geotechnical Elements

- Existing method of analysis
 - Significant existing methodology for assessing geotechnical conditions
 - Geotechnical Asset Management (GAM) elements
 - Existing Alaska inventory
 - Documents retaining walls, rock slopes, and soil slopes that are impacting the roadway
 - Location and Condition of Material Sources

Asset – GAM Elements

Alaska DOT&PF Rock Slope Rating Calculator

Ver. 1.1 Dec 2017		Rated By B. George, A. Mines Rating Date 5/14/2019 7:52:53 PM					PM		
Site Information			Site ID				0674000018382019		
Region	SR		Comm	unity			Rockfa	all Type	
Highway Name	CHINIAK HI	GHWAY Maint. District Kodiak		ak Rock Ava		lanche N			
			Maint, Station		Kali	sen Bay	Planar	Failure N	
CDS Route Number	67400					,	Wedge	Failure N	
Highway Milepost	28.7		Common Name				Toppling	Failure N	
CDS Milepoint	18.38		B-9	Slope	NO		Raveling/Under	mining YE	
Latitude	57.598915		Mitigation Present		NO		Block	Failure YF	
Longitude	-152.47407	7	Site Rating Status ACTIVE						
Comments	Split 2010 s	ite 067400001	18142010 in 2 base	ed on ac	tivity	and presence of drain	age channel. Freque	ent	
	maintenand	e issue, iointe	d rock under glaci	al till slo	ope. R	ockfall frequently cro	sses road. 12 ft ditch	. Activity	
	increasing t	owards N end	of slope			,,,,,,,		,	
Site Measurements									
Slope Height (ft)	100	Road	lway Width (ft)	26			Sight Distance	430	
Slope Length (ft)	375	Spe	ed Limit (mph)	55		1	AASHTO DSD (ft)		
Block Size (ft)	4	Annual Pr	ecipitation (in)			GIS Alaska Precipitation Ma	Map – https://arcg.is/1kmhCUN		
Event Volume (cy)	10		AADT (count)	529		GIS 2012/2013 AADT Map -	- https://arcg.is/1MnAI6W		
Site Summary									
Condition Index	36	Tota	USMP Rating	562		Programmatic In	provement Cost to	o CS1	
Condition State	4		Hazard Rating	443			533813		
Condition State text	POOR		Risk Rating	Risk Rating 119 Calculation is programmatic			and does not reflect site-		
Slope Hazard Rating						specific needs. Actual co	sts may differ significantly		
						Hig	ghest of size of volume scores	81	
							Slope Height Score	81	
Case 1 Stru	cture Score	9	Discon. Fav, discon ran	nd, discon ad	dverse, co	ont. adverse			
Case 1 Joint Fri	ction Score	27	Rough Irreg, undulating, planar, clay filled/slickensides						
Case 2 Fea	tures Score	27	Few features, Occ, Many, Major						
Case 2 Diff Er	osion Score	50	Small diff, mod, Large w/fave, Large w/Unfave						
Ditch Effoctive	noce Scoro	50	Geologic Character Score (Highest sum of Case 1 or Case 2 Scores)						
Ditch Effectiveness Score		50	Good, Moderate, Limited, None Ditch Effectiveness Score						
Rockfall Hi	stony Score	50	Sched. Ditch maint, patrols after storms, daily seasonal patrols, daily patrols Maint. Freq. Score					50	
	acin Score	81	Few, Occ, Many, Constant Rockfall History Score						
Slone Drai	inage Score	27	Annual Precip Score					54	
Slope bia	hage score		Hazard Subtotal					443	
Slone Risk Rating								445	
Slope hisk hatting							Decision Sight Distance Score	49 019902	
							Roadway Width Score	35.533997	
							AADT Contro	3	
% Time Car	Within Site	1 122228	1				ANDT SCORE	1.133238	
Impact on Traffic Score a Minor Delay. One Lane Onen. 100 mi or 1 day closure, no detruir or 3 druss. Traffic Impact Score					9				
ROW Impact Score 3 None, Minor, Private property-no structures, structures/road-/RB/util/carks ROW Impacts Score					3				
Environ. Im	Zero points if no environmental imports are likely. 50 nts if some possible Environ imports Core 0								
Maint, Complexity Score			Routine, Specialized Fauin, Difficult effort/location, Complex/dangerous Maint, Complexity Score 9						
Maintenance Freq. Score 50			Sched. Ditch maint, patrols after storms, daily seasonal patrols, daily patrols Maint. Frea. Score					50	
Event	Cost Score	9	\$10k, \$50k, \$100k, \$2	50k in reaso	nable wo	orst case	Event Cost Score	9	
		-					Diele Culstantel	110	

Asset – GAM Elements

• Supplemental Rating – Threatening Slopes

Asset – GAM Elements

• Supplemental Rating – Threatening Slopes

Threatening Slopes Rating CategoriesPotential Roadway ImpactsPotential Traffic ImpactsPotential Level of Maintenance Effort RequiredPotential Length of Roadway AffectedSlope ConditionDistance from EOP to Feature

Compile Data

- 8 bridges
 - Including 8 river banks and 8 supplemental bridge ratings
- 16 miles of pavement
- 17 rock slopes & 5 soil slopes
 - Including 12 threatening slopes
- 5 retaining walls
- 107 culverts
- 150 horizontal curves & 400 vertical curves
Compile Data

- Combining dissimilar asset types
 - Asset Rating Systems give a 0-100 value for each asset
 - Weighting system
 - Needs to be adjustable based on project requirements

Asset Type	Asset Weight			
Bridges	3			
Culverts	1			
Pavement	2			
GAM Elements	2			
Roadway Geometry	2			

Compile Data

15

WHAT DOES IT MEAN???

Corridor Level (For Segmenting)

Corridor Health Score = $\sum [(Si - MAC) \times Wi]$

Si = Average Asset Condition Score per Milepoint Bin MAC = Minimum Acceptable Condition (per asset) Wi = Asset Weighting

Segment Level (For Projects)

Binned by 0.1 mile

Asset Level (For Scoping)

Asset Level (For Costing)

Selected Project Areas with Estimated Costs

15

MP 24.5-25.4: Embankment MP 25.7-26.2: Slope Improvements WHAT Stabiliz Stiff MEAN??? Replacement & Pavement Repairs Pavement Repairs

\$\$\$

\$\$

Corridor Segmentation

- Total Corridor Needed Cost = \$58 M
- Project 1 Cost (Seg 2*, 5) = \$18 M
 - Soldier Pile Spot Repair, Rehab, Resurfacing
- Project 2 Cost (Seg 2.4, 3, 6) = \$17 M
 - Rehab and Resurfacing
- Project 3 Cost (Seg 2.1, 2.2) = \$13 M
 - Rehab and Resurfacing
- Construction Total = \$48 M
- Remaining Project Costs = \$10 M

Segment	Mile	Post	Primary Work	Estimated Construction	Project #
	Start	End	Туре	Costs	
1	31.22	29.00	Resurfacing	\$2,557,000	
2*	28.12	27.85	Soldier Pile Spot Repair	\$5,128,000	1
2.1	29.00	28.00	Resurfacing	\$3,785,000	3
2.2	28.00	25.88	Rehabilitation & Resurfacing	\$9,248,000	3
2.3	25.88	25.52	None		
2.4	25.52	24.50	Rehabilitation	\$6,865,000	2
3	24.50	24.00	Rehabilitation & Resurfacing	\$2,504,000	2
4	24.00	23.50	Resurfacing	\$805,000	
5.1	23.50	22.87	Rehabilitation	\$3,074,000	1
5.2	22.87	21.00	Rehabilitation & Resurfacing	\$9,764,000	1
6	21.00	19.25	Rehabilitation & Resurfacing	\$7,270,000	2
7	19.25	18.75	Resurfacing	\$783,000	
8	18.75	18.20	Resurfacing	\$580,000	
9	18.20	17.20	Resurfacing	\$1,644,000	
10	17.20	15.00	Resurfacing	\$3,701,000	

Next Steps

- Chiniak Highway
 - Developed a Pre-Environmental Review package for the entire corridor
 - Develop designs and construction documents for the identified projects
- Corridor Health Index
 - Implement the process on additional corridors
 - Adjust process as more is learned
 - Increase usability of data analysis

Acknowledgements

- Alaska DOT&PF Southcoast Region
 - Jim Brown, Project Manager
 - Mitch McDonald, Regional Engineering Geologist
 - Mort Larsen, Engineering Geologist
- HDL Engineering Consultants
 - Jeff Fuglestad, Project Manager
 - Doug Simon, Geotechnical Engineer
 - Kelsey Means, Civil Engineer
- Landslide Technology
 - Aine Mines, Project Engineer

Questions?

James Seith PHOTOGRAPHY

ODOT CULVERT DURABILITY AND SERVICE LIFE METHODOLOGY

Kyle Brandon, P.E. April 24, 2023

BASICS OF CULVERT DURABILITY

Durability Concepts

- ODOT Durability Design Methodology
 - Durability Research
 - ODOT Durability Spreadsheet

\circ Future of Service Life Estimation

Culvert Durability

- $\circ~$ Resistance to environmental degradation
 - Corrosion
 - o Abrasion
 - Thermoplastic degradation?
 - Other factors not considered herein
 - \circ Joints
 - o Structural
 - Freeze-thaw
 - o Installation

Combined Abrasion and Corrosion

- Corrosive layer formed and then abraded away
- Resultant section loss can be many times greater than addition of each individual processes

\circ Abrasion

- \circ $\,$ Progressive section loss $\,$
 - Almost always evidenced in culvert invert
 - High stream velocities
 - High bedload
- CalTrans has extensive information on abrasion
 - Used as a resource for ODOT Design and Inspection

\circ ODOT Abrasion

	Abrasion Level	s and Mat	erials
Abrasion Level	General Site Characteristics	Abrasion Level	General Site Characteristics
Level 1	Bedloads of silts and clays or clean water with virtually no abrasive bed load. Non-Abrasive Material	Level 5	Moderate bed load volumes of angular sands and gravel or rock.
Level 2	Moderate bed loads of sand or gravel.		Moderate bed load volumes of angular sands and gravel or rock.
Level 3	Moderate bed load volumes of sand, gravels, and small cobbles.	Level 6	OR Heavy bed load volumes of angular sands and gravel or rock.
Level 4	Moderate bed load volumes of angular sands, gravels, and cobbles/rocks		
	Sand0.002 inchesGravel0.08 inchesPebbles0.16 inchesCobbles2.5 inchesBoulders10 inches	– 0.08 inches – 0.16 inches – 2.5 inches – 10 inches or greater	5

\circ Corrosion

- \circ Acids
 - Less than 5.5 is strongly acidic
 - Greater than 8.5 strongly alkaline

METAL CULVERTS

\circ Steel

- \circ Protective Coatings
 - o Galvanizing
 - Aluminizing
 - o Bituminous coating
 - \circ Polymer coating
 - Invert paving

o Aluminum

\circ Steel

- $\circ~$ pH between 5.5 8.5
- Not recommended for highly abrasive sites unless protective coating provided

o Aluminum

- o pH between 5.5 8.5
- $\circ~$ Not recommended for highly abrasive sites

o pH < 5

- $\circ~$ Use special concrete mix with high alkalinity
- Add sacrificial concrete cover
- Coatings
- \circ Generally abrasion resistant
- O Sulfates > 0.5%
 - Use special cements (Type V cement)

- \circ Generally inert to corrosion
- Resistance to very high abrasion is not well documented
- \circ Oxidation
 - $\circ~$ Currently handled through material standards
- Slow-crack growth
 - Currently handled through material standards
- $_{\odot}$ UV Degradation

- \circ Conduit Inspection Program
- Durability Study
- Durability Design Methodology
 - Service Life Prediction
 - \circ Durability Spreadsheet

CONDUIT MANAGEMENT

OHIO DEPARTMENT OF TRANSPORTATION

CULVERT MANAGEMENT MANUAL

VERSION: JULY 2016

Material- Concrete Culvert

Material Code	Category	Description
9	Excellent	New Condition; superficial and isolated damage from construction
8	Very Good	Hairline cracking without rust staining or delamination(s). Surface in good condition. Isolated damage from construction.
7	Good	Hairline cracking; no single crack $>^{i/_1}$ sinch without rust staining parallel to the direction of traffic. Light scaling on $< 10\%$ of exposed area $< 1/8$ inch deep. Delaminated/Spalled area $< 1\%$ of surface area. Note: cast-in-place box culverts may have a single large crack ($<^{i/_{16}}$ inch) on each surface parallel traffic direction
6	Satisfactory	Hairline map cracking with molted areas; cracks <½ in. parallel to traffic with minor efflorescence or minor amts of leakage. Scaling on <20% of exposed area <¼ inch deep. Spalled areas with exposed reinforcing <5%. Delaminated/spalled areas <5% of SA
5	Fair	Map cracking; cracks <½ in parallel to traffic or < $^{1/}_{16}$ in transverse to traffic with efflorescence and/or rust stains, leakage and molted areas. Scaling on < 30% of exposed area $^{3/}_{16}$ inch deep. Spalled areas with exposed reinforcing < 10%. Total delaminated/spalled areas < 15% of surface area.
4	Poor	Transverse cracks open >½ inch with efflorescence and rust staining. Spalling at numerous locations; extensive surface scaling on invert >½ inch. Extensive cracking with cracks open more than ½ inch with efflorescence. Spalling has caused exposure of heavily corroded reinforcing steel on bottom or top slab; extensive surface scaling on invert >¼ inch (approximately 50% of culvert is affected).
3	Serious	Extensive cracking with spalling, delamination(s), and slight differential movement; scaling has exposed all surfaces of the reinforcing steel in bottom to top slab or invert (approx all expose surfaces are 50% loss of wall thickness at invert; concrete very sol
2	Critical	Full depth holes; extensive cracking >½ inch. Spalled areas with exposed reinforcing > 25%; total delaminated/spalled/punky concrete areas >50% of surface area. Reinforcing steel bars have extensive section loss and bar perimeter is completely exposed.
1	Imminent Failure	Culvert partially collapsed or collapse is imminent.
0	Failed	The culvert is collapsed

GENERAL

General Appraisal and Operational Status

This is a two-part item. The first box is for coding the general, overall condition of the culvert. The second box is for coding the operational status of the culvert.

R - General Appraisal (GA)

The General Appraisal (GA) is the lowest rating of the bold box items on the CR-86 form. The Headwall and Scour ratings are only considered bold for those structures deemed Scour or Headwall Critical by the inspector.

Code	Description
9	As built condition
8	Very good condition - no problems noted
7	Good condition - some minor problems
6	Satisfactory condition - structural elements show some deterioration
5	Fair condition - all primary structural elements are sound, but may have minor section loss
4	Poor condition - advanced section loss, deterioration, or spalling
3	Serious condition - loss of section, deterioration, or spalling have seriously affected primary structural components
2	Critical condition - advanced deterioration of primary structural elements. Culvert should be closed or closely monitored, until corrective action is taken
1	"Imminent" failure condition -major deterioration/section loss present on structural components. Culvert closed to traffic.
0	Failed condition - out of service - beyond corrective action

CONDUIT MANAGEMENT

STATE OF OHIO DEPARTMENT OF TRANSPORTATION CULVERT INVENTORY REPORT

CR-87 07-16												
	r											
CULVERT FILE NUMBER					1. Entry Class							
LOCATION AND ROUTE INFORMATION							-					
2. District					3. County		L,					
4. Route					5. Straight Line Mileage							
6. Latitude					7. Longitude							
8. Special Designation					9. Culvert Owner							
10. Maintenance Responsibility												
11. Feature Intersection												
CULVERT				_	,							
12. Year built					13. Number of Cells							
14. Broken Back					15. Culvert Shape							
16. Culvert Material					17. Span (Inches)							
18. Rise (Inches)					19. Length (Feet)							
20. Metal Gage Thickness 1		.[21. Metal Gage Thickness 2							
22. Type of Pipe Protection					23. Slope of Pipe (Percent)							
24. Slope Direction				25. Skew (Degrees)		[
26. Skew Direction				27. Inlet End Treatment								
28. Outlet End Treatment		Τ			29. Maximum Height of Cover (Feet)							
30. Height of Inlet Headwall (Feet)					31. Inlet Headwall to EOP Distance (Feet)							
32. Height of Outlet Headwall (Feet)					33. Outlet Headwall to EOP Distance (Feet)							
34. Drainage Area (Acres)					35. Drainage Discharge (CFS)							
36. Abrasive Conditions					37. Abrasion Level							
38. pH		T			39. Channel Protection (Inlet)							
40. Channel Protection (Outlet)												
Inventory Modifications	•											
41. Modification Type					42. Year Modified							
43. Modification Material					44. Modification Size (Inches)	- •	Γ,					
45. Inlet Extension Year					46. Inlet Extension Shape							
47. Inlet Extension Material					48. Inlet Extension Span (Inches)		Γ,					
49. Inlet Extension Rise (Inches)					50. Metal Inlet Gage Thickness 1		1	_				
51. Metal Inlet Gage Thickness 2					52. Inlet Extension Length (Feet)							
53. Outlet Extension Year				54. Outlet Extension Shape								
55. Outlet Extension Material		T			56. Outlet Extension Span (Inches)		Г	Т				
57. Outlet Extension Rise (Inches)		Ľ	T		58. Metal Outlet Gage Thickness 1							
59. Metal Outlet Gage Thickness 2			t		60. Outlet Extension Length (Feet)							
COMMENTS (use back of form if additional space	e is n	eed	ed):			- '					

STATE OF OHIO DEPARTMENT OF TRANSPORTATION CULVERT INSPECTION REPORT

CR-86 07-16 CULVERT FILE NUMBER	CULVERT NUMBER	CO	ROUTE	Ð		DISTRICT
SPAN SHAPE	MATERIAL				LENGTH	I
ROADWAY ID		ENT	RY CLASS	1	NUMBER OF	CELLS
LATITUDE	L	ONGIT	UDE			
FEATURE INTERSECTION:						

CULVERT				
1. Level of Inspection				
2. General		3. Culvert Alignment		
4. Shape		5. Seams or Joints		
6. Slab		7. Abutments		
8. Headwalls*		9. End Structure		
CHANNEL	_			
10. Channel Alignment		11. Protection		
12. Culvert Waterway Blockage	13. Scour*			

APPROACHES							
	15. Guardrail						
		15. Guardrail					

GENERAL APPRAISAL & OPERATIONAL STATUS
*Only a bold box for structures that are Headwall or Scour critical. These items should not govern the GA if they
are not determined to be critical upon the judgment of the inspector.

DATE:

CONDUIT	8 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						
1. Level of Inspection	М	2. Material		6			
3. Conduit Alignment	7	4. Shape					
5. Seams or Joints	7	6. Slab					
7. Abutments		8. Headwalls *					
9. End Structure							
CHANNEL							
10. Channel Alignment	5	5 11. Protection					
12. Conduit Waterway Blockage	7	7 13. Scour **					
APPROACHES							
14. Pavement	7	15. Guardrail		5			
16. Embankment	7						
	ENERAL APPRAISAL & OPERATIONAL STATUS	6	A				

INVENTORIED BY:

DATE:

July 2016

74 | Page

July 2016

INSPECTED BY:

75 | Page

DURABILITY STUDY

Assessment of ODOT's Conduit Service Life Prediction Methodology

Prepared by Shad Sargand, John Hurd, Kevin White, Teruhisa Masada, Johnnatan Garcia-Ruiz, and Gabriel Colorado-Urrea

Prepared for the Ohio Department of Transportation Office of Statewide Planning and Research

State Job Number 134725

September 2016

Final Report

Figure 59. Estimated service life of corrugated steel pipe of varying gauges (G values) in flow at abrasion level 1, assuming an average soil pH value of 7.6. Numerals in parentheses are pipe wall thicknesses in inches (1 in = 25.4 mm).

9.1.1 Sites with pH < 7.0

С

Data used: Field inspections performed for this study augmented with data from Hurd [1985] and some additional parameters from Meacham, Hurd, and Shisler [1982]

Model 1: Using ODOT Rating system, R2=0.648

$$PODOT = 10.689Log(pH_w) - 0.026Age - 0.389Abrasion - 4.445\left(1 - \frac{Sed}{Rise}\right) + 4.169$$

Model 2: Using ORITE Rating system, R2=0.643

 $CORITE = 11.605 Log(pH_w) - 0.027 Age - 0.391 A brasion - 4.839 \left(1 - \frac{Sed}{Rise}\right) + 3.685$

Model 3: Using Hurd Rating system, R²=0.602

$$CHurd = -151.934Log(pH_w) + 0.319Age + 5.083Abrasion + 72.199\left(1 - \frac{Sed}{Rise}\right) + 49.559$$

DURABILITY SPREADSHEET

E	ample -Condւ	uit Type: Type	A Culvert; Con	duit Shape: Cir	cular; Hydraulic I	Requirement	s: 66 inch smoo	th or corrug	ated; Stream	Information
County	Kno	x	Route	4	Section	14.36	PID	99999	Shape	Circular
Station	16+	00	Station	10	6+00				Span x Rise	66
	User li	nput			Constants and Calc	ulated Values				1
	pHw	Abrasion Level		pHs	Sediment/Rise	End of Service Life GA	Service Life Required			
	7.8	2.0		7.6	0	4	75			
										Metal Con
Ма	terial	707.01 , 707.02, or 707.03 Metallic coated (galvanized)	707.01 or 707.02 or 707.03 Metallic coated (galvanized) with Concrete Field Paving	707.01 or 707.02 Metallic coated (Aluminized)	***707.01 or 707.02 Metallic coated (aluminized) with Concrete Field Paving	707.04 Polymeric Coated over galvanized steel	***707.04 Polymeric Coated with Concrete Field Paving	707.05 or 707.07 (707.01 or 707.02 galvanized) 1/2 Bituminous coated with Bituminous paved invert	***707.05 or 707.07 (707.01 or 707.02 aluminized) 1/2 Bituminous coated with Bituminous paved invert	**707.11 Polymer Precoated spiral rib steel
Conduit Us	e and Shape	Culvert or Liner Pipe - Round or Pipe Arch	Culvert-Round, Pipe Arch, and Arch	Culvert or Liner Pipe -Round or Pipe Arch	Culvert -Round or Pipe Arch	Culvert or Liner Pipe - Round or Pipe Arch	Culvert-Round or Pipe Arch	Culvert -Round or Pipe Arch	Culvert -Round or Pipe Arch	Storm Sewer or I Liner Pipe- Round
	Corr. Depth (inches)									
	1/4 or 1/2	10	10	10	10	10	10	10	10	N/A
min gauge or thickness	1	12	12	12	12	12	12	12	12	N/A
min gauge of thickness	2	12	12	N/A	N/A	N/A	N/A	12	N/A	N/A
	3/4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12
	1/4 or 1/2	8	8	10	10	10	10	8	10	N/A

Metal Options: 66" Type A Conduit, 707.02 (0.109) with CFP, 707.02 (0.064) aluminized, 707.04 (0.064)

DURABILITY SPREADSHEET

	1									
Concrete Conduit Durability Results										
			**706.03 Reinforced	**706.04 Reinforced Concrete	**706.05 Precast					
Material	**706.01 Non-reinforced	**706.02 Reinforced	Concrete Pipe, Epoxy	Elliptical Culvert, Storm Drain,	Reinforced Concrete Box					
	Concrete Pipe	Concrete Circular Pipe	Coated	and Sewer Pipe	Sections	706.08 Clay Drain Tile				
Conduit Use and Shane	Culvert or Storm Sewer -	Culvet or Storm Sewer -	Culvert or Storm Sewer -	Culvert or Storm Sewer -	Culvert or Storm Sewer -	Culvert or Storm Sewer -				
Conduit Ose and Shape	Round	Round	Round or Elliptical	Elliptical	Вох	Round				

		Plastic Conduit Durability Results									
Material	707.33 Corrugated Polyethylene Smooth Lined Pipe	707.34 Polyethylene Plastic Pipe Based on Outside Diameter (OD)	707.35 Polyethylene Profile Wall Pipe	707.42 Polyvinyl Chloride Corrugated Smooth Interior Pipe	707.43 Polyvinyl Chloride Profile Wall Pipe	707.45 Polyvinyl Chloride Solid Wall Pipe	707.46 Polyvinyl Chloride Drain Waste and Vent Pipe	707.47 ABS and Polyvinyl Chloride Composite Pipe	707.48 Polyvinyl Chloride Large- Diameter Solid Wall Pipe	707.65 Polypropylene corrugated Double Wall Pipe	707.69 Polypr Triple Wall
Conduit Use and Shape	Culvert, Storm Sewer, or Liner Pipe - Round	Culvert, Storm Sewer, or Liner Pipe - Round	Culvert, Storm Sewer, or Liner Pipe - Round	Storm Sewer or Liner Pipe - Round	Storm Sewer or Liner Pipe - Round	Storm Sewer - Round	Storm Sewer - Round	Storm Sewer - Round	Storm Sewer - Round	Culvert or Storm Sewer - Round	Culvert or Stor - Roun

Constants									
Protective Coating Constants-Initial Service Life (years)									
Concrete Invert Pay	ving= 20								
Alumini	zed= 35								
Aluminized Spiral	Rib= 35								
Polym	eric= 50								
Bituminous coated w/ bitum. paved inv	vert= 10								
Bituminous lir	ned = 25								
Galvani	zed= 0								

Plastic Options: 66" Type A Conduit, 707.35, 707.75, SS938

Concrete Options: 66" Type A Conduit, 706.02

FUTURE OF SERVICE LIFE ESTIMATION

- Goal for the future is to develop degradation models in order to estimate remaining service life
 - "Evaluation of Degradation of Concrete Box Culverts and 3-Sided Culverts"
 completed 2021 for bridge sized culverts 10' and greater in Ohio
- Continued Collection of Inspection Data
- Enough current data for conduits 48" and greater?
 - \circ More frequent inspection cycle
 - Currently evaluating
- \circ 50 years from now?

FUTURE OF SERVICE LIFE ESTIMATION

Division of Engineering Research on Call Agreement 34652

Task 2 - Evaluation of Degradation of Concrete Box

Culverts and 3-Sided Culverts

Ahmad Alhasan, Kevin White, Jerry DiMaggio,

for the Ohio Department of Transportation Office of Statewide Planning and Research

and the United States Department of Transportation Federal Highway Administration

November 2021

Final Report

Figure 8. Transition probability matrices of (a) the Standard Model and (b) the Modified Mode with more possible transitions for Type 2 culverts.

Figure 10. Scatter plot of average culvert rating versus time with the expected value curve of the Standard Markovian model revaluated using data for ages less than 34 years for Type 9 culverts.

QUESTIONS

Kyle Brandon, P.E.

Assistant Administrator - Roadway and Bridge Hydraulics ODOT Office of Hydraulic Engineering 1980 W. Broad St., Mail Stop 5220, Columbus, Ohio 43223 Kyle.brandon@dot.ohio.gov (614) 466-5199

Today's presenters

Benjamin George ben.george@ccilt.com

Kyle Brandon Kyle.Brandon@dot.ohio.gov

Jerry DiMaggio jdimaggio@ara.com

NATIONAL ACADEMIES

Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

Upcoming events for you

May 3

TRB Webinar: Deploying AI Applications for Asset Management

May 17

TRB Webinar: Risk-targeted Ground Motions for Bridge Design

July 8-11

TRB's National Conference on Transportation Asset Management

https://www.nationalacademies.org/trb/ events

Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

Spread the word and subscribe! https://www.trb.org/Publications/ PubsTRBENewsletter.aspx

Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!

https://mailchi.mp/nas.edu/trbwebinars

And follow #TRBwebinar on social media

TRANSPORTATION RESEARCH BOARD

ACADEMIES Medicine

Sciences Engineering

NATIONAL
Get involved

https://www.nationalacademies.org/trb/get-involved

Research Report 990

abook for Effective Polici

ACRP

Research Report 226

and Practices for Managing

Become a Friend of a Standing Technical • **Committee**

Network and pursue a path to Standing Committee membership

- Work with a CRP ٠
- Listen to our podcast •

NATIONAL Sciences Engineering ACADEMIES Medicine

TRANSPORTATION RESEARCH BOARD

We want to hear from you

- Take our survey
- Tell us how you use TRB Webinars in your work at trbwebinar@nas.edu

