N^TION^L Sciences ヘCADEMIES ${ }^{\text {Engineering }}$

NTE TRANSPORTATION RESEARCH BOARD

TRB Webinar: Pedestrian Crash Factors, Trends, and Treatments

June 13, 2023
1:00-2:30 PM

PDH Certification Information

1.5 Professional Development Hours (PDH) - see follow-up email

You must attend the entire webinar.

Questions? Contact Andie Pitchford at TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

ENGINEERING

registered continuing education program

Purpose Statement

This webinar will examine pedestrian crash trends and analyze various contributing factors. Presenters will also provide recommendations for cost-effective safety improvements throughout the roadway network.

Learning Objectives

At the end of this webinar, you will be able to:

- Identify key pedestrian crash factors
- Predict the benefits and costs of various safety treatments for crashes at and between intersections, along corridors, and at low and high speed
- Ensure the most cost-effective treatments are pursued

Questions and Answers

- Please type your questions into your webinar control panel

Speakers (USB Audio Device)

Today's presenters

Noah Heath
Noah.Heath@txdot.gov
Texas Department of
Transportation

Kara Kockelman
kkockelm@mail.utexas.edu University of Texas, Austin

Laura Sandt

sandt@hsrc.unc.edu
UNC Highway Safety Research Center

Pedestrian and Bicycle Information Center

A "Systems" Perspective on Pedestrian Safety Challenges and Opportunities

pedbikeinfo.org fyo @pedbikeinfo

APPROACH

Zero is our goal. A Safe System is how we will get there.

Imagine a world where nobody has to dle from vehicle crashes. The Safe System approach alms to eliminate fatal \& serious injuries for all road users. It does so through a holistic view of the road system that first anticipates human mistakes and second keeps impact energy on the human body at tolerable levels. Safety Is an ethical Imperative of the designers and owners of the transportation system. Here's what you need to know to bring the Safe System approach to your community.

The human body cannot tolerate large energy forces

Higher speeds and vehicle masses require more time to avoid a crash

Note: Above distances are typical distances. The total stoppoing distance also depends on the thinking distance, road surface, weather conditions and age/condition of the vehicle.

Auto makers have designed IN opportunities for distraction and designed OUT time for risk response Vehicles

The US designs IN high levels of kinetic energy in the system compared to Safe System adopting nations

Table 2 - One Network Framework urban street categories and safe speed limit ranges

Category	Description	Safe and appropriate speed limit*
Civic spaces	These streets have a higher place classification than other urban street categories, representing a higher level of on-street activity and higher- density adjacent land use generating that activity. These streets have a lower movement classification because they are mainly intended for localised on-street activity with little or no through movement.	$10-20 \mathrm{~km} / \mathrm{h}$ $(6-12 \mathrm{mph})$
Local streets	These streets provide quiet and safe residential access for people of all ages and abilities and foster community spirit and local pride. They are part of the fabric of Aotearoa New Zealand neighbourhoods, and they facilitate local community access.	$30 \mathrm{~km} / \mathrm{h}$ $(19 \mathrm{mph})$
Activity streets	These streets provide access to shops and services by all modes. They have a significant movement demand as well as place, so competing demands need to be managed within the available road space.	$30-40 \mathrm{~km} / \mathrm{h}$ $(19-25 \mathrm{mph})$
Main streets	These streets have an important place function and a relatively important movement function. They support businesses, on-street activity and public life and connect with the wider transport network.	$30-40 \mathrm{~km} / \mathrm{h}$ $(19-25 \mathrm{mph})$
City hubs	These are dense and vibrant places that have a high demand for people movement.	$30-40 \mathrm{~km} / \mathrm{h}$ $(19-25 \mathrm{mph})$
Urban connectors	These streets provide safe, reliable and efficient movement of people and goods between regions and strategic centres and mitigate the impact on adjacent communities.	$40-60 \mathrm{~km} / \mathrm{h}$ $(25-37 \mathrm{mph})$
Transit corridors	These streets provide for the fast and efficient long-distance movement of people and goods within the urban realm. They include motorways and urban expressways.	$80-100 \mathrm{~km} / \mathrm{h}$ $(50-62 \mathrm{mph})$

*The safe and appropriate speed limit will typically be at the lower end of the range unless design and infrastructure criteria are met to justify a higher speed limit. For details on the criteria for each ONF street category see tables 4 and 5 .

Speed

 management guide

Source: New Zealand Speed Management Guide: Road to Zero Edition, https://www.nzta.govt.nz/assets /resources/speed-management-guide-road-to-zero-edition/speed-management-guide-road-to-zero-edition.pdf

We often fail to integrate land use and transportation planning

Transit stop

Obesity Trends* Among U.S. Adults

BRFSS, 1995 and 2010

(*BMI ≥ 30, or ~ 30 lbs. overweight for 5' 4" person)

Poor health makes us less able to survive an injury

- Aging makes us more sensitive to injury forces
- Other co-morbidities make us crash "intolerant" and more prone to falls:
- Obesity and diabetes
- Coronary artery, liver, renal disease
- Dementia
- Prescription and nonprescription opioid use, alcohol, and drug addition
- Non-opioid prescriptions (e.g., warfarin, benzos, sleeping aids, antihypertensives, etc.)
- Poly pharmaceutical use
- Mental health conditions

We significantly undercount pedestrian injuries and mismeasure injury severity

Post-Crash Care

Serious Injury Indicators Found for Pedestrians with Minor Injury KABCO Designation

As a result of system failures, we're facing widening disparities in transportation and health

- Access to opportunity
- Access to safe transportation facilities
- Access to and quality of postcrash care

People of color are disproportionately represented in fatal crashes involving people walking.
Relative pedestrian danger by race and ethnicity, 2008-2017

Can we acknowledge that responsibility and power for injury prevention is not equally shared and must be designed into the system?

Can we limit exposure to kinetic energy while expanding options for affordable, equitable, and HEALTHY mobility?

Less of this...

And more of this...

Source: www.pedbikeimages.org.

Laura Sandt, PhD

Thank you!

@ pedbikeinfo

PEDESTRIAN CRASH FACTORS, TRENDS, \& TREATMENTS: LESSONS FROM TEXAS \& THE US

Drs. Kara Kockelman \& Natalia Zuniga + Ken Perrine, Max Pleason, Max Bernhardt, Mai Vellimana et al.

INNOVATE. EDUCATE.

Pedestrian Crash Trends

Ped crashes per VMT appear stable, but deaths rising: +46\% in USA \& +86\% in Texas, 2010 to 2019.

\% Ped shares of crash deaths also rising:

$$
12 \% \rightarrow 17 \% \text { US \& } 12 \% \rightarrow 19 \% \text { Texas }
$$

Texas Pedestrian Crash Counts \& Ped Crashes per Million VMT: 2010-2019

Texas Ped Deaths
Total \& per 100,000 persons: 2010-2019

Ped Deaths: US vs EU

- Those in UK, France, Germany, \& Netherlands walk 136\%, 118\%, 90\%, \& 45\% more than average American (Buehler, 2022).
- US ped death rates are 5-10 times higher per mile walked (Buehler \& Pucher, 2021).
- From 2010 to 2018, US ped deaths per capita rose $+19 \%$ vs $+4 \%$ in UK \& -16\%, -11\%, \& -9\% in Denmark, Netherlands \& Germany (Buehler \& Pucher, 2021).
- What are Americans doing wrong? And what about Vision Zero?

Walking in the US

- Walking $=10.5 \%$ of US mode split, but just 0.8% of person-miles traveled (PMT) (NHTS, 2017).
- Pedestrians = 17\% of all traffic deaths (NHTSA, 2021).
- Walk-trips per household rose 6.5\% from 2001 to 2017, while ped deaths rose from 12% to 16% of total deaths (NHTSA, 2019).

76\% Deaths are in Darkness

\# US ped deaths in darkness rose $+54 \%$, from 2010-19, while daylight deaths rose 16% (GHSA).

US State by State

- 47% of deaths = Arizona, California, Florida, Georgia \& Texas $=$ southern latitudes, vs. 33\% U.S. population (GHSA, 2020).
- 15 highest ped fatality rates = southern states, \& New Mexico \#1 - with 3.95 ped deaths/yr/100k persons (NHTSA 2019, 2022).
- Regardless of ped death rate: southern US always leads.

Not to scale

WHO WALKS MOST? WHEN \& WHERE?

NHTS DATA

- 2016/2017 National Household Travel Survey of 130k households (264k persons), making 924k person-trips over 375+ days (April through April).
- Provides various demographic, location/position, time of day \& day of year details for Americans' walk-miles traveled (WMT).
- 85% of respondents did not walk at all on the survey day.
- 99.6% did not walk at night on the survey day.

WMT/Person/Day by Month, for Northern vs Southern Trip Origins

Northern $=$ Above 40° latitude

\%Walk-Miles in DARKNESS by Season + Trip Origin Latitude

COLLABORATE. INNOVATE. EDUCATE.

WMT Prediction: Logistic + Exponential

Hurdle regression models split WMT into (1) probability of walking on survey day + (2) distance-walked distribution.

Hurdle Selection (Logistic Model)		
	Coef.	+1 SD Effect
Constant	-0.834	
Age/10	-0.030	$*$ next slide
Worker	-0.129	$*$
HH Income/10,000	-0.006	-4.9%
African American	0.098	$+3.9 \%$
Asian	0.141	$+4.5 \%$
Other Race	0.055	$+2.2 \%$
HS Graduate	-0.151	$*$
Some Degree	-0.063	$*$
Bachelor's Degree	0.221	$*$
Graduate Degree	0.370	$*$

- Younger, non-whites of lower income with college degrees are more likely to take a walk on survey day.
- Non-working, more educated males are walking longer distances, on average.
- Season effects on WMT exceed Latitude effects, which exceed Demographic impacts.

[^0]
Distance Model ($Y=\frac{W M T / d a y ~ i f ~ W a l k ~ t r i p ~ t a k e n) ~}{\text { Mod }}$

Exponential Regression Model		
	Coef.	+1 SD Effect
Constant	-1.761	
Age/100	-0.035	-7.4%
Male	0.126	6.5%
Worker	-0.162	$\mathbf{- 1 6 . 4 \%}$
Length of Daylight	0.034	6.3%
High School Grad	0.285	2.2%
Some Degree	0.212	5.3%
Bachelor's Degree	0.335	$\mathbf{3 0 . 7 \%}$
Graduate Degree	0.407	$+44 \%$
Monday	0.119	4.4%
Thursday	0.126	4.6%
Summer	0.139	5.2%
Winter	0.964	$\mathbf{- 8 8} \%$
Spring	1.341	$\mathbf{- 9 4} \%$
Mawaii Origin (< 25 Latitude)	0.870	$\mathbf{- 5 . 9 \%}$
$25-30$ deg Latitude Origin	0.925	$\mathbf{- 3 3 . 9}$
$30-35$ Latitude Trip Origin	1.157	$\mathbf{- 6 6} \%$
$35-40$ Latitude Trip Origin	1.069	$\mathbf{- 6 4} \%$
$40-45$ Latitude Trip Origin	0.933	$\mathbf{- 6 5 \%}$
$45-50$ Latitude Trip Origin	1.100	$\mathbf{- 3 1 . 4}$

Exponential Regression Model (cont.)		
	Coef.	+1 SD Effect
Alabama Resident	-0.657	-3.2%
Arizona Resident	-0.223	-3.2%
Florida Resident	-0.167	-1.7%
Georgia Resident	-0.139	-3.4%
Idaho Resident	-0.350	-1.9%
Louisiana Resident	-0.376	-1.6%
Mississippi Resident	-0.662	-2.6%
New Mexico Resident	-0.576	-2.4%
North Carolina Resident	-0.115	-2.8%
South Carolina Resident	-0.329	$-\mathbf{- 7 . 1 \%}$
Texas Resident	-0.202	-7.7%
Virginia Resident	-0.305	-2.2%
West Virginia Resident	-0.356	-1.4%

Base Case: White Traveler w/ High School Degree, on Saturday, during Fall, in Alaska.
Season x Latitude interaction effects are negative, causing negative practical impacts for Summer, Winter \& Spring overall.

WMT at Night Results

Night-time walking distances are very hard to predict...

Hurdle Selection (Logistic) Model			
	Coef.	P-val	+1 SD
Constant	0.134	0.000	
Male	0.076	0.013	$*$
Worker	0.112	0.001	$+14.6 \%$
HH Income/10k	-0.011	0.000	$\mathbf{- 1 2 . 7} \%$
African American	0.091	0.079	5.6%
Bachelor Degree	0.177	0.000	$+18.9 \%$
Graduate Degree	0.269	0.000	$+\mathbf{2 4 . 6} \%$

Exponential Regression Model			
	Coef.	P-val	+1 SD
Constant	-0.987	0.000	
Age/10	0.094	0.000	$\mathbf{+ 2 2 . 7} \%$
Male?	0.156	0.051	$\mathbf{+ 1 5 . 4} \%$
Asian?	0.306	0.018	2.6%
E Coast Origin (Long > 80)	-0.216	0.081
Connecticut Resident	0.785	0.010	3.4%
Washington DC Resident	0.463	0.041	2.0%
Illinois Resident	0.357	0.128	3.1%
Louisiana Resident	1.573	0.000	6.5%
Massachusetts Resident	0.450	0.017	2.6%
New Mexico Resident	1.337	0.000	5.6%
Ohio Resident	0.541	0.050	4.6%
Pennsylvania Resident	0.434	0.157	3.8%
South Dakota Resident	0.827	0.008	4.0%
Tennessee Resident	0.884	0.000	5.3%
Wisconsin Resident	0.246	0.042	6.9%

Ranking States by Ped Deaths per WMT

A

WMT Summary

- Season \& latitudes (locations) have greatest impacts on walk-mode \& distance choices.
- Day of the week, race, education, age, income, \& worker status also important for WMT.
- Night-time walking is very hard to predict.
- Americans in southern latitudes walk less \& face higher crash risk per mile walked, despite more sunshine \& warmer weather.
- Are less enforcement, poor design, weaker licensing laws, drinking \& driver culture contributing to higher ped fatality rates in southern settings?

FINDING HOT SPOTS \& SELECTING TREATMENTS

Data Details

CRIS = TxDOT's Crash Records Information System
= police-reported + recorded crashes only.
Over 5.6M police-recorded crashes 2010-2019:

- 78,497 ped crashes $\& 5,674$ pedestrian deaths.

Available Variables:

- Crash type, injury severity, location, time, lighting, ...
- Vehicle \& Person attributes.
+ Roadway details: Link design attributes, AADT, VMT + geometry
+ Land Use: Population \& jobs densities (from ACS \& LEHD), matched to nearest Census tract centroid.
+ Annual Rainfall, distances to nearest School \& Hospital, \#Transit Stops along segment, inferred Walk-miles traveled nearby, ...

Texas' Roadway Inventory

- Massive shapefile of all roadways.
- Over 800,000 segments averaging 0.43 miles, representing >330,000 centerline-miles of geometry:
- Street name \& functional class
- \# Lanes \& width
- Curvature \& grade
- Median/shoulder type \& width
- Average daily flow (estimated)

Austin's Hotspots 2010-2019

28\% of Austin's ped deaths on IH-35

- South of 290 \& Between 290 \& 183
- Between East Cesar Chavez \& Riverside Dr
- Between WIm Cannon \& Slaughter Ln

Other Hotspots:

- North Lamar Blvd (183 to Braker Ln)
- US 183 (East of IH-35, to 290)
- US71 (between US 183 \& SH 130)
$>50 \%$ of dead may be Homeless (!)

Texas' Top 100 Most Crash Prone Corridors, Ranked

These are among Top 100 corridors found in central Austin area using this methodology.

Identifying Hotspots Within Corridors: Austin IH-35 Example

$0=1-2$ crashes
$=5-6$ crashes

Visual distribution of crashes for I-35 frontage roads north of river shows clear problem spots at $6^{\text {th }} \& 7^{\text {th }}$ Streets.

Computing Benefit-Cost Ratios (BCRs)

$\boldsymbol{B}_{i j t}=$ Benefits $=$ saved crash costs (using crash modification factors \& crash history at site), due to improvements " j " in location " i " in year " t "
$C_{i j t}=$ Costs $=$ treatment cost + delayed motorists (if relevant)

$$
\begin{gathered}
\boldsymbol{B C R}=\frac{\sum_{i} \sum_{t} \boldsymbol{B}_{\boldsymbol{i j t}}}{\sum_{i} \sum_{t} C_{i j t}} \\
B_{i j t}=\text { CrashCost }_{i j t}\left(1-\text { CMF }_{j}\right) \\
C_{i j t}=\text { Treatment }_{i j t}+\text { Delays }_{i j t}
\end{gathered}
$$

where $C M F_{j}=$ crash modification factor of treatment $j, \&$
Delay $_{i j t}=$ delay cost (if applicable) of adopting treatment j at location i in year t (assuming \$14.14/vehicle-hour value of travel time).

Benefit-Cost Ratio Example

$6^{\text {th }}$ St. \& SB I-35 Frontage Rd: Pedestrian Leading Interval (1 sec added delay for vehicles)
Cost of installation $=\mathbf{\$ 1 , 7 5 0}$ with 15% ped-crash reduction factor (CRF)
Delay Costs $=$ ADT on I-35 SB Frontage Road $(30,614)+$ ADT on $6^{\text {th }}$ St $(11,695) \times 365$ days $=$ $15,442,420$ vehicles $\times 10$ years $=154.4 \mathrm{M}$ seconds of delay over 10 years
$=42,896$ vehicle-hours of delay over 10 years
$x \$ 14$ value of time (per vehicle-hour) $=\$ 606,544$ delay costs
Total Costs $=\$ 606,544+\$ 1,750=\$ 608,294$ cost estimate versus Benefits:
5 non-incapacitating +2 incapacitating injuries 2010-2019
$=(\$ 500,000 \times 5)+(\$ 3.5$ million $\times 2)=\$ 9.5$ million total
$\$ 9.5 \mathrm{M} \times \mathbf{0 . 1 5} \mathrm{CRF}=\$ 1,425,000$ benefits estimate
$\rightarrow B C R$ with delay costs $=\$ 1,425,000 / \$ 608,294=2.34$

Basic Roadway Treatments

Treatment	Cost (average)	Cost Unit	Avg CMF
Basic curb \& gutter	$\$ 21$	Linear Foot	0.89
 Crossing Locations	$\$ 300$	Each	0.75
Gateway signage	$\$ 22,750$	Sign + Structure	0.83
Narrowed curb radii	$\$ 32,500$	Per corner	0.81
Pedestrian-hybrid Beacons	$\$ 57,560$	Each	0.71
Prohibition of left turns	$\$ 800$	Per sign	0.28
Prohibition of right turn on red	$\$ 800$	Per sign	0.77
Crosswalk (Hi-vis)	$\$ 2,540$	Each	0.63
Raised Crosswalk	$\$ 18,995$	Each	0.64
Flashing Beacon	$\$ 10,010$	Each	0.85
Rectangular Red Flashing Beacon			
(RRFB)	$\$ 22,250$	Each	0.53
Raised Center Medians			
(Uncontrolled)			

These treatments include construction of basic infrastructure \& are focused on limiting \&/or warning drivers.

Basic Roadway Treatments

COLLABORATE. INNOVATE. EDUCATE.

Traffic Calming Treatments

Treatment	Cost (average)	Cost Unit	Avg. CMF
Speed Humps	$\$ 2,640$	Each	0.64
Speed Limit Reductions - 15\% decrease	$\$ 135$	Each (sign)	0.89
Speed Limit Reductions - 10\% decrease	$\$ 135$	Each (sign)	0.79
Speed Limit Reductions -5\% decrease	$\$ 135$	Each (sign)	0.705
Chicanes	$\$ 9,960$	Each	0.69
Diverters	$\$ 26,040$	Each	0.69
Curb Extensions	$\$ 13,000$	Each	0.75
Traffic circle	$\$ 85,370$	Each	0.75
Road Diet	$\$ 40,000$	per mile	0.71
Hardened left turns	$\$ 2,500$	Each	0.65

- These treatments lower speeds \&/or narrow roadways.
- Typically considered when pedestrian traffic volumes are high.

Curb Extension Example

At Austin's $6^{\text {th }}$ Street \& IH-35 SB's Frontage Road.
Curb extensions lower vehicle speeds, crash counts, \& crash severity.

Pedestrian-specific Treatments

Treatment	Cost (average)	Cost Unit	Avg CMF
Streetlight	$\$ 4,880$	Each	0.44
In-pavement lighting (flashing crosswalks)	$\$ 17,260$	Per intersection	0.71
Pedestrian Leading Intervals	$\$ 1,750$		0.85
Crosswalk Signage (for road users)	$\$ 30$	Square foot	0.84
Bollards (at crossing points)	$\$ 730$	Each	0.93
Curb Ramps (to crossings)	$\$ 810$	Each	0.95
Pedestrian Refuge Islands	$\$ 10$	Square foot	0.44
Fence (general purpose)	$\$ 130$	Linear foot	0.63
Pedestrian overpass (wooden)	$\$ \mathbf{1 2 4 , 6 7 0}$	Each	0.63
Pedestrian overpass (steel)	$\$ \mathbf{2 0 6 , 2 9 0}$	Each	0.63
Pedestrian underpasses		Square foot	0.63
Sidewalk railings	$\$ 100$	Linear foot	0.83
Access management improvements	$\$ 4,000$	Per Driveway	0.5
(esp. at commercial centers)	removed	0.50 .50	
Ped Detection - Detector (actuate)	$\$ 390$	Each	0.55
Ped Detection - Push Button	$\$ 350$	Each	0.83
Audible Pedestrian Signal	$\$ 800$	Each	0.72
Increase Crossing Time	negligible	Per re-timing	0.49
Countdown timers	$\$ 740$	Each	0.48
Pedestrian signal (complete)	$\$ 3,260$	Each	0.6
Traffic signal (new)	$\$ 90,000$	Each	0.44
Dedicated pedestrian interval	$\$ 1,750$	Per re-timing	0.41
Speed trailers	$\$ 9,510$	Each	0.95

- Focused on pedestrian needs.
- Some limit pedestrian contact with vehicles \& a couple carry very high cost.

Bollards Example

At Austin's $7^{\text {th }}$ Street + IH35's southbound frontage road. Lane bollards create a protective perimeter, guide traffic, \& mark boundaries ($B C R=1.21$ at this site).

Street Furniture Treatments

Treatment	Cost (average)	Avg. CMF
Street trees	$\$ 430$	0.82
Bench	$\$ 1,550$	0.82
Bus shelter	$\$ 11,560$	0.82
Trash/recycling receptacle	$\$ 1,420$	0.82

- Street furniture provides a visual cue to drivers that peds may be present, while slowing speeds \& providing others services (for rest, shade, aesthetics).

Sidewalk Treatments

Treatment	Cost (average)	Cost Unit	Avg. CMF
Widen paved shoulder	$\$ 5.56 / \mathrm{sf}$	Square Foot	0.72
Asphalt Sidewalk	$\$ 35 / \mathrm{If}$	Linear Foot	0.26
Concrete sidewalk	$\$ 32$	Linear Foot	0.26
Concrete sidewalk w/curb	$\$ 150$	Linear Foot	0.26
Multi-use trail - paved	$\$ 481,140$	Mile	0.14
Multi-use trail - unpaved	$\$ 121,390$	Mile	0.14

- Sidewalks are one of simplest treatments for ped safety (\& comfort, access, \& exercise), especially if these don't exist.
- Big crash reduction values - vary by sidewalk type, width, \& material.

Other Treatments

COLLABORATE. INNOVATE. EDUCATE.

Signal Treatments

COLLABORATE. INNOVATE. EDUCATE.

Signal Modification BCRs

Treatment	Location	BCR
Prohibit Right-turn on Red	Congress Ave \& Cesar Chavez St in Austin	5.38
	Congress Ave \& 6th St in Austin	4.15
	Tomball Parkway in Houston (Fallbrook Drive to Bammel Road)	$\mathbf{1 1 . 6}$
	Westheimer Road in Houston (Fondren Road to Chimney Rock Road)	3.16
Pedestrian Leading Interval	6th St \& I-35 SB Frontage Road in Austin	
	Congress Ave \& 6th St in Austin	2.76
	East Riverside Drive \& Wickersham Lane in Austin	2.97
	Zarzamora St \& Culebra Road in San Antonio	$\mathbf{2 1 . 1}$
	Fannin St \& Walker St in Houston	8.79
	Fannin St \& Congress St in Houston	5.38

Signal changes \rightarrow Some travel delay costs

Speed Reduction BCRs

Treatment	Location	BCR
$\mathbf{1 0 \%}$ Lower	Tomball Parkway in Houston	1.67
	Westheimer Road in Houston	2.40
	Congress Avenue in Austin	3.92
	E Riverside Dr \& Pleasant Valley Rd in Austin	2.40

Note: Speed limit reductions deliver less-than-equivalent changes in average speed (NCHRP 2006) + large delay costs, but lower crash counts \& injuries endured.

Traffic Calming/Road Diet BCR

Treatment	Location	BCR
Road Diet	Milam St in Houston (from McGowan Steet to Alabama St)	3.03

- Most effective with high pedestrian traffic (+ regular vehicle traffic).
- Saved right of way can become sidewalks or ped/bike paths.

Other Treatments: Education

- Age-appropriate education programs in schools.
- More requirements for driver's license.
- Mass media campaigns.
- Educate not only the road users, but also the system designers.

One More: Vehicle Design

- Our nation (NHTSA \& IIHS) does not really consider pedestrian safety \& injury likelihood when rating vehicle safety.
- IIHS evaluates autobraking now, but still not a vehicle's ability to protect pedestrians in collision.
- EU tests how vehicle bumpers \& hoods protect pedestrians' lower legs at $\mathbf{4 0} \mathbf{~ k p h}(25 \mathrm{mph})$ for both children \& adults.
- We recommend requiring much higher standards \& safety design measures for US vehicle sales.

Summary

- We don't know why we have rising ped deaths across the US \& Texas. Are drivers less careful? Traffic more chaotic?
- Hot spots for deaths are freeways \& major arterials, big cities, mid-block, often near schools \& transit stops, at night, unlighted, with alcohol \&/or drug impairments.
- Use of light-duty trucks (including SUVs, pickup trucks, CUVs, \& vans) significantly increases the risk of pedestrians being severely injured or killed (especially off street, in driveways).
- Older pedestrians are much more likely to die.
- Benefit-cost ratios (BCRs) lead to many valuable treatment options! But we need policies too (automated enforcement, speed governors, public reporting of bad behavior, ...).
- What do treatments do you feel have highest BCRs?

Intersections vs. Mid-Block vs. Entire Roadway Segments

CRASH COUNT + SEVERITY PREDICTION

Intersection \& Mid-block Crashes

- Texas intersection ped crashes doubled between 2010 \& 2019, while mid-block ped crashes rose 30%.
- Austin = 5\% of Texas' pedestrian crashes.

Intersection vs. Mid-block Data

- Most crash studies are segment-based \& don't distinguish intersections, due to challenge of separating thousands (or millions) of intersection points (\& identifying covariates for all sites).
- Ped crashes = more severe $\&$ most common mid-block.

Intersection Severity

■Texas ■ Austin
Mid-block Severity

Intersection + Mid-block Segments Example

Central

Austin

Intersections \& Mid-block Segments across Texas

Crash Count Prediction

- \#Ped Crashes over 10 years (2010-2019) at each segment or intersection follow negative binomial (NB) distribution.
- Analyses at State \& Austin City levels. Big dataset means every variable is statistically significant.
- We identify the most practically significant factors.

Results: Texas Intersections

- \#Ped crash counts double with WMT \& when intersection is Signalized! (ceteris paribus)
- +52\% ped crashes when 1 SD flow (VMT) is added
- Transit stops $\rightarrow \mathbf{+ 4 3 \%}$ ped crashes
- \#Approaches $\rightarrow+31 \%$ (1 SD $=+0.67$)
- + 7 mph Speed limit \rightarrow-12\% (as peds avoid that location)
- \#Ped crashes rises with \#lanes, lane width, AADT, truck \%.
- Ped crashes fall with one-way, wider medians, longer distances to hospital.
- City of Austin indicator suggests $+40 \%$ (!) vs. same kind of intersections in rest of the state. (Due to more homeless persons?)

$-60 \% \quad-30 \% \quad 0 \% \quad 30 \% \quad 60 \% \quad 90 \% \quad 120 \% \quad 150 \%$

WMT per pop. den. (log)
Signalized intersection (ind.)
Number of approaches
DVMT (\log) [major]
Speed limit (mph) [major]
Number of lanes [major]
Lane width (ft) [major]
Median width (ft) [major]
One-way road (ind.) [major]
DVM (log) [minor]
Speed limit (mph) [minor]
Number of lanes [minor]
Lane width (ft) [minor]
Median width (ft) [minor]
One-way road (ind.) [minor]
AADT per lane [major]
Truck percentage [major]
Arterial (ind.) [major]
On system roadway (ind.)
Rural (ind.)
Small urban (ind.)
Large urbanized (ind.)
Dist. nearest hospital (mi)
Transit stops (ind.)
Number of stops
City of Austin (ind.)

Results: Texas Mid-block
 (1-mile segments)

- +1 SD Walk-miles Traveled (WMT) $\rightarrow+\mathbf{1 2 0 \%}$ crashes (!)

WMT per population density (log) Intersections crossed DVMT (log) Speed limit (mph)
Number of lanes Lane width (ft)
Median width (ft)
One-way road (ind.)
AADT per lane [major]
Truck percentage [major]
Arterial (ind.) [major] On system roadway (ind.) Rural (ind.)
Small urban (ind.)

```
-60% -30% 0% 30% 60% 90% 120% 150% 180%,
```

- City of Austin $\rightarrow-30 \%$ fewer crashes than elsewhere.
- +1 SD VMT $\rightarrow+187 \%$ (!)
- +1 SD \# Intersections crossed (2.8) $\rightarrow+29 \%$ ped crashes.
- \#Transit stops: +45\%
- One-way \rightarrow 52\% reduction

USE OF TREE-BASED MACHINE LEARNING MODELS

Crash Count Models + Crash Severity Models

- Random Forest
- XGBoost
- LightGBM
- XBART
vs Negative Binomial \&
Ordered Probit specifications

Ordered Probit specifications

Sensitivity Results

Pedestrian Crash Severity Model Comparisons

Marginal Effects of X's

- Older pedestrians at greater risk, \& intoxicated pedestrians at much greater risk of severe outcomes. Lower speed limits \& signalized controls lower risk slightly.

Impairments or Hit \& Run

Other Factors?

- More aggressive vehicle designs (high hoods \& grills on pickup trucks \& SUVs, as well as vans \& some CUVs).
- Rising use of smartphones (by drivers \& peds).
- Homeless populations living \& crossing on high-speed roads.
- Rising drug use or what else?

In Conclusion...

- Southern states have a longer way to go.
- Mid-block segments more vulnerable than intersections.
- Data ambiguities exist: in crash direction \& exact location, WMT at each site, speeding \& enforcement, design details (lines of sight, curb \& sidewalk, etc.). For better results, read crash narratives \& add variables to standard data sets.
- Hot spots are freeways \& major arterials, big cities, midblock, often near schools \& transit stops, at night, unlighted, with alcohol \&/or drug impairments.
- Use of light-duty trucks (including SUVs, pickup trucks, CUVs, \& vans) significantly increases death \& injury risks.
- Intoxicated (\& older) pedestrians are at greatest risk.

THE UNIVERSITY OF TEXAS AT AUSTIN CENTER FOR TRANSPORTATION RESEARCH

Papers available at www.caee.utexas.edu prof/kockelman

THANK YOU!

Questions \& Suggestions?

Kara Kockelman (kkockelm@mail.utexas.edu)
\& Natalia Zuniga-Garcia (nzuniga@utexas.edu)

Today's presenters

Noah Heath
Noah.Heath@txdot.gov

Laura Sandt
sandt@hsrc.unc.edu

THE UNIVERSITY OF NORTH CAROLINA RESEARCH CENTER

Kara Kockelman
kkockelm@mail.utexas.edu
圖TEXAS
The University of Texas at Austin

Natalia Zuniga Garcia nzuniga@utexas.edu
Argonne

Upcoming events for you

 July 9-13, 2023TRB's 2023 Automated Road Transportation Symposium

July 19, 2023
TRB Webinar: Community-Based and
Equitable Transportation Response in

Disaster

https://www.nationalacademies.org/trb/ events

Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the TRB Weekly newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

Spread the word and subscribe! https://bit.ly/ResubscribeTRB
 Weekly

Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!
https://mailchi.mp/nas.edu/trbwebinars

And follow \#TRBwebinar on social media

Update Your Preferences
View this email in your browser
Supply Chain Risk and Resilience-Linking Transportation and Economic Mo Thursday, October 6, 2:30-4 PM ET
Disruptions to transportation supply chains can cause cascading effects globally and socioeconomically. This webinar will discuss leading-edge technologies and the impacts logistics modeling with artificial intelligence and resilience analytics can have on a larger scale.

- @NASEMTRB

 f @ NASEMTRBTransportation
Research Board

Get involved

- Work with a CRP
- Listen to our podcast

https://www.nationalacademies.org/podcasts/trb
- Become a Friend of a Standing Technical Committee

Network and pursue a path to Standing Committee membership

We want to hear from you
－Take our survey
－Tell us how you use TRB Webinars in your work at trbwebinar＠nas．edu ヘC＾DEMIES $\begin{gathered}\text { Engineern } \\ \text { Medicine }\end{gathered}$

[^0]: Base Case = White Traveler with high school degree, on Saturday, during Fall, in Alaska.
 All variables = very statistically significant (p-value < 0.05). $N=254,295$, Pseudo R2 $=0.019$.

 * Variables appear in both walk + distance equations, with Net effects showing on next slide.

