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Shear Studs

• Provide composite action between steel girder and 
concrete deck
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Motivation for 2011 FHWA Shear Stud Research

• Accelerated bridge construction (ABC)
• Clustered studs at extended spacing to facilitate precast decks?
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Motivation for 2011 FHWA Shear Stud Research

• 2010 AASHTO BDS Strength Limit State 

Qn = 𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 𝒇𝒇′𝟓𝟓𝑬𝑬𝟓𝟓 ≤ 𝟓𝟓𝟓𝟓𝟓𝟓𝑭𝑭𝒖𝒖

• Concrete – greater local demand due to clusters?
• Steel – unconservative, regardless of clusters?
• Alter spacing limits to accommodate clusters?

• Max = 24”
• Min longitudinal = 6d
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Motivation for 2011 FHWA Shear Stud Research

• 2010 AASHTO BDS Fatigue Limit State 

Fatigue I:  Zr = 5.5d2

Fatigue II: Zr = (34.5 - 4.28 log N) d2

• Semi-log format?
• Too conservative for Fatigue I 

(infinite life)?
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Large-Scale Experimental Testing 

• 16 specimens
• Partial composite action to force stud failure 
• # studs constant in each shear span
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Stud Cluster 
Spacing

# Static 
Tests

# Fatigue 
Tests

12” 1 3
24” 1 3
36” 1 3
48” 1 3

30'-0"

SHEAR SPAN = 11'-6"

CLUSTER SPACING

PP
DECK PANEL
LENGTH = 14'-3"



Large-Scale Experimental Testing 

• Specimen construction
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Large-Scale Static Test Results

• Displacement increased until load dropped
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Large-Scale Static Test Results

• Similar performance, regardless of cluster spacing
• Moment capacity equation unconservative

• “Shear factor” required in 
front of AASHTO stud 
strength equation
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Large-Scale Fatigue Test Results

• Cycled under constant stress range at base of studs
• What is failure?

• Defined as complete loss of composite action in a cross section
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Large-Scale Fatigue Test Results

• Similar performance, regardless of cluster spacing
• CAFT of 7.0 ksi is reasonable
• Data follows log-log equation
• Regression equation with 95%

confidence limit:

𝑺𝑺𝒓𝒓 = 𝐴𝐴
𝑁𝑁

1
𝑚𝑚

A = 577,00 x 108

m = 6.4
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Small-Scale Experimental Testing 

• 38 “push out” specimens
• 24 static tests to investigate spacing

• 14 fatigue tests
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Stud Spacing 
Orientation

Stud 
Spacing

Deck 
Type

# Replicate 
Tests

Longitudinal 3d, 4d, 5d, 6d CIP, PC 2
Transverse 3d, 4d CIP, PC 2

Deck 
Type

# Replicate 
Tests

PC 14

CIP = cast-in-place, PC = precast

Example of longitudinal spacing, PC deck specimen
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W10x60
STEEL BEAM
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f 'c = 6.0 KSI
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POCKET

2'
-0
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Small-Scale Experimental Testing 

• Specimen construction
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Small-Scale Static Test Results – Longitudinal Spacing

• Compared experimental load to calculated load

• Good performance for both 
CIP and PC decks

• Recommend min longitudinal 
spacing of 4d
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• Compared experimental load to calculated load

• Good performance for both 
CIP and PC decks

• Recommend min transverse 
spacing of 3d
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Small-Scale Fatigue Test Results

• Failure = when one or both decks completely separated from beam
• Similar behavior to large-scale tests
• Regression with m = 6.8 
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Conclusions

• Max stud cluster spacing can be increased to 48”
• Implemented into 7th edition of AASHTO LRFD BDS (2014)

• Current stud fatigue design equation is overly conservative
• Recommend log-log equation with slope of 6.4

• Current stud strength design equation is unconservative
• Recommend shear factor of 0.70

• Min stud spacing requirements can be decreased
• Recommend min longitudinal spacing of 4d
• Recommend min transverse spacing of 3d
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Recent Investigations into the 
Behavior of Headed Shear Studs  
in Composite Bridge Girders

Gary S. Prinz, Ph.D., P.E.
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Motivation

2

Fatigue limit states 
often govern the 
number of required 
shear studs

τ
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Fatigue: Demands and Capacities
Capacity Demand
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Probabilistic 
approach 
(characterize 
uncertainty)
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Experimental Tests

Servo-Hydraulic biaxial 
fatigue testing machine

Unidirectional 
loading (~0-∆σ)

Component Level



Characterizing Uncertainty

- ¾” studs

- Unidirectional loading (no 
reversed cycles)

- Constant amplitude stress 
range (no variable 
amplitude data)

- Failure in the stud shank 
or weld

Other stud diameters 
compared with final 
S-N curve

106 data points
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Remove Girder
T-stub sections
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Estimation of traffic demands and 
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1
Bridge girder removed from service 
following decades of traffic loading and 
sectioned for fatigue specimens

2
Cast new concrete slabs on stud 
specimen and fatigue test to 
determine remaining fatigue life
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sections from 
existing girder

New concrete 
deck casting

Unidirectional
fatigue (cyclic) 
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Airport road overpass 
bridge in Lowell AR
- Undergoing lane expansion

- Concrete deck carefully 
removed

I-40 EB Bridge in Russellville AR
- Girders removed from service
- Concrete deck carefully removed

I-40

Bridge A:

Bridge B:

- Constructed in 1965

- Constructed in 1982
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In Service Bridge Fatigue Investigations
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Non-Destructive Testing
Bridge A: (Lowell AR)
Design pitch: infinite life (8” c.c. at ends, 
17” c.c. at mid-span)
Constructed pitch: Finite life (10” c.c. at 
ends, 20” c.c. at mid-span)

DPT alone was inconclusive, MPT indicated no cracks
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Remove Girder
T-stub sections

   
  

  

   
 

     
   

 

     
     
   

      
     
  

 
  
 

  
 

  

 

 
 

   
  

  

   
 

     
   

 

     
     
   

      
     
  

 
  
 

  
 

  

 

Destructive Fatigue Testing
Bridge B: (I-40, Russellville AR)
Age = 50 years Truck cycles: 38-53M 

No stud fatigue cracks found following deck removal, 
therefore destructive specimens fabricated for 
determination of residual life.

Reminder: Between 2010 and 2013 10,191 overweight permits were issued for the 
eastbound lane of Bridge B along I-40. Westbound lane had 3x.
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New concrete 
deck casting

Unidirectional
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 Total of 3 specimens:
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Destructive Fatigue Testing Results
Bridge B: (I-40, Russellville AR)
Age = 50 years Truck cycles: 38-53M 
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R1 7624 11.6 3 3,590,011 F 
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Expectation 
by 400+%
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Shear stud demands somewhat questionable

Assumed uniform shear flow

Actual shear transfer at discrete stud locations

Vsr – horizontal fatigue shear (kip/in.)
V   – vertical shear force under loading
Q   – first moment of short-term area of deck 
I     – moment of inertia of short-term composite section

- Will discuss parametric investigation and experimental verification

12

Demands on Clustered Studs?



Parametric Investigation

12" pitch 24" pitch 36" pitch 48" pitch

L/30
L/25

L/20

Girder Span 
(ft)

Depth 
(in)

Pitch (in)

1A 100 40 12
1B 100 40 24
1C 100 40 36
1D 100 40 48
2A 100 48 12
2B 100 48 24
2C 100 48 36
2D 100 48 48
3A 100 60 12
3B 100 60 24
3C 100 60 36
3D 100 60 48
4A 200 80 12
4B 200 80 24
4C 200 80 36
4D 200 80 48
5A 200 96 12
5B 200 96 24
5C 200 96 36
5D 200 96 48
6A 200 120 12
6B 200 120 24
6C 200 120 36
6D 200 120 48

100’ span, and 200’ span

24 Finite Element models:
Created in ABAQUS

2 Girder Spans
3 Girder Depths (L/30, L/25, L/20)

4 Stud Spacing (12”,24”,36”,48”)
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Parametric Investigation
Results
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Parametric Investigation
Results

Load

15



Parametric Investigation
Development of Demand Equations for Clustered Studs

pc s
nr = 4 n = 3

Tributary pitch for 
outer stud row

or

16
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Parametric Investigation
Results of Finite Element Models compared to proposed VSR
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Large Scale Experimental Verification
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• Fatigue Testing of Clustered Studs

• Measurement of Stud Demands (Captured Effect of Surface Friction)

• Composite and Non-Composite Girder Behavior



Stud Force Measurement
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- 14’ beams with varied stud 
pitch

- Consistent capacity based on 
strength design provisions

- Stud groupings up to 39”  

- Comparison between composite 
and non-composite

- 6” slab thickness  

- 3/4” x 4” studs

C
lean m

ill scale 
µ

= 0.3-0.33
Teflon 
µ

= 0.04

(d) Specimen 4



Test Setup

Hydraulic actuatorSelf-reacting frame 
member Stiffening

beam

Test specimen 
(oriented horizontally)

Self-reacting 
frame member

Teflon pads for 
friction reduction

Applied cyclic 
loading

Section A-A

Blocking

Elastomeric
bearing pad

Hydralic 
actuator

Stiffener 
beam

Self-reacting 
frame

Test 
Specimen

AA

A)

Elastomeric
bearing pad

B)

Vertical and horizontal 
LVDTs to measure slab 
slip and separation

LVDT placed at 
midspan to measure 
beam deflection
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Stud Force Measurement
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Transverse pressure gauges for 
measuring contact force between 
concrete slab and steel studs

Instrumented groups 
of clustered studs



Stud Force Measurement
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Specimen 4 – Teflon Separation
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Stud Force Measurement
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Conclusions / Recommendations

24

• Modify Stud Finite Life Capacity (Log-Log Synergy with Existing Details)
– m > 3   CAFL = 7

• Further Investigation of Friction Demand Reductions (ongoing NCHRP 
investigation)

• Include Guidance for Clustered Stud Demand Calculations

pc s
nr = 4 n = 3

Tributary pitch for 
outer stud row
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Disclaimer
The U.S. Government does not endorse products or manufacturers. 
Trademarks or manufacturers’ names appear in this presentation only 
because they are considered essential to the objective of the presentation. 
They are included for informational purposes only and are not intended to 
reflect a preference, approval, or endorsement of any one product or entity.

The contents of this presentation do not have the force and effect of law and 
are not meant to bind the public in any way. This presentation is intended 
only to provide clarity to the public regarding existing requirements under the 
law or agency policies.

Unless otherwise noted, all photos in this presentation are sourced by FHWA.
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Acronyms
AASHTO American Association of State 

Highway and Transportation Officials
ADTTSL average daily truck traffic in a single 

lane
BDS bridge design specifications
CAFT constant amplitude fatigue threshold
FHWA Federal Highway Administration
LRFD load and resistance factor design
TRB Transportation Research Board
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Symbology
A fatigue detail category constant
Asc area of shear connector
d diameter of shear connector
Ec concrete elastic modulus
f’c concrete compressive strength
Fu tensile strength of shear connector
H height of shear connector
m fatigue growth constant
N number of cycles
nl longitudinal number of shear 

connectors in cluster 

nt transverse number of shear connectors 
p shear connector pitch
Qn nominal resistance
s center-to-center spacing of shear 

connectors in a cluster
Vsr horizontal fatigue shear range per unit 

length
Zr shear load resistance of individual 

shear connector
β LRFD reliability index
φsc resistance factor of shear connector
(∆F)n nominal stress range
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Strength of Shear Connector

Qn = 0.5Ascfc’Ec ≤ AscFu

φsc= 0.85 
AASHTO LRFD BDS 9th

Edition
Equation 6.10.10.4.3-1

Shear connector capacity based on two-part equation:
• Concrete crushing, and
• Tensile strength of shear connector.

PRESENT
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Strength of Shear Connector

Performance ratio is experimental 
value divided by Equation 
6.10.10.4.3-1 prediction.

• 179 data points.
• 20 different studies between 

years of 1956 and 2019.
• Diameters from 1/2 to 11/4 inch.
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Strength of Shear Connector

Qn = 0.70AscFu

φsc= 1.00 

FUTURE

AASHTO LRFD BDS 10th

Edition
Equation 6.10.10.4.3-1

Required revising minimum stud height (H) to diameter (d) 
ratio,

• H/d ≥ 5.0 for normal weight concrete,
• H/d ≥ 7.0 for lightweight concrete,
• See Pallaŕes and Hajjar (2010).
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Pitch of Shear Connector
p

p nl nt

𝑝𝑝 ≤
𝑛𝑛𝑡𝑡𝑍𝑍𝑟𝑟
𝑉𝑉𝑠𝑠𝑟𝑟

𝑝𝑝 ≤
2𝑛𝑛𝑡𝑡𝑍𝑍𝑟𝑟
𝑉𝑉𝑠𝑠𝑟𝑟

+ 𝑠𝑠 𝑛𝑛𝑙𝑙 + 1

nt

s
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Fatigue of Shear Connector

PRESENT

AASHTO LRFD BDS 9th

Edition
Equations 6.10.10.2-1 
through 6.10.10.2-3

(Fatigue I) Zr = 5.5d2

(Fatigue II) Zr = (34.5 - 4.28 log N) d2

Fatigue I
(showing for 7/8 inch connector)

Fatigue II

NOTE:
This is for stud-type shear 
connectors, not showing 
requirements for channel-type 
shear connectors.

30
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Fatigue of Shear Connector

130 failure points
17 runouts

• 18 references,
• 1959-2019,
• 3/4 to 1-1/4 inch diameter 

(1/2 inch was excluded).

Slope = -5.14
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Fatigue of Shear Connector

∆𝐹𝐹 𝑛𝑛 =
𝐴𝐴
𝑁𝑁

1
3

∆𝐹𝐹 𝑛𝑛 =
𝐴𝐴
𝑁𝑁

1
𝑚𝑚

FUTUREPRESENT

AASHTO LRFD BDS
Equation 6.6.1.2.5-2
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Fatigue of Shear Connector

Description Category
Constant 

A
(ksi)3

Growth 
Constant, 

m

Threshold
(ΔF)TH

ksi

75-year 
(ADTT)SL

Potential 
Crack

Initiation 
Point

Illustrative Examples

Section 9—Miscellaneous
9.2  Shear connectors or base metal at 
shear connectors attached by fillet or 
automatic stud welding (for use in the 
calculation of Zr in Eq. 6.10.10.1.2-1 or 
6.10.10.1.2-2). Use the horizontal 
fatigue shear range per unit length, Vsr, 
and Eq. 6.10.10.1.2-1 or 6.10.10.1.2-2, 
as applicable, to determine the pitch of 
the shear connectors for fatigue.

N/A 1040 x 
108 5 7 11,320

Toe of stud 
growing 

through the 
stud, or 
into the 

base metal

Column added to 
accommodate variable 

growth constants

Adding this column 
eliminates existing 
Table 6.6.1.2.5-3 

Adding this column 
eliminates existing 
Table 6.6.1.2.3-2 

FUTURE
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Other Changes
• Channel-type shear connectors were removed.
• Minimum longitudinal spacing between shear 

connectors reduced to 4d (currently at 6d).

FUTURE
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Anticipated Effect
Example of 40-ft span 
W21x93 rolled beam bridge.
• Three other deeper, longer 

span girder examples 
showed a 4-26% reduction 
in shear connectors. 
Controlled by Fatigue II.

• Strength I will only govern 
on short spans.
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