NATIONAL ACADEMIES Sciences Engineering Medicine

TRE TRANSPORTATION RESEARCH BOARD

TRB Webinar: Implementation of Inverted Pavements

September 18, 2023 2:00 – 3:30 PM

PDH Certification Information

1.5 Professional Development Hours (PDH) – see follow-up email

You must attend the entire webinar.

Questions? Contact Andie Pitchford at TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

ENGINEERING

Purpose Statement

This webinar will present the structural mechanics and effective uses of inverted pavements. Presenters will provide a summary of the state-of-technology. Presenters will also share case studies that discuss agency experiences during the design and construction of inverted pavements and the performance of inverted pavements compared with control sections.

Learning Objectives

At the end of this webinar, you will be able to:

- (1) Explain inverted pavements and the structural mechanics of the system
- (2) Determine appropriate and effective uses of inverted pavements

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

File	View Help	_ 🗆 🖙 🗙
	Nebcam	ย×
	Share My Webcam	Webcams \checkmark
	Audio	5
	Sound	Check . ?
	Computer audio	D
	Phone call	
	🖉 MUTED	
Microphone (USB Audio Device) \sim		
 (b)		
Speakers (USB Audio Device) 🗸 🗸 🗸		
	Ibin na Flaine Ferrall	
Talking: Elaine Ferrell		
▼ Q	uestions	ប
- Q	uestions	5
- Q	uestions	ប
→	uestions	5
~	uestions	5
-		5
-	uestions er a question for staff]	5
-		5
-		5end
-		Send
-	er a question for staff]	Send
-	er a question for staff]	Send
-	er a question for staff] Hodatiog Webinar Im Webinar ID: 922-070-5	Send Sgec 995
-	er a question for staff]	Send Sgec 995

Today's Presenters

Imad L AI-Qadi alqadi@testsustainability.com University of Illinois

Erol Tutumluer tutumlue@illinois.edu University of Illinois

Jeff Uhlmeyer juhlmeyer@qespavements.com QES

NATIONAL ACADEMIES Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

Transportation Engineering Solutions & Technologies, Inc.

FHWA Task Order Request (TOR) # HIF200116PR

Inverted Pavements

TRB Webinar Imad L. Al-Qadi and Erol Tutumluer

September 18, 2023

Acknowledgments

- FHWA sponsored 2023 TRB Workshop "Robust and Resilient Foundation Design: Inverted Pavements"
- TRB committees sponsoring this webinar:
 - AKG00 Section Geology and Geotechnical Engineering
 - AKG40 Standing Committee on Mechanics & Drainage of Saturated and Unsaturated Geomaterials
 - AKG50 Standing Committee on Transportation Earthworks
 - AKG60 Standing Committee on Geotechnical Instrumentation and Modeling
 - AKG90 Standing Committee on Stabilization of Geomaterials and Recycled Materials
 - AKM80 Standing Committee on Aggregates
- This project is sponsored by FHWA: Task Order Request (TOR) # HIF200116PR
- FHWA (Tom Yu)
- The work was conducted by TEST, Inc (Imad Al-Qadi, Erol Tutumluer, Ester Tseng, Hasan Ozer, and Issam Qamhia)
- QES (Dennis Morian, Jeff Uhlmeyer, and Douglas Frith)

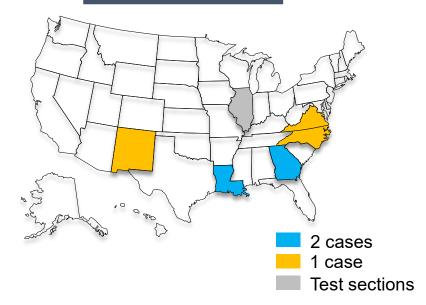
Acknowledgments

- Georgia: David Frost, Sean Donovan, James Tsai (Georgia Institute of Technology), and Peter Wu (GDOT)
- Louisiana: Xingwei Chen and Doc Zhang (LADOT)
- New Mexico: Robert Young, Rais Rizvi, Hashem Faidi, Hao Yin (NMDOT), Jeffrey Mann (WSP), Lucas Giron (Wood), and Bryce Simons (NMDOT, retired)
- North Carolina: Shane Underwood (NC State), Kevin Vaughan (Vulcan Materials)
- Virginia: Brian Diefenderfer (VDOT), Randy Weingart (formerly with Luck Stone) and Reza Ashtiani (United States Air Force Academy)
- Illinois: The research team
- Dynatest (Randall Milton)

Introduction

Outline

Technolog v


- Mechanical Behavior
- Constructio n
- Materials
- Performanc e
- Sustainabili

9/18/2023

Experience

- South Africa
- Australia
- US Early Experience

Case Studies

10

Inverted pavement application is limited in the US due to inadequate experience, and limited technology transfer. In addition to lack of supporting

© TEST 2023

Asphalt Concrete (AC)

Introduction

AC Base

Unbound Layer

Subgrad

Conventional

Pavement

Asphalt Concrete Unbound Layer Cemented Layer Subgrade

Introduction

IP: Typical Layer Thicknesses

1.2- to 3-in-thick AC (in US up to 6in)

4- to 6-in-thick high quality crushed aggregates

4- to 16-in-thick CTB (2-5% cement, >95% mod AASHTO)

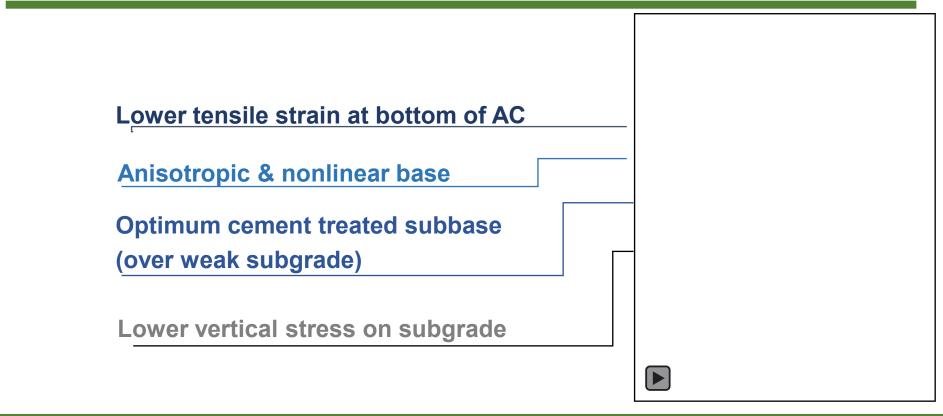
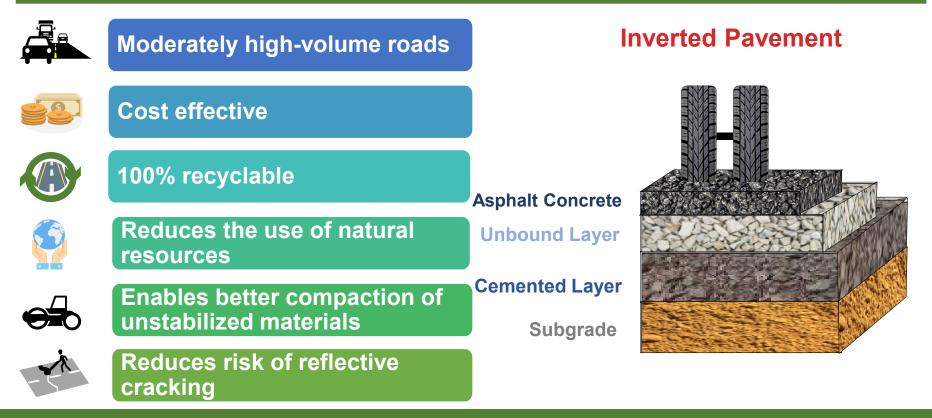


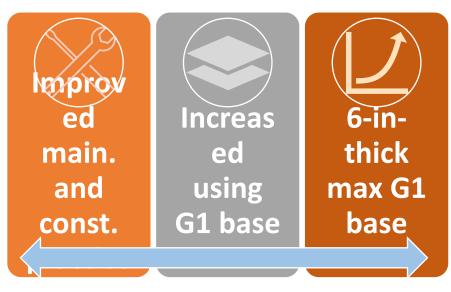
Photo courtesy: James Maina

© TEST 2023



Mechanical Behavior

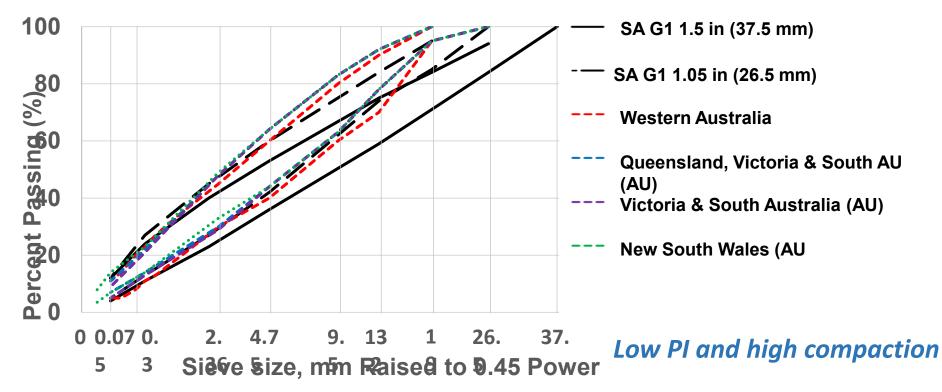
Technology - Introduction



© TEST 2023

South African Experience

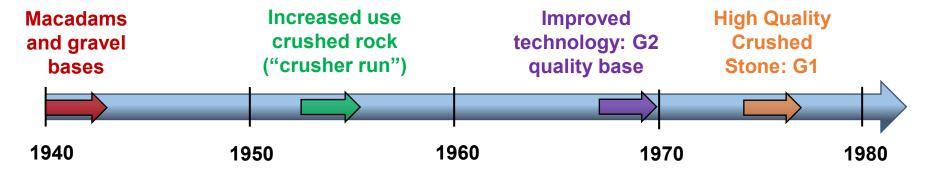
- G1 from single stage crusher-run
 - Produce tightly knit matrix by expulsion of passing #200 fines (Kleyn, 2012)
- Increased confidence in using G1 material for high traffic classes
 - A 6-in-thick G1 layer is optimal
 - 12 to 50 million ESALs
 - Feasibility of use in wet regions given that impervious surface is maintained.
 - Damage exponent (or n-value): ~3


Saving ratio from 2.6-6.2

Source: Adapted from Jooste & Sampson, 2005

Materials: Granular Base

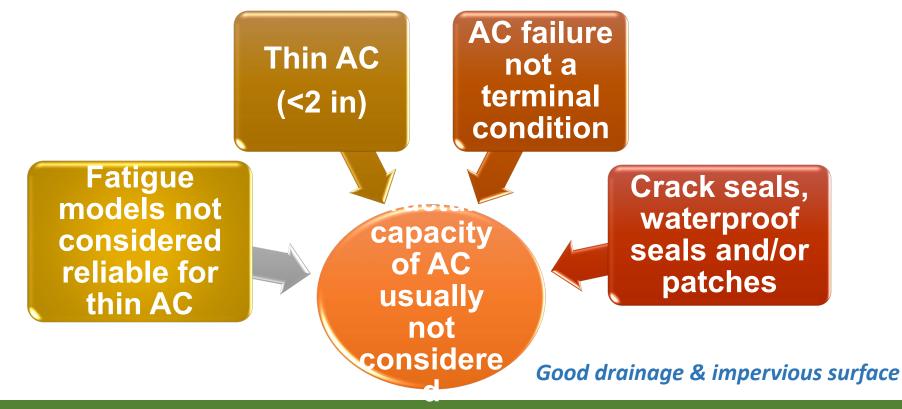
(2017)



Sources: Adapted from TRH 14, 1985; Buchanan, 2010, DPTI (2020), MRWA (2020), TfNSW (2020a), TMR (2020), VICROADS

© TEST 2023

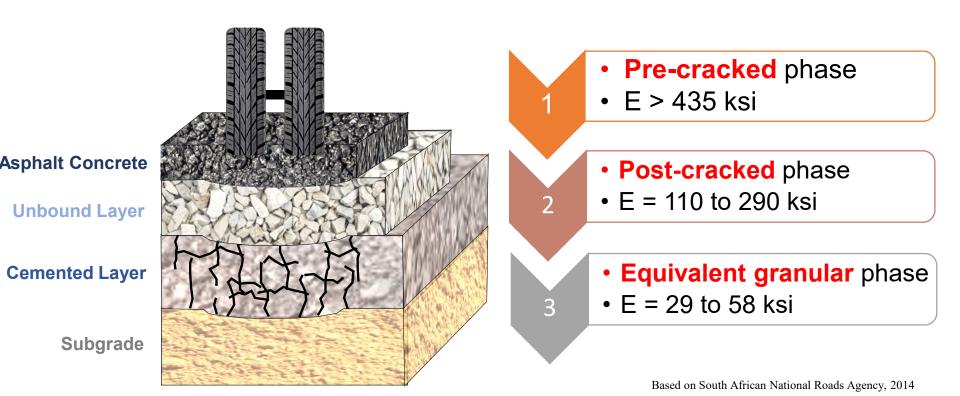
South African Inverted Pavement Progress


Crushed, hard, sound, durable, and not weathered parent rock

- All particle faces are fractured
- Can be adjusted using fines from crushing of original parent rock only

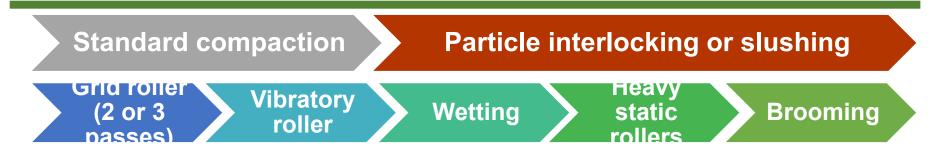
Design

South African Design Philosophy

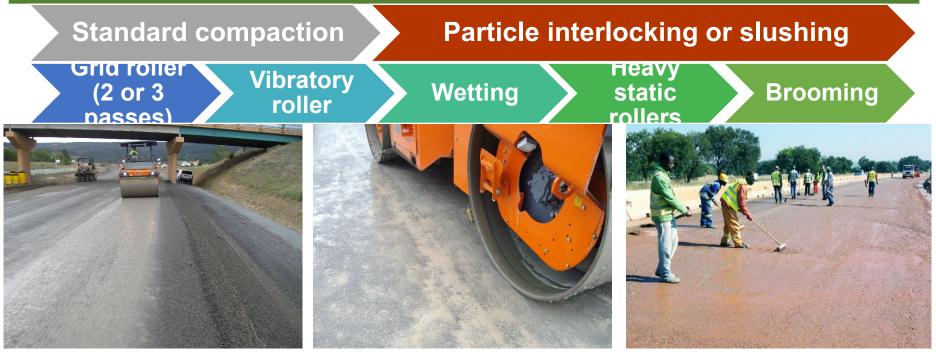


© TEST 2023

Design


South African Design Thinking!

© TEST 2023


Inverted Pavement Construction

Excess Fines Expelled as Slush from Layer

Brooming and Spreading Initial Slush/Fines to Deficient Areas

Source: Steyn & Kleyn, 2016; Simons 2016, & NMDOT

Quality Control

Loose G1

Ready for a "ping-test"

concrete

Source: Kleyn, 2012 <u>9/18/</u>2023

© TEST 2023

When to Stop Rolling?

Expelled water clearing up substantially

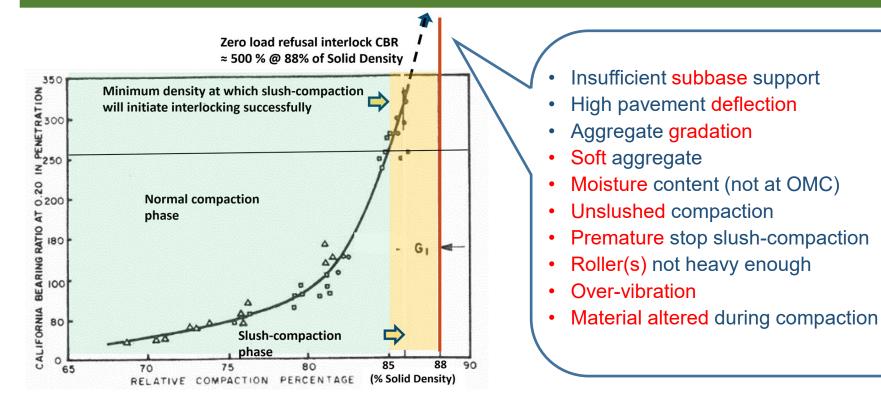
Well-knit mosaic visible through surface water

Road surface does not heave under heavy roller

"Visual and ping" tests

When to Place AC Surface?

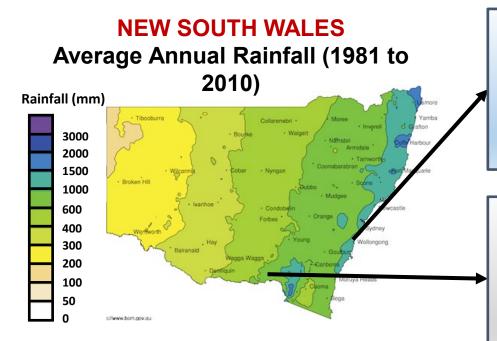
Surface broomed and cleaned


No free water on working surface

Moisture content of upper 2.0 in drier than 50% of OMC

Based on COTO (2020)

What Can Go Wrong?



Performance

Impact of Base Saturation on IP

Kianna Bypass, Wollongong

Failed prematurely due to base course saturation

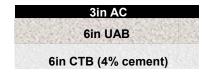
Hume Highway, Holbrook

Good performance could be due to relatively low rainfall

Source: Adapted from Commonwealth of Australia, Australian Bureau of Meteorology (2020)

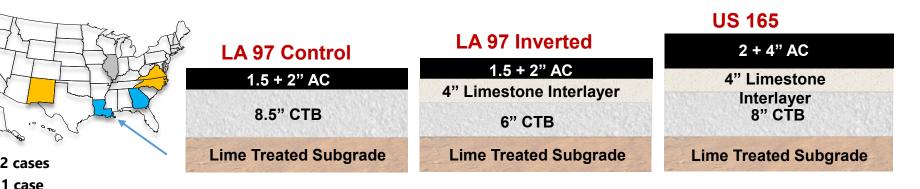
Summary

- Established in South Africa
 - Granular base course:
 - High modulus (stress dependency)
 - Delays reflection cracking from cement treated subbase
 - High material quality and good construction (particle interlock)
 - Good drainage (coarse aggregate)
 - Thin asphalt concrete layer
 - Regular maintenance
- Well designed/built IP could perform satisfactory.

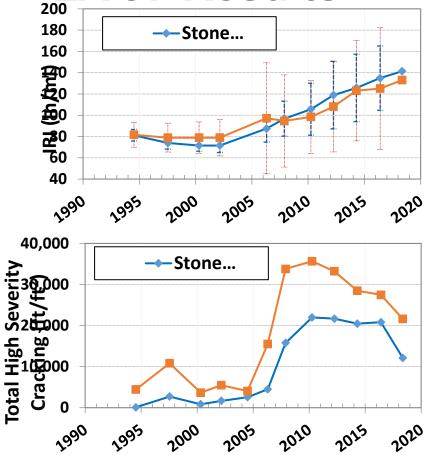

US Experience

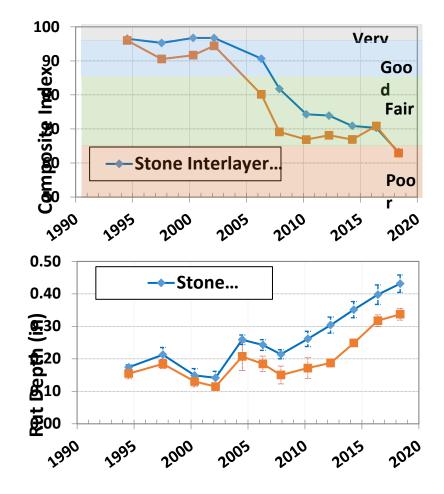
Early US Experience

Early Experience in New Mexico


- 2in AC 6in UAB Broken concrete pavement
- 1954: Overlay of badly broken concrete pavements
 - No reflection cracks or significant rutting after 6 years
- ~1960: two experimental roads
- Army Corps of Engineers
 - Performance influenced by CTB stiffness and tensile strength
 - Laboratory tests were conducted; resulted in introducing numerical nonlinear and constitutive models
- Lab studies at GA Tech in 1983

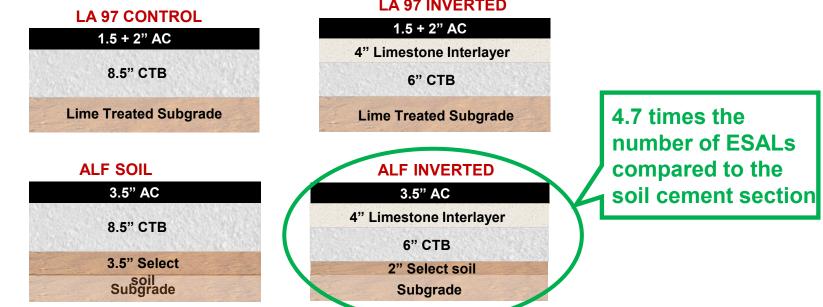
Louisiana Experience


- Built in 1997 near Jennings
- Design traffic 1.6×10⁵ 3.3×10⁶ ESALs
- High rainfall (60.4 in/yr)
- High humidity (average 72-81%)
 - Source: Al-Qadi et al. (2015)


- Built in 2006 Monroe
- 20-year design: 3.2×10⁶
 ESALs
- Rainfall (53.6 in/yr)
- Humidity (ave. 72-75%)

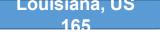
Test

Louisiana, LA


LA 97 Results

Accelerated Pavement Testing: LA 97

LA 97 INVERTED

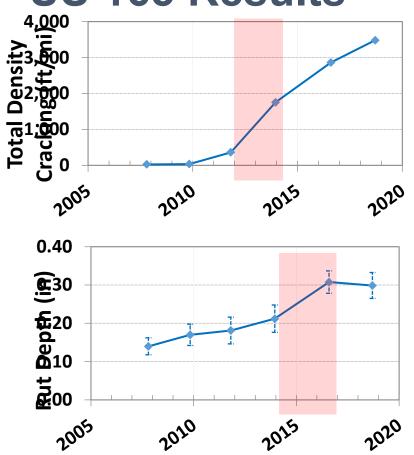


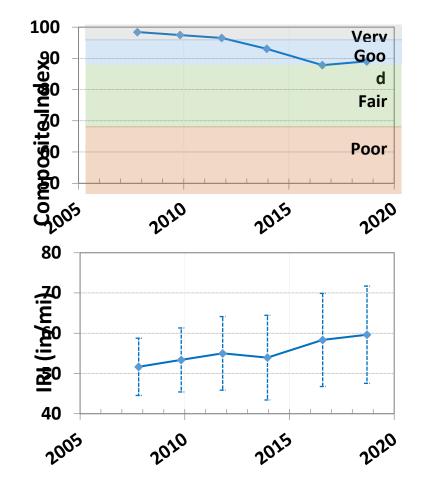
LA 97 Performance

- Inverted pavement vs. control section:
 - Less cracking but more rutting
 - Relatively similar IRI
 - Composite index shows slightly better pavement performance
- Accelerated pavement testing:
 - Inverted pavement showed better overall pavement performance (4.7x more ESALS to failure compared to soil-cement pavement)

Crack initiation and progression appear to precede rut depth development. Could be related to water ingress through cracks.

US 165


Modified from Google Map



- Built in 2006
- 20-year design traffic 3.2×10⁶ ESALs
- Rainfall (53.6 in/yr)
- Humidity (Ave. 72-75%)

US 165 Results

Louisiana, US

9/18/2023

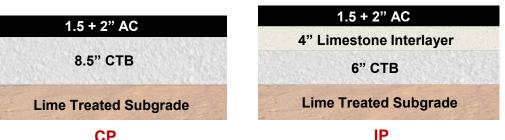
34

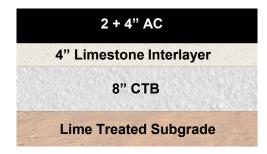
US 165 Performance

 High cracking rate seems to precede high rut depth rate

Louisiana , US 165

 Good condition after 13 years


© TEST 2023



LA-97 and US-165 Cost

- Costs:
 - LA-97¹:
 - CP: \$173,000/mi
 - IP: \$208,000/mi (potentially leading to an increased capacity)
 - US-165²:
 - Inverted pavement: \$204,208/mi

1) After Titi et al. (2003); 2) Ozer & Al-Qadi (2021)

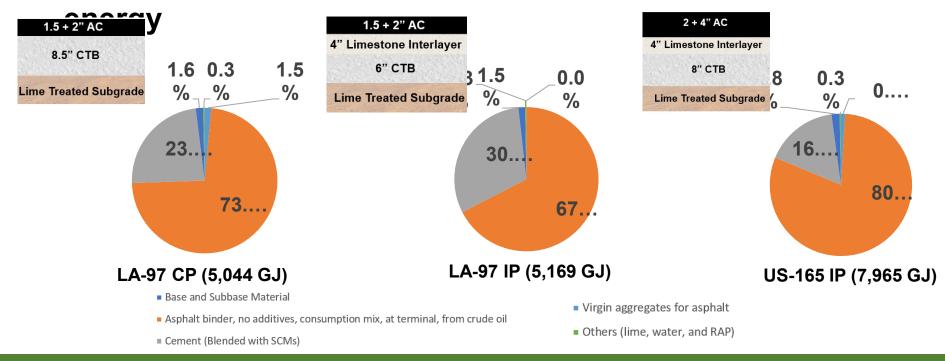
9/18/2023

LA-97 and US-165 LCA

FHWA LCA Pave Tool (Materials, Construction, and 0% 20% 40% 60% 80% 100% Transportation) **US-165** LA-97 Total use of Impact indicator renewable IP IP CP primary Total use of renewable primary 2.179.377 1.279.028 1.287.936 resources (MJ) resources (MJ/In-mi) Total use of Total use of nonrenewable primary nonrenewable 5,786,567 3,880,785 3,764,955 energy resources (MJ/In-mi) primary energy Global warming (kg CO₂ eq/ln-mi) 220.068 252.227 resources (MJ) 279.694 **Global Warming** (kg CO2 eq) 1.5 + 2" AC 1.5 + 2" AC 2 + 4" AC 4" Limestone Interlayer 4" Limestone Interlayer 8.5" CTB **US-165** Inverted pavement 6" CTB 8" CTB □ LA-97 Inverted pavement **Lime Treated Subgrade** Lime Treated Subgrade

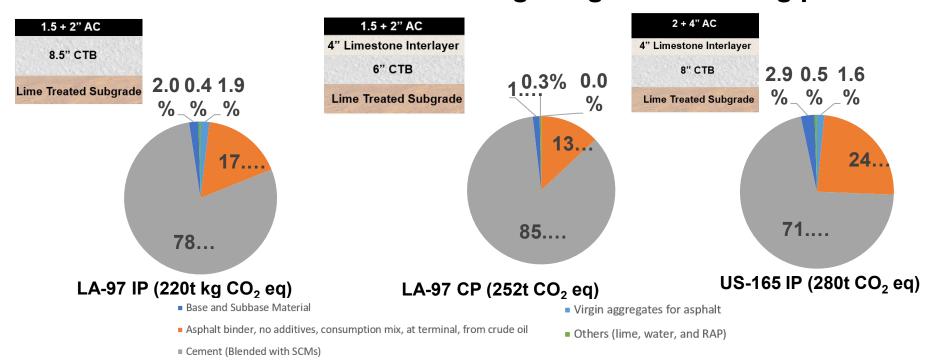
Lime Treated Subgrade

© TEST 2023


LA-97 Control pavement

Louisiana

LA-97 and US-165


LCA – Contribution of material stage to total primary

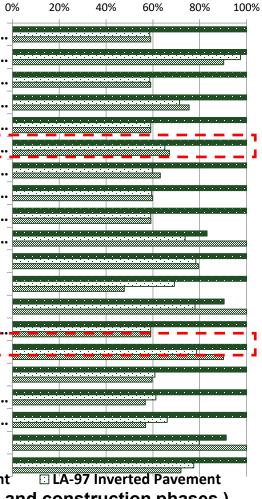
Louisiana

LCA – Contribution of material stage to global warming potential

© TEST 2023

TEST

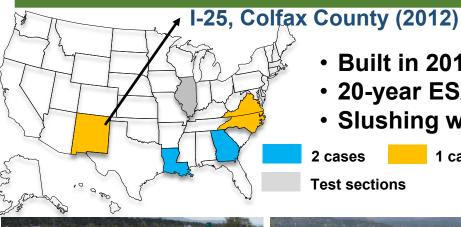
Live Sustainable


LCCA and LCA

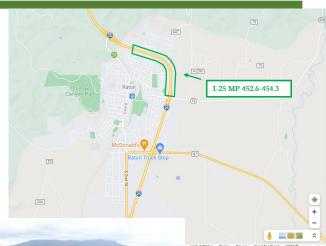
Section	Energy Demand, MJ per lane- mile	GWP, kgCO ₂ Per lane- mile	Initial Cost, \$ per lane-mile ¹
LA 97 (control)	2.61E+06	2.90E+05	—
LA 97 (inverted)	2.63E+06	2.58E+05	-
U.S. 165 (control) ²	3.63E+06	3.74E+05	204,599
U.S. 165 (inverted)	3.54E+06	3.23E+05	204,208
Avg. Savings	Negligible	12.3%	Negligible

¹ Cost is calculated using average bid prices for construction of CSB, crushed granular base, and AC layers obtained for specific pay items used in the U.S. 165 project.

² Control for U.S. 165 project is hypothetical and included for comparative purposes.

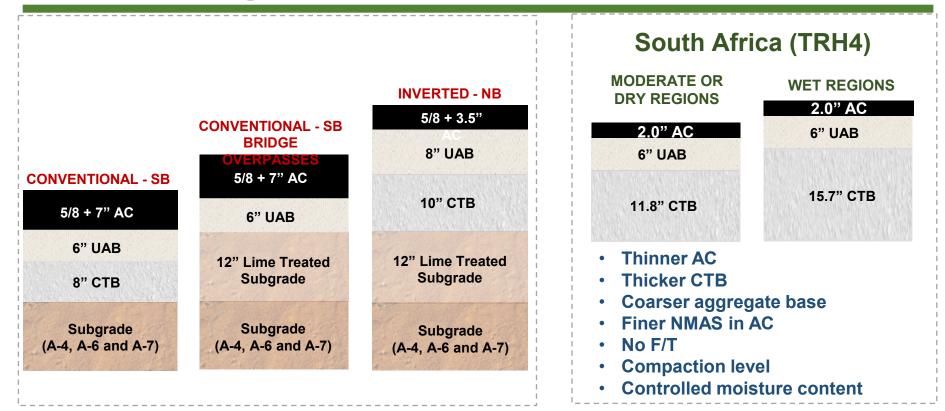

Use of renewable energy... Use of renewable primary... Total use of renewable.. Use of nonrenewable primary... Use of nonrenewable primary... Total use of nonrenewable.. **Recycled Material Usage... Disposed Non-Hazardous... Disposed Hazardous Waste..** Net Use of Fresh Water (Cubic... Acidification (kg SO2 eq) Ecotoxicity (CTUeco/kg) Eutrophication (kg N eq) Fossil Eucl Depletion (ML Global Warming (kg CO2 eq) Human Health - Cancer (CTU/kg) Human Health - NonCancer... Human Health Effects -... Ozone Depletion (kg CFC-11 eq) Smog Formation (kg O3 eq) FHWA LCA Pave Tool (materials and construction phases)

Source: Al-Qadi et al. (2015)


New Mexico Case: Concrete Pavement

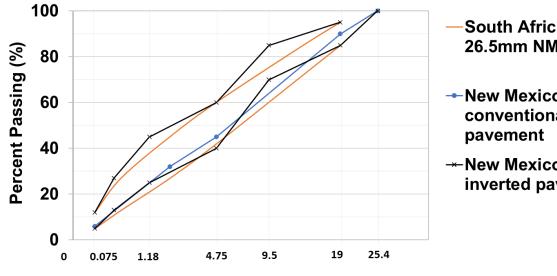
• Built in 2012

- 20-year ESALs: 1.0×10⁷
- Slushing was used



Credit: NMDOT

I-25 Design


Subgrade & CTB

Unbound Aggregate Base

Well-graded 1-in top size crushed stone, gravel, and sand (mixed stockpiles)

Sieve size (mm), raised to 0.45 power

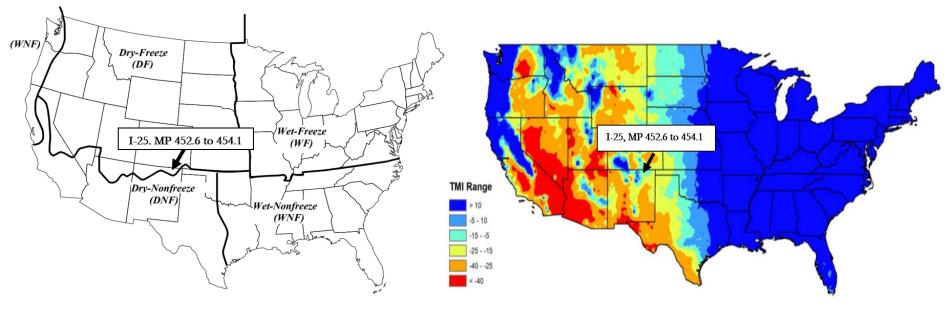
South Africa G1 26.5mm NMAS

New Mexico I-25 conventional

→ New Mexico I-25 inverted pavement

Source: Simons. 2016

Base Construction and Slushing


9/18/2023 Source:

Source: Simons, 2016

Climate

Rainfall: 18.2 in/yr Snowfall: 33.0 in/yr

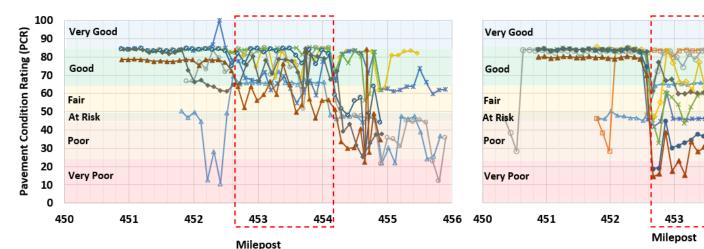
Source: ARA, 2004

Source: Singhar, 2018

Pavement Performance

------ 2013

---- 2014


----- 2015

→ 2016

-× 2018

<u>→</u> 2020 → 2021

- Pavement condition rating includes rutting and cracking
- Faster pavement deterioration in the NB inverted section

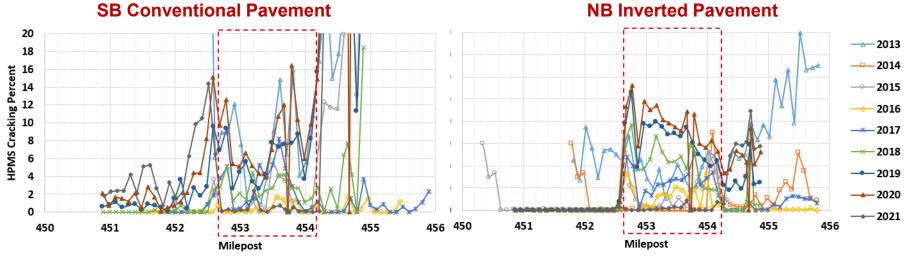
SB Conventional Pavement

NB Inverted Pavement

454

455

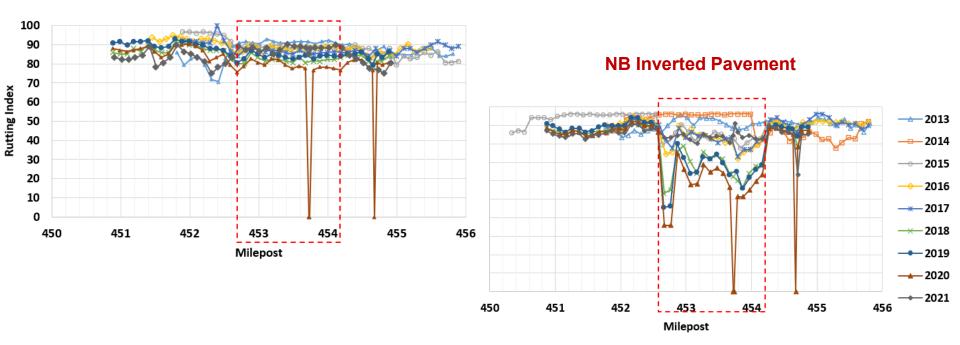
Data provided by NMDOT


456

New Mexico

Crack Progression

Fatigue, transverse thermal, and longitudinal cracks were observed



Data provided by NMDOT

Rutting Development

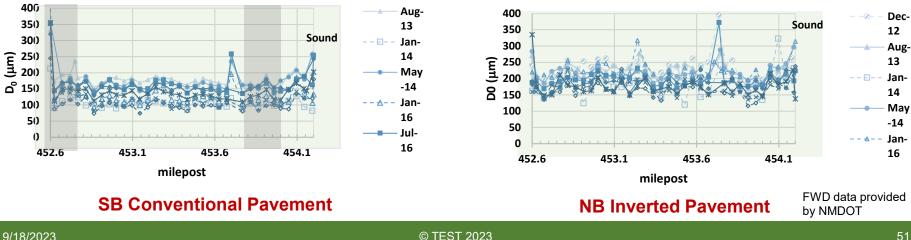
SB Conventional Pavement

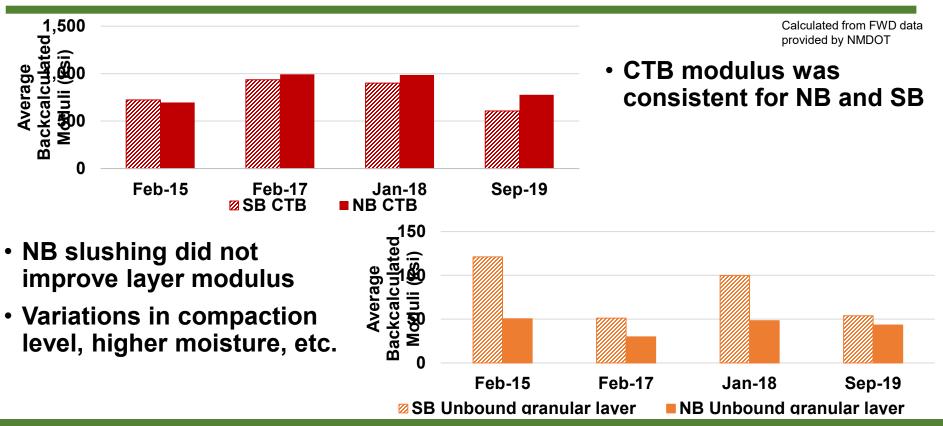
Data provided by NMDOT

Pavement Performance (in 2015)

SB Conventional Pavement

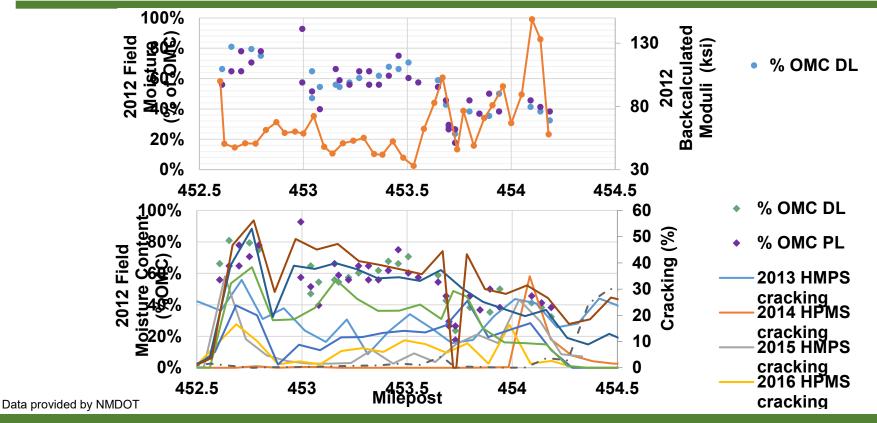
NB Inverted Pavement


9/18/2023


- FWD data were analyzed using ELMOD 6.0 software
 - Iterative procedure using Finite Element Analysis (FEA)
 - Stress dependency in the unbound layers was used

Center Deflection Data

CTB and Base Layer Moduli



Moisture Impact on Layer Moduli and AC Cracking

Field Exploration: Site Visits

• First site visit in April 2022

- Second visit in July 2022
- Core and boring samples were collected

Site Visit Observations

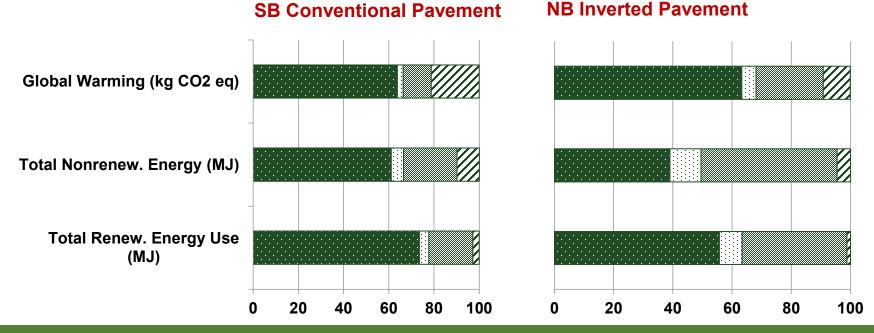
Two AC lifts on SB vs. a single lift of NB conventional

Summary

- New Mexico case study is one of the most complete and documented application of inverted pavements in the US
- Rare use of slushing in the US to construct a dense base layer
- Potential reasons for the Rapid deterioration of the inverted pavements:
 - Moisture in the granular base (from construction and ingress through unsealed cracks)
 - Thicker AC layer compared to typical South African practice (but not too thick to prevent fatigue cracking)
 - Freeze-thaw and high moisture environment

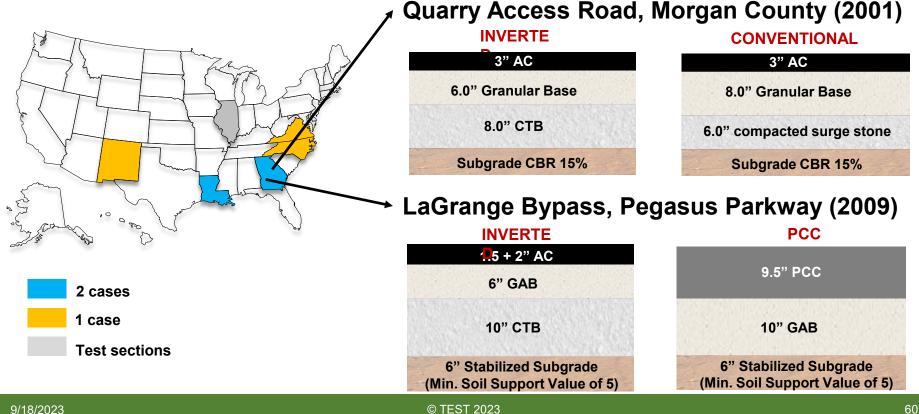
Environmental Impact: LCA

0% 20% 40% 60% 80% 100%


FHWA LCA Pave Tool (Materials, Construction, Transportation, Maintenance & Rehabilitation, and Disposal)

IP		Total use of	
Initial Construction	Total	renewable primary	
49,435	88,750	Total use of nonrenewable	
3 5,797,533	14,857,626	primary energy. Global Warming (kg CO2 eq)	
307,113	485,187		
	307,113	307,113 485,187	307,113 485,187 ■ SB Conve

□ NB Inverted pavement


Environmental Impact per LCA Stage

Per life-cycle stage

Georgia

Georgia Inverted Pavements

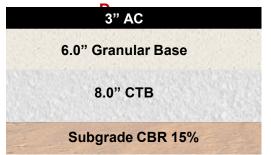
TES Live Sustainabl Georgia, Morgan

Quarry Access Road, Morgan County

Modified from Google Map

- Built in 2001
- Design EASLS: 1.3×10⁶ ESALs (63.4% in 1st 5 yrs)
- Rainfall: 47.7 in/yr
- Humidity: monthly average 69-76%

© TEST 2023


CONVENTIONAL 3" AC

8.0" Granular Base

6.0" compacted surge stone

Subgrade CBR 15%

INVERTE

Georgia, Morgan

FWD Testing & Evaluation (May 2022)

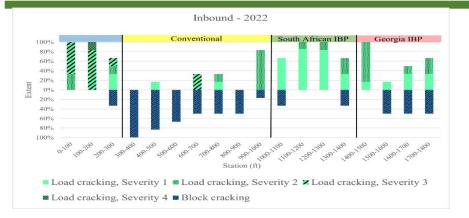
400 500

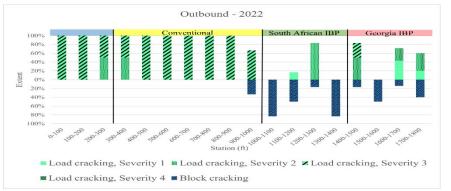
100 200

-Slide from Frost (2023)

9/18/2023

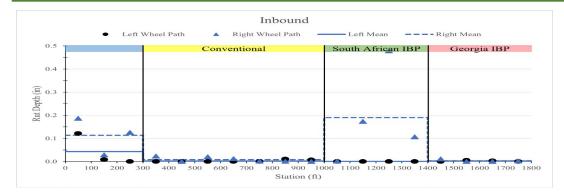
© TEST 2023

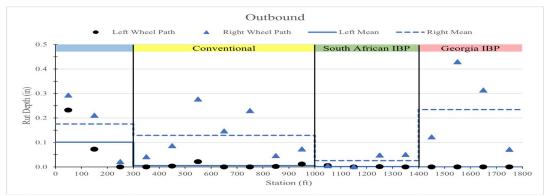

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800


Station (ft)

Georgia, Morgan

Pavement Cracking





- Low to high severity loadassociated and block cracking
- Outbound (EB) lane showed severe and widespread loadassociated cracking
 - loaded trucks in the EB lane

Pavement Rutting

Comparison between SA and GA Inverted Pavements:

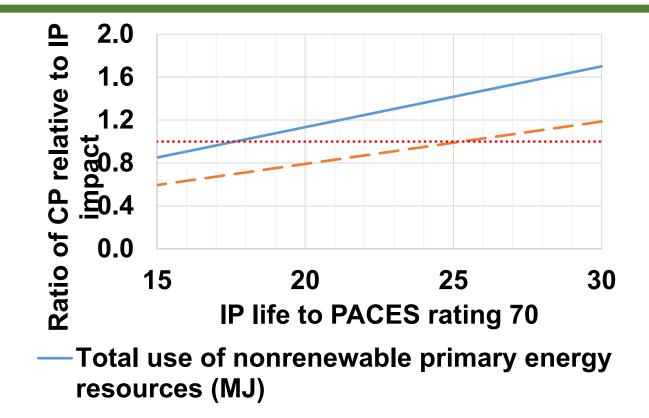
- Both provided good
 performance
- Less rutting in SA that could be attributed to slushing!

Performance Rating

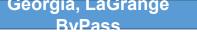
Section	2022 PACES Rating	2016 PACES Rating (Frost 2017)	Difference	
	Inbound			
Conventional	64	77	13	
South African IP	69	82	13	
Georgia IP	65	86	21	
	Outbound			
Conventional	43	67	24	
South African IP	75	81	6	
Georgia IP	51	81	30	

Slide from Frost (2023)

Environmental Impact: LCA


0%20%40%60%80%100%

FHWA LCA Pave Tool (Materials, Construction, and Transportation)

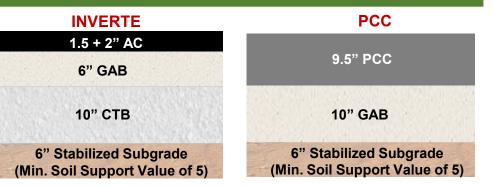

		IP		Tatalanaa	
Impact indicator	СР	South African	Georgia	Total use of renewable primary	
Total use of renewable primary resources (MJ/In-mi)	2,246,746	2,270,482	2,270,479	resources (MJ)	
Total use of nonrenewable primary energy resources (MJ/In-mi)	4,238,841	5,035,947	5,028,827	Total use of nonrenewable	
Global warming (kg CO ₂ eq/ln-mi)	133,977	262,774	262,255	primary energy	
				[⊥] resources (MJ)	
3" AC		3" AC			
8.0" Granular Base		6.0" Granular Base		Global Warming (kg CO2 eq)	
6.0" compacted surge stone		8.0" CTB		(kg CO2 eq)	
Subgrade CBR 15%		Subgrade C	BR 15%	CP 🛛 South Af	rican IP Georgia IP

Environmental Impact: LCA

Georgia, Morgan

LaGrange Bypass, Pegasus Parkway

Are a construction of the construction of the

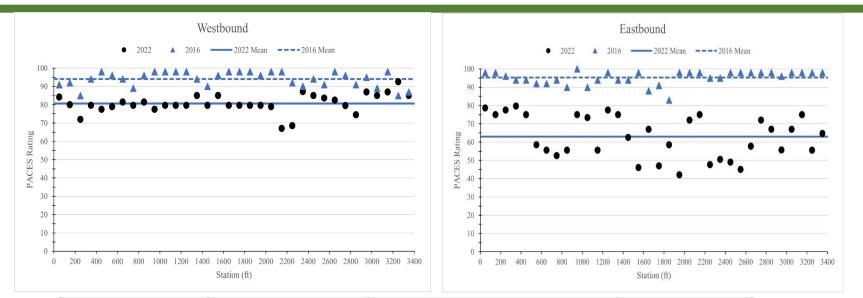


Built in 2009

9/13/32%

Source: Frost, 2017

- 20-year ESALs: 1.5 to 2 million (Vaughan, 2018)
- Rainfall: 51.4 in/yr
- Humidity: monthly average 66-



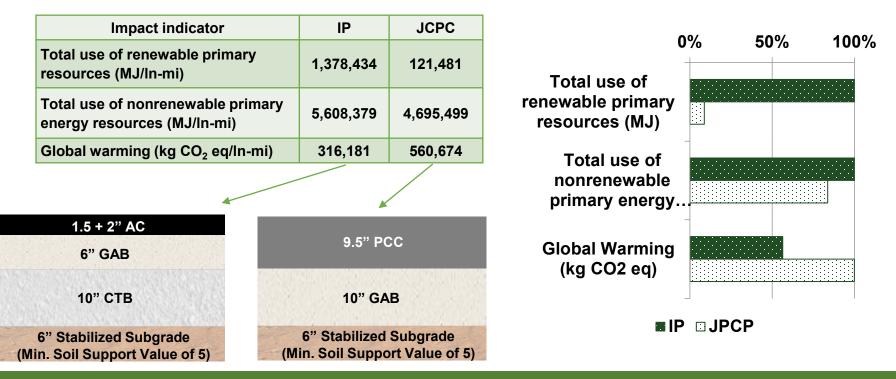
Georgia, LaGrange ByPass


Pavement Performance - PACES

Direction	2022 PACES rating	2016 PACES rating (Frost 2017)	Difference
Westbound	81	94	13
Eastbound	63	95	32

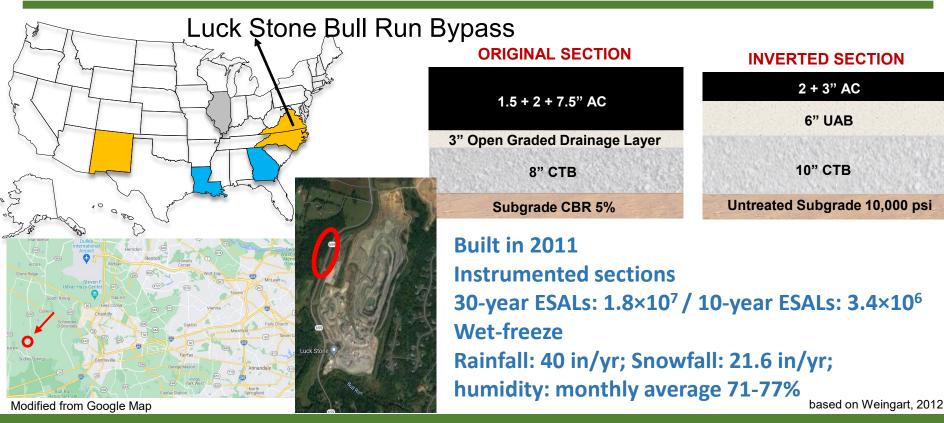
Slide from Frost (2023)

Pavement Cost Assessment



	Event	Cost (\$/la	Comparison		
	Event	Inverted pavement	PCC pavement		
Cost (\$/lane-km)	Installation cost	342,000	584,000		
	10-year maintenance	101,000			
	20-year maintenance	123,000		IP net savings \$139,000	
	20–30-year maintenance		121,000	φ139,000	
	30-year life-cycle cost	566,000	705,000		

Source: cost information from Buchanan, 2010


FHWA LCA Pave Tool (Materials, Construction, and Transportation)

Virginia

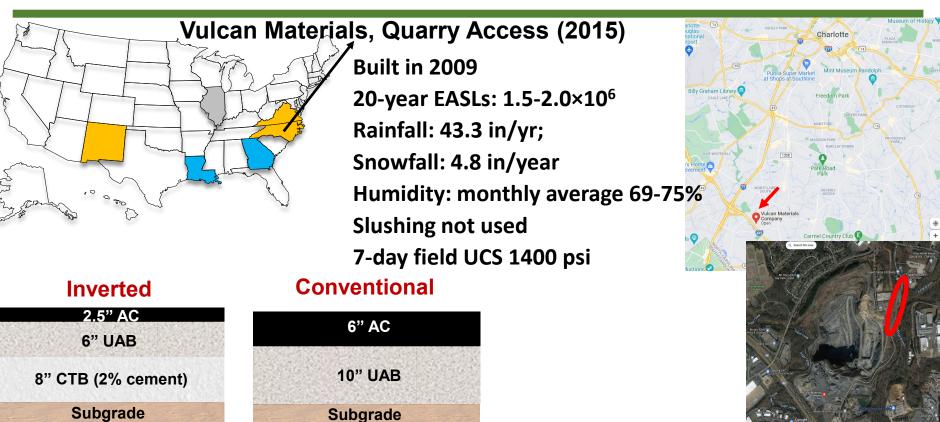
Virginia Inverted Pavement

9/18/2023

Virginia

Pavement Performance

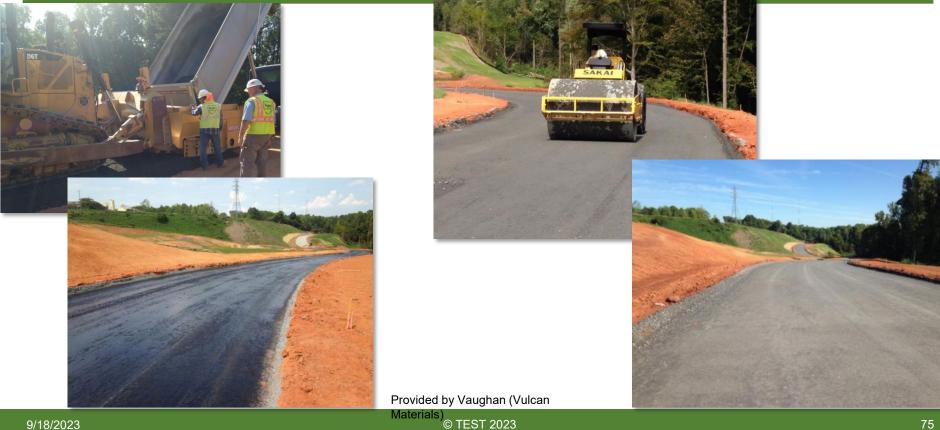
INVERTED IN 2017


CONVENTIONAL IN 2017

- Both sections were opened to traffic in 2012 and showed extensive cracking in 2017, resurfaced ~2018-2019
- Inverted section was 14% cheaper than the original section (Weingart, 2010)

North Carolina

North Carolina Inverted Pavement



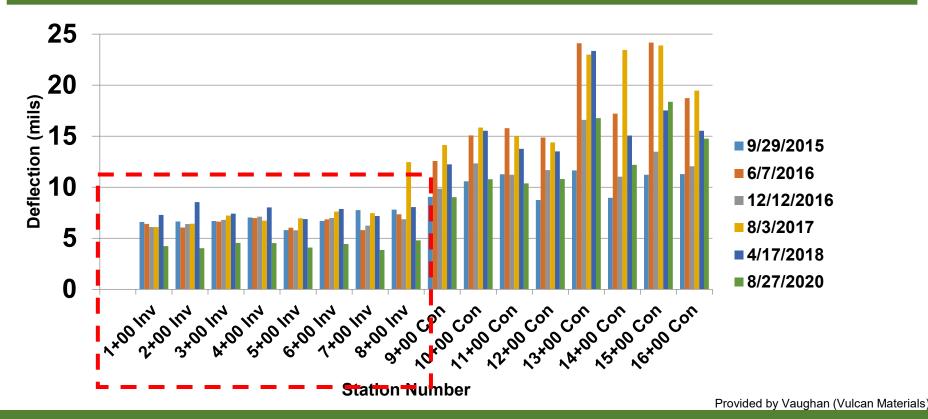
9/18/2023

Cement Treated Base and Unbound Aggregate

75

North Carolina

Pavement Performance - 2020

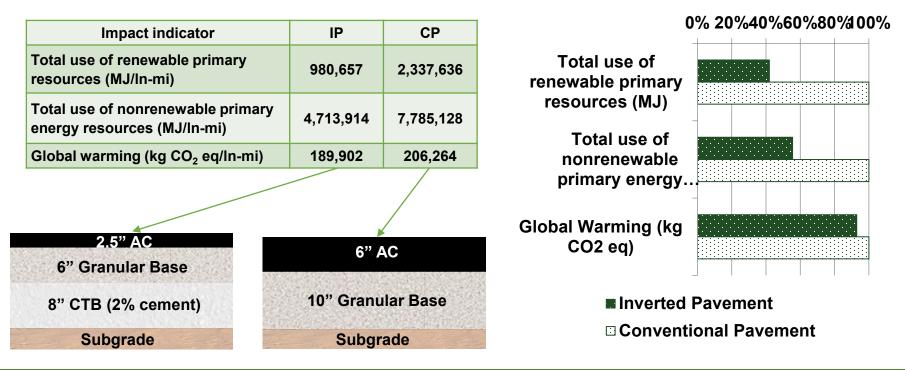

- Performed well after 11 years of service.
- Limited cracks on inverted pavement section/ no cracks on conventional pavement section.
 Provided by Vaughan (Vulcan Materials) and Underwood (NC State University)

9/18/2023

FWD Deflection Data

North Carolina

by Underwood (NC State University)

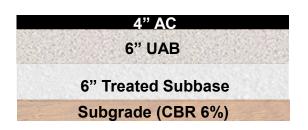


TEST Live Sustainably

Environmental Impact: LCA

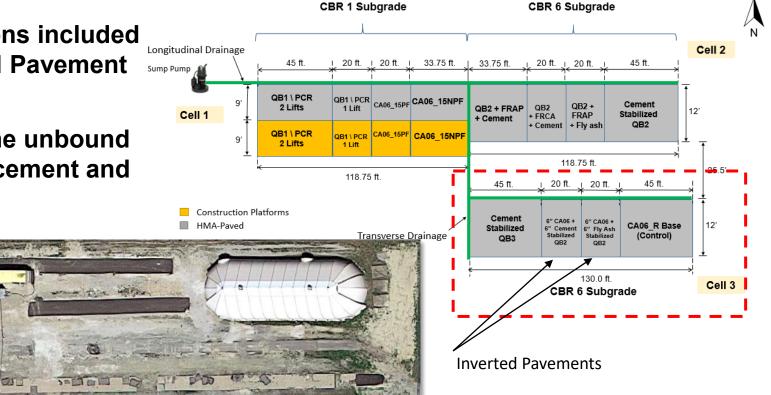
FHWA LCA Pave Tool (Materials, Construction, and Transportation)

Illinois


Illinois (ICT R27-168) Inverted Pavements

- Accelerated Pavement Testing study
- 2-year pavement performance data
- Traffic:
 - 1×10⁵ unidirectional passes:
 - 10-kip load
 - Tire pressure 110 psi
 - 1.5×10⁵ ESALs
 - 3.5×10⁴ unidirectional passes:
 - 14-kip load
 - Tire pressure 125 psi
 - 1.9×10⁵ ESALs
- AC surface kept at 75°F

Slushing not used
9/18/2023

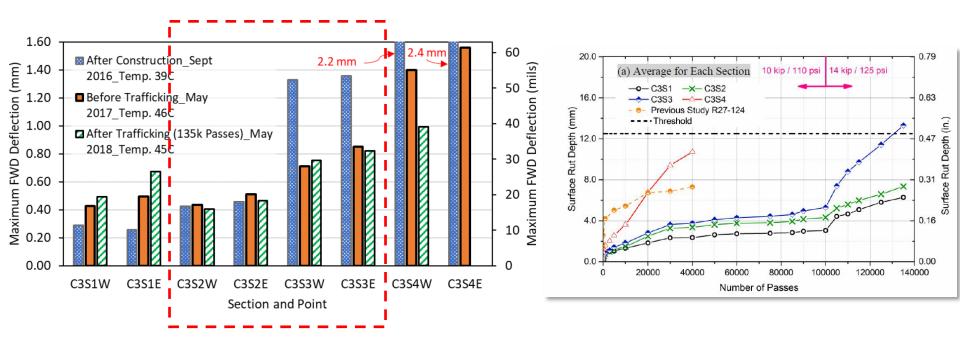

C3S1: 12" QB3* + 3% cement C3S2: QB2** + 3% Type I cement C3S3: QB2** + 10% Class 'C' fly ash C3S4: 12" dolomite

*QB3: limestone **QB2: dolomite

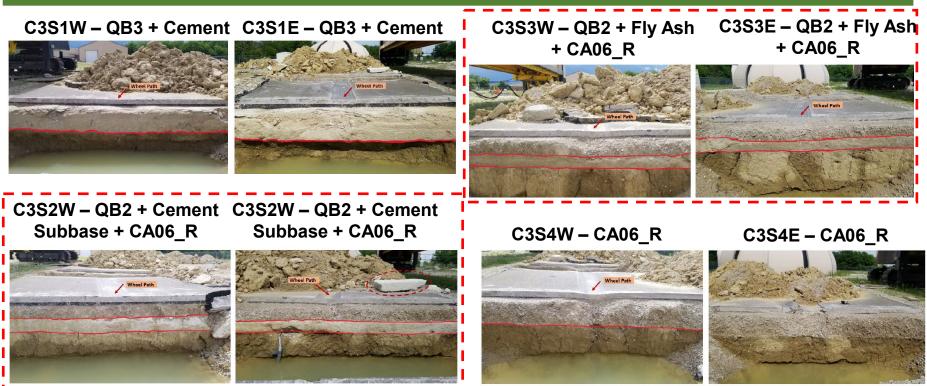
North Carolina

Various Sections with CTB and Inverted

- Cell 3 sections included two Inverted Pavement designs
- Stabilized the unbound layers with cement and fly ash



Illinois


Pavement Performance

Illinois

Pavement Permanence – Trenches

C3S4W - CA06_R

C3S4E – CA06_R Source: Qamhia, 2019

Summary

Inverted pavement was evolved in South Africa

- It provides strong foundation through CTB
- Granular base course:
 - High quality/modulus material
 - Delays reflection cracking from CTB
- Good drainage, regular maintenance (crack sealing), and durable dense AC (low NMAS)

Well designed/built/maintained Inverted Pavements could adequately perform when used for the proper project

Suggestions (to gain more experience in the US)

- Optimum AC layer for efficient and cost-effective pavement.
- South African slushing technique to achieve better particle interlock.
- Regular crack sealing program: Prevents water infiltration.
- Drying granular base course prior to priming: Controls water trapping.
- **Drier and warmer** environments first.
- Consider stabilizing granular base course with asphalt emulsion (nontraditional inverted pavement).

Thank you!

Questions? alqadi@testsustainability.com www.testsustainability.com

References

- Al-Qadi, I. L., R. Yang, S. K. Kang, H. Ozer, E. Ferrebee, J. R. Roesler, A. Salinas, J. Meijer, W.V. Vavrik, and S. L. Gillen (2015). "Scenarios Developed for Improved Sustainability of Illinois Tollway." Transportation Research Record: Journal of the Transportation Research Board, No. 2523. Transportation Research Board, Washington, DC.
- ARA (Applied Research Associates), Inc., ERES Consultants Division. Guide for Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures. Final report, NCHRP Project 1-37A. Part 3. Design Analysis. Chapter 1. Drainage. Transportation Research Board of the National Academies, Washington, D.C., 2004., Figure 3.1.7, p. 3.1.17. Copyright, National Academy of Sciences. Reproduced with permission of the Transportation Research Board. http://onlinepubs.trb.org/onlinepubs/archive/mepdg/guide.htm.
- Austroads (2019). "Guide to Pavement Technology Part 2: Pavement Structural Design". Edition 4,3 published November 2019.
- Barksdale, R.D., and Todres, H.A. (1983). "A Study of Factors Affecting Crushed Stone Base Performance." School of Civil Engineering, Georgia Institute of Technology, Atlanta, Georgia.
- Buchanan, S. (2010). Inverted Pavements-What, Why, and How? AFTRE Industry Education Webinar, June 1, 2010.
- Commonwealth of Australia, Australian Bureau of Meteorology (2020), license:
- COTO (South African Committee of Transport Officials) 2020. Standard Specifications for Road and Bridge Works for Sough African Road Authorities. Draft Standard (DS) Chapter 9: Asphalt Layers. October 2020.
- Donovan, S. (2022). Performance Evaluation of Inverted Pavement Structures, Ph.D. Thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
- DPTI Government of South Australia Department of Planning, Transport and Infrastructure (2018a). "Supplement to the Austroads Guide to Pavement Technology Part 2 Pavement Structural Design". Version No. 5. August 2018.
- DPTI (2018b). "Specification Part R21 Construction of Unstabilised Granular Pavements". July 2018
- DPTI (2020). "Roads Master Specification RD-PV-S1 Supply of Pavement Materials". August 2020

References

FHWA (2019). "Louisiana Experience with Inverted Pavement Systems." FHWA-HIF-19-082.

- Frost, J. D. (2017). Long-term Performance of Granular Bases Including the Effect of Wet-dry Cycles on Inverted Base Pavement Performance (No. FHWA-GA-17-1510). Georgia. Department of Transportation. Office of Research.
- Jooste, F.J., and L. Sampson (2005). "The Economic Benefits of HVS Development Work on G1 Base Pavements" Department of Public Transport, Roads, and Works.
- Kleyn, E.G. (2012). "Successful G1 Crushed Stone Base Course Construction" In Proceedings of the 31st Southern African Transport Conference (SATC 2012), ISBN Number: 978-1-920017-53-8, Pretoria, South Africa, 9-12 July 2012, pp. 110-118.
- MRWA Main Roads Western Australia (2013). "Engineering Road Note 9".
- MRWA (2020). "Specification 501 Pavements". February 2020.
- NOAA & NGS, N. (1978). Geodetic Bench Marks Manual. https://www.ngs.noaa.gov/PUBS_LIB/GeodeticBMs/

Accessed Dec 27, 2021.

- Qamhia, I. I. (2019). Sustainable pavement applications utilizing quarry by-products and recycled/nontraditional aggregate materials (Doctoral dissertation, University of Illinois at Urbana-Champaign).
- RTA Roads and Traffic Authority (2004). "Oral History Program. Pavement Recycling & Stabilisation. Summary Report."
- Simons, B. (2016). I-25 Inverted Pavement Project Raton, New Mexico 2013. Transportation Research Board 2016 Presentation.
- Singhar, S. (2018). Evaluation of climate parameter with regards to unsaturated clay soil suction profiles (Doctoral dissertation, Arizona State University).
- Steyn, WJvdM and E.G. Kleyn (2016), "Issues Around Construction of Inverted Pavements in South Africa." PowerPoint Presentation delivered at the 95th Annual Meeting of Transportation Research Board (TRB), Workshop session 463 on Inverted Pavements, January 11, 2016.

TRH 4. 1996. (Draft) structural design of flexible pavements for Interurban and rural roads. Committee of State Road Authorities. Pretoria, South Africa. (Technical

TfNSW – Transport for NSW (2020a). "QA Specification 3051 Granular Pavement Base and Subbase Materials." Ed 5, Rev 1.

- TfNSW (2020b). "QA Specification R71. Construction of Unbound and Modified Pavement Course." Ed 7, Rev 1.
- VICROADS (2013). "Section 304 Unbound Flexible Pavement Construction". August 2013.
- TMR Queensland Department of Transport and Main Roads (2020). "Technical Specification MRTS05 Unbound Pavements."

The South African National Roads Agency SOC Ltd. (2014). Pavement Engineering Manual. Chapter 9: Materials Utilisation and Design. Date of issue: October 2014.

- The South African National Roads Agency SOC Ltd.(2014). Pavement Engineering Manual. Chapter 10: Pavement Design. Second Edition. Date of issue: October 2014.
- Tutumluer, E., and R. D. Barksdale (1995). Inverted Pavement Response and Performance. Transportation Research Record, No. 1482, 1995, Figure 2, p. 108. Copyright, National Academy of Sciences. Reproduced with permission of the Transportation Research Board.
- Vaughn, K.M. (2017). http://www.dot.state.pa.us/public/Bureaus/BOPD/2017_QAW/GeoTech_and_Aggregates/InvertedPavement_Vaughn.pdf (accessed February 2021).
- Vaughan, K.M. (2018). "Inverted pavement." lecture.
- VICROADS (2017). "Code of Practice RC 500,02. Registration of Crushed Rock Mixes". June 2017.
- Weingart, R. (2012), "Inverted Base: The Virginia Experience," 2012 Transportation Research Board Mineral Aggregates Committee (AFP 70) Meeting Presentation, Transportation Research Board 91st Annual Meeting, January 22-26, Washington, D.C.

Today's Presenters

Imad L AI-Qadi alqadi@testsustainability.com University of Illinois

Erol Tutumluer tutumlue@illinois.edu University of Illinois

Jeff Uhlmeyer juhlmeyer@qespavements.com QES

NATIONAL ACADEMIES Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

Upcoming events for you

Sept 19 - 21, 2023

TRB's Innovations in Freight Data Workshop

Nov 13 - 15, 2023 TRB's Transportation Resilience 2023

https://www.nationalacademies.org/trb/ events

Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

Spread the word and subscribe! https://bit.ly/ResubscribeTRBWeekly

NATIONAL ACADEMIES

Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!

https://mailchi.mp/nas.edu/trbwebinars

And follow #TRBwebinar on social media

Sciences Engineering

NATIONAL

Get involved

https://www.nationalacademies.org/trb/get-involved

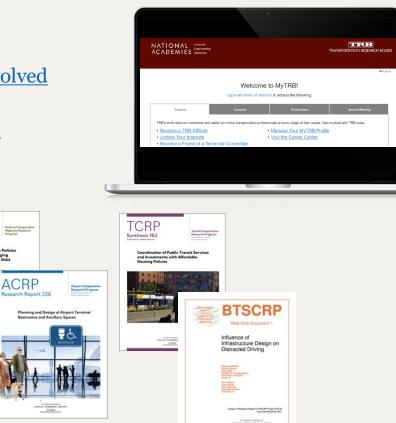
NCHRF

Research Report 990

Guidebook for Effective Polici

and Practices for Managing Surface Transportation Deb

• Become a Friend of a Standing Technical Committee


Network and pursue a path to Standing Committee membership

- Work with a CRP
- Listen to our podcast

https://www.nationalacademies.org/podcasts/trb

DOUBLE

NATIONAL ACADEMIES

We want to hear from you

- Take our survey
- Tell us how you use TRB Webinars in your work at trbwebinar@nas.edu