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Purpose Statement

This webinar will cover current geotechnical asset resilience practices and advancements
in the broader framework of transportation asset management (TAM), project planning, and
life-cycle analysis.

Learning Objectives

At the end of this webinar, you will be able to:
 Identify FHWA activities related to resilience of pavement and embankment assets
« Speak to the concept of resilience-based design for geotechnical assets and practices

« Understand the utility and implications of modeling through the examples of cascading
failures of levees and power grid due to flooding in changing climate



Questions and Answers

 Please type your questions into your webinar
control panel

 We will read your questions out loud, and
answer as many as time allows

Questions

No questions yet

Cuestions you send and answers from the staff
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Enter your question

Your gquestion will be sent to staff
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What |Is Resilience?

Resilience: The ability to anticipate, prepare for, and adapt to changing
conditions and withstand, respond to, and recover rapidly from
disruptions, FHWA Order 5520 (FHWA 2014c).

1. (i) to resist hazards or withstand impacts from weather events and natural disasters;
or (ii) to reduce the magnitude or duration of impacts of a disruptive weather event or natural

disaster on a project; and
2. to have the absorptive capacity, adaptive capacity, and recoverability to decrease

project vulnerability to weather events or other natural disasters. (Bipartisan Infrastructure Law, 2021)

© Kemal Kozbaev/stock.adobe.com. © mreco/stock.adobe.com. © Naya Na/stock.adobe.com.




The Need for Resilience!

U.S. 2018 Billion-Dollar Weather and Climate Disasters
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Resilience in TAMPs in Regulation

23 CFR Part 515.7

State DOTs are required to develop a risk-based asset management plan to include
specific minimum processes, including the following section on lifecycle planning
identified in subsection (b)”:

A State DOT shall establish a process for conducting lifecycle planning for an asset class or
asset subgroup at the network level (network to be defined by the State DOT). As a State
DOT develops its lifecycle planning process, the State DOT should include future changes
in demand; information on current and future environmental conditions, including extreme
weather events, climate change, and seismic activity; and other factors that could impact
whole-life costs of assets.

*ISimiIar requirements are in subsection (c), which addresses risk management
plans.

Q (Office of the Federal Register, National Archives and Records Administration 2018)




Addressing Resilience in TAMP
Risk Management Analysis

What can States do to address risks associated with extreme
weather and climate change?

Three steps for success:
1. Leverage results from existing (or new) vulnerability and engineering

assessments focused on resilience.
2. ldentify hazards affecting each asset class.
3. Assess strategies/costs for making each asset class resilient.

Department of Transportation
Federal Highway Administration | " "Y' 1WHY RO AT 0 111




Adaptation Strategies:
1. Monitor Trends

Most predicted changes to
environmental variables are
projected to occur relatively
slowly in relation to a typical
infrastructure lifecycle (FHWA
2015).
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Operation &
Maintenance




VULNERABILITY ASSESSMENT AND
2. When Trends Differ.

SET OBJECTIVES AND DEFINE SCOPE

Va u a e u e ra I I y Articulate Define Study csrf"-“‘ and Identify Key Climate
Objectives Scope R EIE Variables

Relevant Assets

COMPILE DATA

Obijectives:

» |dentify whether an asset is more vulnerable
than other system assets.

Asset Data Riverine Hydrology

Temperature & Precipitation Projections ~ Coastal Hydrology

& ASSESS VULNERABILITY %

] 2,

. .y . _— o« g

» Prioritize potential vulnerabilities for the E ucholernpur | Mortsed  Engicerng :
= Desk Review Informed Assessment o
system.

= Consider Risk g

ApproaCh - ANALYZE ADAPTATION OPTIONS
Multi-Criteria Analysis Economic Analysis

» Use the Vulnerability Assessment Scoring
Tool (FHVVA 201 79) INCORPORATE RESULTS INTO

DECISION-MAKING

Input local asset data. e
Output the relative vulnerability scores per
aSSGt . Source: FHWA.

(FHWA 2019)
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3_ P|an and Design Decision Tree of the ADAP Steps

1. Understand 2. Document

Infrastructure to Meet Future I R I

4, Develop climate scenarios
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|
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of failure high? readily
No
Yes
. Use surrogate readily-

» Use the adaptation decisionmaking e

sensitivity tests

Yes 5. Assess performance of the facility
! i Is exposure =
121 projected to rise? A, Assess B. Assess all
P2 e mpect e
= § Ho scenario scenarios
ys
Yes

0|

assessment process (ADAP).

» Use a risk-based approach for
planners, designers, or engineers.

Analysis
complete

» Tailor to each State.

i et |
----{ Rewvisit analysis in future m——————————
L —— ;

» Aid decisionmakers in determining
which project alternative is best
(lifecycle costs, resilience, and
regulatory and political settings)
(FHWA 2021D).

(j Source: FHWA.
(FHWA 2016a)

6. Develop adaptation options

A. Develop for
highest impact

scenario

Federal Highway Administration
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GEOHAZARDS

“Geohazards, such as [andslides,
liquefaction, rock falls, subsidence,
expansive/collapsible soils, and erosion can
pose major threats to transportation assets.
Fixtreme weather events can also trigger
and /or exacerbate seohazards, and the
increasing incidence of such events is a
growling potential concern in certain regions
of the United States.”

Foreword

Geohazards, Extreme Weather Events, and Climate
Change Resilience Manual

https:// www.fhwa.dot.gov/engineering/geotech/pubs/hif23008.pdf

Q .
U.S. Department of Transportation Tu rn e r- FG I rbq n k

Federal Highway Administration | HighWOV Research Center
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https://www.fhwa.dot.gov/engineering/geotech/pubs/hif23008.pdf

Future Climate Effects on GEOHAZARDS Events
and Transportation Infrastructure!

» Climate stressors (Temperature,
Precipitation, )
affect geohazards events in the
following aspects:
> Frequency — Increase in the occurrence

of extreme weather and geohazards
events over time

> Intensity — Increase in the force of the
geohazards

> Severity — Increase in the impact of the
geohazards

i
\ / Shiloh National Park, TN
Glen Canyon Debris Flow (I-70)

" 11
R .
U.S. Department of Transportation Tu rn e r- FG I rbq n k

Federal Highway Administration | HighWOV Research Center




Recent Climate Trends

How do we know how the climate might change in the future?

Representative Concentration Pathways (RCP) are scenarios for
potential trajectories for atmospheric GHG levels over the remainder of

the 21st century and beyond. Each RCP is based on different
assumptions. 10

RCP8.5 (a)
g 1  RCP45(b) Projected changes in global annual
RCP2.6 () mean surface temperature for various
6 - — Observed

The solid lines indicate the mean
projections and the shaded areas
indicate the uncertainty range (+/- two
standard deviations) across 20+ global
climate models.

Observed

Temperature Change (°F)
N

_2 1 ] 1
1901 1951 2000 2051 2101

Projected Global Temperatures

Source: USGCRP 2017

RCPs relative to a 1901-1960 baseline.

12



Static Versus Future Climate Inputs

Stationary Climate Inputs:

» Based on historical data:
Previously observed and
measured.

» Grounded in well-established

methods for design consideration.

» Based on the fundamental
assumption: Historical data =
future climate.

Future (Nonstationary) Climate
Inputs:

» Generated by climate models:
Partially incorporating historical
iInputs.

» Built on assumptions of
greenhouse gas emission sources
and levels.

» Based on the explicit assumption:
Historical data # future climate.

13



Data Sources for Future Climate Projections

(Including Sea-Level Rise (SLR))

Downscaled CMIP3 and CMIP5 Climate and
Hydrology Projections (DCHP) database (U.S.
Federal Government 2021)

A database that contains publicly available, downloadable, downscaled climate
projection data for temperature and precipitation in the contiguous United States.

USGS Geo Data Portal (U.S. Geological Survey A web portal that provides access to a suite of climate datasets for temperature and
2022) precipitation, including climate projections using different downscaling techniques.

An Excel®-based tool to process data from the DCHP database to provide

RS 0 Lo ol ' | | o] [T BN ETER LTI s M 1o 12XV Bl temperature and precipitation projections for climate variables relevant to

(FHWA 2021a) transportation planners. The updated version uses the localized constructed analog
dataset and incorporates several new variables.

U.S. Army Corps of Engineers Sea- Level Change
Curve Calculator (U.S. Army Corps of Engineers

A web-based tool that accepts user input to produce a table and graph of the
projected sea-level changes at the project site, including vertical land movement.

National Oceanic and Atmospheric

Administration’s (NOAA's) SLR Viewer (NOAA A web mapping tool to visualize community-level impacts from coastal flooding or

SLR that contains downloadable SLR data for many locations.

14
R .
U5, Department of Transportation Turner-Fairbank CMIP = Coupled Model Intercomparison Project; USGS = U.S. Geological Survey; DOT = department of transportation.

Federal Highway Administration | HighWOV Research Center




Types of Geotechnical Assets

» Geotechnical assets include:
> Structural foundations
> Retaining walls
> Slopes
> Embankments

> Subgrades that contribute to the
ability of an infrastructure
component to perform its strategic
mission

New River Gorge National Park, WV

15
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Risk: Geotechnical Assets Impact on Performance

= Risk: Probability of occurrence (%) X consequence ($$9%)

» Failure of geotechnical assets surrounding and supporting pavements
and bridges present a major risk that should be assessed and
managed.

July 26-31%t Debris Flow at I-70 through
Glenwood Canyon, CO
(Source: CDOT)

16
R .
U.S. Department of Transportation Tu rn e r_ FG I rbq n k

Federal Highway Administrafi | Highway Research Center




Q

Benefits of Establishing a Geotechnical Assets
Management Program

>

Provides a data-driven process to measure and
manage risks and save costs over lifetime.

Develops understanding of current risk exposure
levels and ability to manage those risks.

Improves operational performance with fewer
unscheduled delays and closures.

Demonstrates sitewardship, protects
environment, enhances agency reputation, and
improves sustainability.

U.S. Department of Transportation Tu rn e r- FG i rbq n k

Federal Hig! yA

Inspection of Bridge Approach Embankment
Washout during Flooding, New River George
National Park, WV

17



Benefits of Establishing a Geotechnical Assets
Management Program — Cont.

J“

» Supports informed decisions that align with
agency objectives for investment and
performance.

ST ..J.....\
\
.

» Process provides insights into system
vulnerability and resilience.

progey ey T v
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» Process can start as very simple and be
adapted over time as challenges are
identified and economic benefits realized.
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Monitoring of Culvert Washout Repair on Waldo
Canyon, CO

18
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Tools for Starting GAM Program

Available sources for starting and building a
GAM Program:

» NCHRP Research Report 903 Geotechnical Asset
Management for Transportation Agencies, two volumes

» Unstable Slope Management Programs
(Federal Lands Highway and many DOTSs)

» TRB Subcommittee on GAM — website
» Other Federal Tools:

>
>
>
>

Q

U.S. Department of Transportation
Federal Highway Admini i

Risk-Based Protocol for MSE Walls — FHWA-HIF-18-065
Unstable Slope Management Protocol — FHWA-FLH-19-002
Geohazards Manual — FHWA-HIF-23-008

Many TAM documents

Turner-Fairbank

{ Analyze ASSESS
Investment Performance

Identify &
Locate
Assets

Assess
O&M
Condition

Communicate
Results

& Risk Consequence

Review
Treatment

Options

Steps for Implementing GAM
19
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Roadway: Adaptation Case Studies

These are some examples of recent projects.

Study Name Stressor(s) Studied

Transportation Engineering

Approaches to Climate Resiliency Temperature,
(TEACR) Pavement Shrink-Swell =il Y, fzelr Dl 18 orecipitation
(FHWA 2020)
TEACR Pavement Freeze-Thaw SR 6/SR 15/SR 16, Guilford, Temperature,
(FHWA 2016a) Piscataquis County, ME precipitation
Gulf Coast Study Phase 2 (GC2) :
Pavement (FHWA 2014b) Mobile, AL Temperature
WFLHD/Alaska DOT and PF Pilot Dalton Highway Mile Post (MP) 9  Temperature,
(FHWA 2016a) to MP 11, Alaska precipitation
. |I-77, MP 1.8 to MP 6.3, Carroll Precipitation,
TEACR Slope Stability (FHWA 2016a) County, VA temperature

DDDDDD _ Turner-Fairbank SH = State highway; SR = State route; WFLHD = Western Federal Lands Highway Division.
ooooooooooooooooooo




VIRGINIA - CASE STUDY

m Study Focus
m Soils and Slopes.

m Project Scope
m |-77, Carroll County, Virginia

Source: TEACR Pavement Shrink-Swell Study

m Approach

m Sensitivity to Climate Change: Accelerated rock slope weathering and
decreased slope stability from precipitation changes

m FHWA TechBrief on Climate Change Adaptation for Pavements




VA - PRECIPITATION AND TEMPERATURE IMPACTS
ON ROCK AND SOIL STABILITY

Carroll County, Virginia

https://www.fhwa.dot.gov/environment/sustaina
bility/resilience/ongoing_and_current_research/
teacr/va_slopes/index.cfm

"
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https://www.fhwa.dot.gov/environment/sustainability/resilience/ongoing_and_current_research/teacr/va_slopes/index.cfm
https://www.fhwa.dot.gov/environment/sustainability/resilience/ongoing_and_current_research/teacr/va_slopes/index.cfm
https://www.fhwa.dot.gov/environment/sustainability/resilience/ongoing_and_current_research/teacr/va_slopes/index.cfm

VA - ANALYTICAL APPROACH

m Moderate increases in rainfall during10-, 50-, and 100-year storms projected

m Suggested preliminary steps to determine if climate change may impact soil
slope stability:

m Determine the steepness of the slope. Slopes steeper than 2 (horizontal) to 1
(vertical) should be initially suspect

m Perform a field inspection to detect physical clues such as soil bulges at the toe
of the slope, deformed tree trunk growth, depressed elevation of the slope face

m Perform a parametric analysis (i.e., vary the groundwater elevation and soil unit
weight) to see how the slope would respond under a wide range of conditions.
Doing so could save considerable time and expense in instrumentation and
data collection.




ADAPTIVE MANAGEMENT
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VA - LESSONS LEARNED

m Increased precipitation may not increase the likelihood of slope failure. A
slope that is suspected of being vulnerable should be analyzed before
drawing conclusions.

m Detailed climate data are not necessary for an initial, general assessment of
climate change impacts on soil stability.

m Rather than screening detailed climate change projections, the “worst case
scenario” can be analyzed first without specific climate data.
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PROTECT Discretionary Grant Program Overview

» Promoting Resilient Operations for Transformative,
Efficient, and _CostTSawn%Transportatlon
EPROTECT) Discretionary Grant Program:

stablished under the Bipartisan Infrastructure Law,
Section 11405; 23 U.S.C. 176.

» Program purpose: To plan for and strengthen surface
transportation to be more resilient to natural hazards,
including climate change, sea level rise, flooding,
extreme weather events, and other natural disasters
through competitive discretionary grants.

» Total available in FY 2022 and FY 2023: $848 million _
Discretionary Grant Notice of Funding Opportunity, Photo credit: Delaware DOT
pril 2023 NOFQ))

ooooooooooooooooooooooo - turner-Fairbank o8

Federal Highway Administration




Infrastructure Resilience Roadmap

» What are the current gaps and future needs? A N

GEOHAZARDS, EXTREME WEATHER EVENTS,

[> ReSiIience peer eXChangeS AND CLIMATE CHANGE RESILIENCE MANUAL
> Highway resilience to wildfire events. S

» \What education resources are available to
incorporate more resilient practices?

> Geohazards, Extreme Weather Events, and
Climate Change Resilience Manual
(Published). (A

US.Department X
of Transportation ebruary 2023

FHWA-HIF-23-008




Assessing Flooded Roadway Project

» Project objectives:
> Develop methods to assess flooded pavements.
> Assess the capacity to carry traffic during/after flooding.
> Evaluate emergency or heavy equipment.
> Evaluate normal traffic.

> Determine the tradeoff between the user costs of road
closure (and detours) versus the costs of increased road
damage.

> Develop a decision support tool.

© mreco/stock.adobe.com.

» Project deliverables: Two techbriefs are published.
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National Oceanic and Atmospheric Administration
Project: Effects of Sea Level Rise

» Joint project with the National Centers for
Coastal Ocean Science.

» Project goal details: Facilitate informed
adaptation planning and coastal management
decisions through a multidisciplinary research
program that results in integrated models and
tools of dynamic physical and biological
processes capable of evaluating vulnerability — ereanasosadosecon
and resilience under multiple SLR, inundation,
and management scenarios.

31



NOAA Project (Continued)

Two focus areas:
» Coastal resilience.

» Surface transportation resilience:

> Quantify the vulnerability of surface transportation
systems to SLR and inundation.

> Quantify the social, economic, and/or ecological
benefits.

> Predict the effects of SLR and inundation on
surface transportation infrastructure under varying
risk mitigation and management strategies.

© K.A./stock.adobe.com
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Impacts of Wildfires on Transportation Assets

» Project objectives:

> Determine the state of knowledge of wildfire
Impacts on roadways and other assets.

> Define direct and indirect impacts.
> |dentify research gaps and needs.

» Project deliverables:
> Determine the state of knowledge.
> |dentify how State DOTs deal with this issue:

¢ CO n d u Ct d eta | I ed | N te I’Vi ews. © Kemal Kozbaev/stock.adobe.com.

* Gather information on their experiences, observations,
and challenges.

33




Wildfire Impact - Indirect
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Upcoming Projects/Efforts

» Impact of Environmental Factors on Transportation Infrastructure—
Different datasets will be used for the development of deterioration

J

Reduced rate of deterioration after the
application of preventive maintenance
A Benefit of each Treatment; —
[ __ Treat t A S Survivor | | Performance | | Structural | | Condition | | Structural
= \rea men B <>/B Eﬂ Curves Models Capacity Survey Inputs L)
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. gg\; L L © FHWA
Unacceptable Condition
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related to each treatment

R .
U.S. Department of Transportation Tu rn e r- FG I rb G n |(

Federal Highway Administration | HighWQ\/ Research Center




Transportation Pooled Fund on Resilience

New Pooled Fund Project (TPF-5(512)):

Resilience Approaches for Roadway Assets

Tp TRANSPORTATION
POOLED FUND

Transportation Pooled Fund - Study Detail

Home » Studies > Resilience Approaches for Pavements and Geotechnical Assets

About v Solicitations v Studies v Tools ¥ Help v Q

Q

U.S. Department of Tra
Federal Highway Adi

Resilience Approaches for Pavements and Geotechnical Assets

General Information
Study Number:

Former Study Mumber:
Lead Organization:
Solicitation Number:
Partners:

Status:

Est. Completion Date:
Contract/Other Number:
Last Updated:

Contract End Date:

TPF-5(512)

Virginia Department of Transpertation
1590
FL, HI, MDOT SHA, PADOT, TX, VA, WA

Cleared by FHWA

Apr27,2023

Financial Summary
Contract Amount:

Suggested Contribution:

Total Commitments Received:

100% SP&R Approval:

Contact Information

Lead Study Contact(s):

FHWA Technical Liaison(s):

M Print

$660,000.00

Approved

Shabbir Hossain

Shabbir.Hossain@VDOTVirginia.gov

Phone: 434-293-1939

Amir Golalipour
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National Highway Institute (NHI) Course:

Addressing Resilience in Highway Project Development
and Preliminary Design (2022)

Four 1-h web-based prerequisite courses and one 2.5-d instructor-led course (NHI 142085):

» Content:

> Addressing resilience in engineering decisionmaking (pavements and geohazards, inland flooding,
coastal hydraulics).

> Accessing and using climate projections.
> Integrating resilience into project development.

» Audience:
Engineering, design, project development/environmental staff, and others.

» Source material:

> Synthesis of Approaches for Addressing Resilience in Project Development (FHWA 2015).
> Project assessments.

> Hydraulic Engineering Circulars 17 and 25 (Kilgore et al. 2016; Douglass and Webb 2020).
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FHWA Resilience Resources

Hurricane Sandy Engineering

Gulf Coast 2 Study Resilience Pilots with State DOTs and MPOs Project Assessments

Study Lead
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Why Resiliency?

* Increasing numbers of extreme
weather events are affecting assets
(climate change).

 Extreme events will accelerate the
deterioration of assets.

* Increased demand and vulnerability.

 Aging Infrastructure is more
susceptible to damage

* Design and management of assets
are becoming more integrated.
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Defining Scale

* Resiliency was originally developed to -l b
describe systems. <

* Network resilience has different
measures and requirements.

* The next level of detail is localized
system (Asset) resilience.

 If we zoom in it could reach an
element level.

* A grand scheme should be able to
capture all levels.

- 3 Flood Zones
Dt . Moderate Hazard Zone
B S Special Hazard Zone
| L]

|

I
I
I
I
I
I
I

FRoal Nogitatnlopedabiiliatioa bfsRigid M Bkeaft Sy t=igs (Metmodbésy \ARA)
Case History, DFI, 2019
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Geotechnical Assets and Foundations

» Geotechnical assets can include earth
retaining structures, embankments,
slopes, tunnels, culverts, and
foundations of other transportation
assets.

* Resilience of geotechnical assets is the
foundation of the overall network
resilience.

© 2024 Applied Research Associates, Inc. = ARA Proprietary 7



Defining Condition, Performance, and Capacity

 Condition reflects the physical
condition of the asset in relation to its
degradation from the newly
constructed condition.

* Performance relates to the intended
asset of the asset or network and their
functionality.

 Capacity is how much load (could be
force related loads or traffic levels) can 5 5 5
the asset withstand before reaching the 5 | 5 >
service or ultimate limit states fo t t Time (t)

>

Performance (P)
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* Design Philosophy
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Design Objectives (Allowable Stress Design and Load and
Resistance Factor Design)

* Provide acceptable performance levels to
serve the intended function of the asset
at a minimum feasible cost.

* In some cases, we translate performance
requirements to limit states and how far
the design is from that limit state!

* In few cases, we think of cumulative
damage, performance, and benefits.

© 2024 Applied Research Associates, Inc. = ARA Proprietary 1 1



Limit States and Failure

X
 Failure is the state where the asset or "
the localized system no longer serves
its intended function. / 9(x)=0
* We need to revisit our limit state
definitions especially in relation to \
serviceability.
N .
X2

Failure Domain
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Generation 1: Deterministic Design

Qmean Rmean

R
SM = Ryean — Qmean F§ = —— = FSpin = {2,3,4}

Qmean
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Generation 2: Reliability-Based Design

A Qmean Rmean

F(Q, R)

R(t)=1—j

0
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Design Objectives (Geotechnical Resilience Based Design)

* Achieve acceptable capacity levels A
throughout the asset life (design Life).

* Maintain acceptable asset condition, to g(x)=0
avoid accelerated deterioration and
progressive failure throughout the asset
life (service life).

* Provide acceptable performance levels
to serve the intended function of the |70 ¢~

asset in a network throughout the asset Failure Domain

life (service life). \
* Incorporate potential corrective activities

during the asset life (service life). Marginal Performance

15
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Define Disruptive Events

 Consider stochastic and non-stationary
models.

* The sequence of events matters since they
accumulate damage.

* The story does not end here.

* We have been looking into the past to
design for the future.

 Learn from the past and forecast for the
future!
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Disruptive Events in Time Series

» Traditional probabilistic analysis collapses the time series into a distribution.

Fit Comparison for Dataset 2
RiskLogLogistic(-93.370,224.52,5.3963)

25 304
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Disruptive Events in Time Series

* Traditional probabilistic analysis collapses the time series into a distribution.
 Traditional time series analysis cannot incorporate extreme.

 Exploring the use of modified Deep Neural Networks (DNN) memorizing
extreme events in historical data with Extreme Value Loss (EVL) function.
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Generation 3 (GRBD): Consider the Full Life Under Uncertainty
and Maximize Benefits Capacity Ratio

Performance (Resistance /Load)
A A

Performance

Time (t)



Impact of Time and Repeated Events

Capacity Ratio

Performance (Resistance /Load)
A A
E— \ .
_\ / R
W \ T
lv. ]
_________________________________________ AT T Maximum
Full Capacity (Performance _ /' ‘. Capacity Ratio
=100%) \: . - (Resistance
Half Capacity (Marginal \ /Maximum Load)
Performance = 50%) - . ,
_____________________________________________________ SN T Failure Capacity
filure | Ratio (Resistance

/Minimum Load)
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Case Study: Cut Slope Stabilized Using Drilled Shafts

Elevation (ft)
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Improving Resiliency

* This solution brought the reliability index to 3.00 from 1.37 and a probability of
failure to 0.10% from 7.8%.
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Concluding Remarks and Future Directions (1 of 2)

» Traditionally we have evaluated loading conditions by investigating the past
events. With the changing conditions and climate impacts, loading
conditions should be properly modeled and forecasted into the future using
proper data driven procedures.

» Loading conditions have been showing non-stationary trends and increased
frequency, which should not be ignored or oversimplified, even if using
probabilistic analysis.

* The most appropriate tool to consider the loading conditions is to simulate
future time series scenarios with extreme events and identify the most
critical loading conditions and sequence of events.

25



Concluding Remarks and Future Directions (2 of 2)

* It is important to consider the condition and performance of geotechnical
assets in addition to their capacity using response functions to a given time
series scenario.

* Life cycle analysis (part of asset management) plays a significant role to
develop more adaptive designs with planned maintenance and rehabilitation
activities.

A proper GRBD should also consider the serviceability and economic
impacts of geotechnical asset during their service life, and the ability of the
asset to rebound after extreme events.
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Levees: Critical Infrastructure Systems

* More than 38,000 miles of levee in the U.S., with an average age of 60 years
* Over 36 million people live behind levees*®

* Protecting over $2.0 trillion of property
* ASCE Report Card Garde: D (marginal/poor),
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A Surge in U.S. Flood Disasters

60 declared flood disasters 66 declarations
this year so far

40

20

2000 2005 2010 2015 2020

America’s Flooding Problem, New York Times sourced from the Federal Emergency Management Agency
https://www.nytimes.com/2024/10/22/briefing/americas-flooding-problem.htmi Vahedifard © 2024 3



Critical Infrastructure at Risk of Failure due to Flooding

Percent of services and facilities at risk of flooding
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25% of all critical infrastructure in the US is at
risk of failure due to flooding, new report finds

60 declared flood disasters 66 declarations
this year so far

40
20

2000 2005 2010 2015 2020
America’s Flooding Problem, New York Times sourced from the 25% of all critical infrastructure in the US is at risk of failure due to flooding, CNN sourced from First Street Foundation Vahedifard © 2024 4

Federal Emergency Management Agency https://www.cnn.com/2021/10/11/weather/infrastructure-flood-risk-climate-first-street/index.html



Aging U.S. Levees: Final Line of Flood Defense

Percent of services and facilities at risk of flooding
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Can California’s aging levees cope with extreme weather?, CNN
https://www. latimes.com/environment/story/2023-01-05/can-aging-california-levees-cope-with-exterme-weather Vahedifard © 2024 5

25% of all critical infrastructure in the US is at risk of failure due to
flooding, CNN sourced from First Street Foundation




When Levees Break: Cascading Failures

Vahedifard © 2024 6
https://youtu.be/BtifohMp02Q7?si=4089zN7WkSybhBnr



Increasing Power Outages due to Weather Events

* Power outages cost the U.S. economy $28-169B annually.
* Between 2000 and 2023, 80% of reported major outages due to weather events.

* The average annual number of power outages increased by roughly 116% during 2011-2023 compared to
2000-2010.

* From 2000-2023, there were 1,755 weather-related power outages. Winter weather (23%), tropical
cyclones (14%), and other severe weather (58%).

fhtaf if ma J.ci:ﬂfjj:r outages attributed to extreme weather WEATHER-RELATED

MAJOR U.S. POWER OUTAGES
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Power outages 2000 to 2023
https://www.climatecentral.org/climate-matters/weather-related- power-outages-rising V .
ahedifard © 2024 7
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Goal and Objectives

Goal

Enhancing the resiliency and developing adaptation strategies for levees and levee-
protected electric power networks to flooding under a changing climate.

Objectives

To establish a methodological and multi-disciplinary framework by integrating climate

science, hydrology, and electric power network to quantitively asses the resiliency of levee-
protected electric power networks to flooding in a changing climate.

* How does climate change affect reoccurrence intervals of flooding?
* How does the integrity of levees will be affected by changes in flooding patterns?

* How will these changes affect the resilience of levees and a power grid located in levee-
protected areas?

Vahedifard © 2024 8



Proposed Modeling Framework

Flood hazard analysis under climate change

Gridded Runoff Extreme Value Analysis

4GCM & | [ | o |
( 2 RCPs) f Using GEV Distribution |

Levee-Protected Future Flood Probability
Area Location (Pflood)

Spatial fragility modeling of power network

Power Identifying Substation

> NSl Ar Flooded Substations Failure Probability
System :

Data | §oTT
Substations’ Failure Probability

(P failure,future)

[IHybrid

Baseline  Pre-Flooding  Projected
Method Future
Flooding
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Study Area: Northern California

°* There are 3242 levee systems in California with an average age of 57 years, protecting over 6 million
people and an estimated $8 billion in property.

* 82% of CA’'s counties have at least a levee system with a 1 km length.

* Test Power Network: IEEE 118-bus system.
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Miraee-Ashtiani et al. (2022)

Vahedifard © 2024

10



Levee-Protected Infrastructure Systems

Levee System
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding

A) Field Monitoring
Qwuloolt Levee, WA
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding

A) Field Monitoring
Qwuloolt Levee, WA
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding

B) Physics-Based Modeling (under seepage, uplift, and slope stability)

Metrological Data
(Precipitation, Hydraulic Loading Soil Properties
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding

B) Physics-Based Modeling (under seepage, uplift, and slope stability)

* The historical and future flood levels were applied in a set of transient
coupled finite element seepage and limit equilibrium slope stability
analyses to simulate the levee subjected to extreme streamflow

« Variability in hydraulic and mechanical properties of soils was addressed
using a Monte Carlo sampling method to evaluate and compare the
probability of failure of the levee under different historical and future
climate scenarios.

 Three individual modes (under seepage, uplift, and slope stability) along
with lower and upper bounds for the combined mode of failure were
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding

C) Data-Driven Modeling of Overtopping Failure
« Data for 230 levee overtopping events

* Logistic regression model

Riverside Landside

\L, _ ¥ Xs=Duration of overtopping

X, = Landside Levee Slope
(H/V)

X3 = Construction Classification
X = Erosion Resistance Classification

Days flood height greater than riverside toe elevation

Flynn et al. 2021
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C) Data-Driven Modeling of Overtopping Failure
« Data for 230 levee overtopping events

* Logistic regression model

X3 = Construction Classification
X = Erosion Resistance Classification
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Proposed Modeling Framework: Levees under Climate-Adjusted Flooding

D) Regional Modeling of Breach due to Overtopping
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Azhar et al. 2025
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Results: Changes in Flooding Probability
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Miraee-Ashtiani et al. (2022)
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Results: Changes in Flooding Return Period
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Results: Structural-Scale Changes in Fragility of Levees
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Results: Regional-Scale Probability of Breach due to Overtopping
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Results: Changes in Grid Network Resiliency

Calculated System Resilience Index and Expected Energy Not Supplied (EENS) for the Study Area
Under Different Climate Scenarios Using IEEE 118-Bus Standard Test System with Total Load of
4242 MW.

. . EENS EENS EENS
O
Resilience index  AR(%) (MWh) (MWh/d) (MWh/m)
Pre-Flooding 0.011921 _ _ - -
Current Climate 0.012264 29 52 02 1249 37458
Projected Future
RCP 4.5 0.012939 -8.5 54.89 1317 39520
LSS 0013558 13.7 57.51 1380 41410

RCP 8.5

Miraee-Ashtiani et al. (2022)
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Results: Changes in Grid Network Resiliency

Calculated expected value (resiliency) Index of percentage of in-service power (customers).

Average E tod Val Total in Service
Vulnerability . Probability of | 7 PCC S VaUe Power
TR Index of each SHELIEED Levee Failure SITA LT (Resiliency Index
Grid . Total Power (EENS%)
. link % %)
D | (Caleulated by LPD“EI’) RCP | RcP | RCP | Rep
DC Power N s | ss | as s |RCP45|RCP8S
Flow Model ' ' ' '
Links on 16 13.5
protected area
of Levee (sys. 21 11.9 358 0.70 0.95 25.0 34.0
ID
2 1 .
5205000441) 25 10.4 66.5% | 59.2%
Links on
protected area 2 103
of Levee (sys. 14 10.9 34.0 0.25 0.20 8.5 6.8
D .
5205000293) 19 12.6

Miraee-Ashtiani, 2022

Vahedifard © 2024 25



Concluding Remarks

* Levees play a critical role in protecting populations and critical infrastructure across the country.

* Climate change has increased the frequency and severity of flooding in several regions. More
frequent, severe floods can significantly raise the probability of levee failure. Further, there has
been a surge in power outages due to extreme weather events including flooding.

* Anew framework is proposed to quantify the effects of climate change on flooding, translate
these impacts into levee failure probabilities, and assess the cascading effects on the resilience
of levee-protected power grid.

* The framework was applied to a study area in Northern California, focusing on levees and the
levee-protected power grid.

* Further research is needed to conduct regional-scale assessments of levee breaches and the
resulting impacts on infrastructure systems and communities behind levees. This approach will
provide a comprehensive view of risk, supporting resilience planning across broader areas.

As climate change escalates flood risks, understanding the vulnerabilities of
interconnected systems—such as levees, power grids, and communication
networks—becomes vital to safeguarding the nation’s resilience.
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Thanks!

Contact: Farshid.Vahedifard@ Tufts.edu
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