#### NATIONAL ACADEMIES Sciences Engineering Medicine

TRE TRANSPORTATION RESEARCH BOARD

### TRB Webinar: Speed and Sight Criteria for Geometric Design

February 6, 2025 1:00PM – 2:30 PM



#### **PDH Certification Information**

1.5 Professional Development Hours (PDH) – see follow-up email

You must attend the entire webinar.

Questions? Contact Andie Pitchford at TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

#### ENGINEERING



#### **Purpose Statement**

This webinar will cover the findings from recent studies that assess design policies related to these criteria and informed recommendations for updates to the AASHTO Green Book.

#### Learning Objectives

At the end of this webinar, you will be able to:

(1) Understand the differences between current design assumptions and associated parameters that describe driver behavior and vehicle performance

(2) Design acceleration and deceleration lanes in consideration of revised guidance based on driver behavior

(3) Determine the recommended SSD for various scenarios and relate anticipated safety performance to available sight distance

#### **Questions and Answers**

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows



#### Today's presenters



Peter T. Savolainen Michigan State University pete@msu.edu

MICHIGAN STATE UNIVERSITY



Eric T. Donnell Pennsylvania State University etd104@psu.edu





James A. Rosenow Minnesota Department of Transportation james.rosenow@state.mn.us



NATIONAL ACADEMIES Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

## TRB Webinar: Speed and Sight Criteria for Geometric Design

Peter T. Savolainen, Michigan State University Eric T. Donnell, Pennsylvania State University James A. Rosenow, Minnesota Department of Transportation

February 6, 2025

🔦 DEPA

PennState





### Webinar Agenda & Presenters



Overview of NCHRP 15-75 and Related Crash and Field Studies
Dr. Peter T. Savolainen
Professor & Chairperson
Michigan State University



Development of Revised Design Guidelines
Dr. Eric T. Donnell
Professor & Senior Associate Dean
Pennsylvania State University



 Translating Results into Practice James A. Rosenow
Design Flexibility Engineer
Minnesota Department of Transportation

### Overview of NCHRP 15-75 and Related Crash and Field Studies

Dr. Peter T. Savolainen Professor & Chairperson Michigan State University

#### Introduction

- In September 2018, the American Association of State Highway and Transportation Officials (AASHTO) published the 7th edition of A Policy on Geometric Design of Highways and Streets (also known as the Green Book).
- The 2018 Green Book provides guidance for determining geometric design criteria of roadways, including guidance on acceleration/deceleration and stopping sight distance criteria.
- The objective of this research was to update these guidelines.

### AASHTO SSD Model



•  $SSD = 1.47Vt + \frac{V^2}{30[(\frac{a}{32.2})\pm G]}$ 

► Where:

- $\blacktriangleright$  V = design speed (mph)
- t = brake reaction time (s)
- a = deceleration rate (ft/s2)

• G =grade (ft/ft)



Source: AASHTO

#### AASHTO Acceleration Lane Design

• 
$$L_{Acc} = \frac{(1.47V_m)^2 - (1.47V_r)^2}{2a}$$

#### ► Where:

- ▶  $V_m$  = merge speed (mi/h)
- V<sub>r</sub> = initial speed on ramp (or speed after exiting the controlling feature) (mi/h)
- a = average acceleration rate between these points (ft/s<sup>2</sup>)

|                                                                                                     | U.S. Customary                                                                 |      |           |           |                |                                      |             |            |           |     |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|-----------|-----------|----------------|--------------------------------------|-------------|------------|-----------|-----|
| Acceleration Lane Length, $L_{_{a}}$ (ft) for Design Speed of Controlling Feature on Ramp, V' (mph) |                                                                                |      |           |           |                |                                      |             |            |           |     |
| High                                                                                                | Highway     Stop<br>Condition     15     20     25     30     35     40     45 |      |           |           |                |                                      | 45          | 50         |           |     |
| Design<br>Speed,                                                                                    | Merge<br>Speed,                                                                | Av   | erage Run | ning Spee | d (i.e., Initi | al Speed) :<br>V' <sub>a</sub> (mph) | at Controll | ing Featur | e on Ramp | ),  |
| V(mph)                                                                                              | <i>V<sub>3</sub></i> (mph)                                                     | 0    | 14        | 18        | 22             | 26                                   | 30          | 36         | 40        | 44  |
| 30                                                                                                  | 23                                                                             | 180  | 140       | -         | -              | -                                    | -           | -          | -         | _   |
| 35                                                                                                  | 27                                                                             | 280  | 220       | 160       | _              | _                                    | _           | —          | _         | _   |
| 40                                                                                                  | 31                                                                             | 360  | 300       | 270       | 210            | 120                                  | -           | -          | —         | _   |
| 45                                                                                                  | 35                                                                             | 560  | 490       | 440       | 380            | 280                                  | 160         | _          | _         | _   |
| 50                                                                                                  | 39                                                                             | 720  | 660       | 610       | 550            | 450                                  | 350         | 130        | —         | _   |
| 55                                                                                                  | 43                                                                             | 960  | 900       | 810       | 780            | 670                                  | 550         | 320        | 150       | _   |
| 60                                                                                                  | 47                                                                             | 1200 | 1140      | 1100      | 1020           | 910                                  | 800         | 550        | 420       | 180 |
| 65                                                                                                  | 50                                                                             | 1410 | 1350      | 1310      | 1220           | 1120                                 | 1000        | 770        | 600       | 370 |
| 70                                                                                                  | 53                                                                             | 1620 | 1560      | 1520      | 1420           | 1350                                 | 1230        | 1000       | 820       | 580 |
| 75                                                                                                  | 55                                                                             | 1790 | 1730      | 1630      | 1580           | 1510                                 | 1420        | 1160       | 1040      | 780 |
| 80                                                                                                  | 57                                                                             | 2000 | 1900      | 1800      | 1750           | 1680                                 | 1600        | 1340       | 1240      | 980 |

Note: Uniform 50:1 to 70:1 tapers are recommended where lengths of acceleration lanes exceed 1,300 ft.

- V = design speed of highway (mph)
- $V_a$  = merge speed (mph)
- V' = design speed of controlling feature on ramp (mph)
- $V'_{s}$  = average running speed (i.e., initial speed) at controlling feature on ramp (mph)
- $L_{g}$  = acceleration lane length (ft)

#### Source: AASHTO

### AASHTO Deceleration Lane Design

• 
$$L_{Decel} = 1.47V_h t_n - 0.5d_n (t_n)^2 + \frac{(1.47V_r)^2 - (1.47V_a)^2}{2d_{wb}}$$

#### ► Where:

- $V_h$  = highway design speed (mi/h
- ► V<sub>a</sub> = speed (mi/h) after t<sub>n</sub> s of deceleration without brakes
- ► d<sub>n</sub> = deceleration rate without brakes (ft/s<sup>2</sup>)
- V<sub>r</sub> = entering speed for the controlling exit ramp curve (mi/h)
- d<sub>wb</sub> = deceleration rate with brakes applied (ft/s<sup>2</sup>)

|                                                                                                  | U.S. Customary       |                   |         |          |           |           |         |         |                              |     |  |
|--------------------------------------------------------------------------------------------------|----------------------|-------------------|---------|----------|-----------|-----------|---------|---------|------------------------------|-----|--|
| Deceleration Lane Length, $L_{a}$ (ft) for Design Speed of Controlling Feature on Ramp, V' (mph) |                      |                   |         |          |           |           |         |         |                              |     |  |
| Highway<br>Design                                                                                | Diverge              | Stop<br>Condition | 15      | 20       | 25        | 30        | 35      | 40      | 45                           | 50  |  |
| Speed,                                                                                           | Speed,               | Avera             | ge Runn | ing Spee | ed at Cor | ntrolling | Feature | on Ramp | o, <i>V″<sub>a</sub></i> (mp | oh) |  |
| V(mph)                                                                                           | v <sub>a</sub> (mpn) | 0                 | 14      | 18       | 22        | 26        | 30      | 36      | 40                           | 44  |  |
| 30                                                                                               | 28                   | 235               | 200     | 170      | 140       | _         | _       | _       | _                            | _   |  |
| 35                                                                                               | 32                   | 280               | 250     | 210      | 185       | 150       | _       | —       | _                            | _   |  |
| 40                                                                                               | 36                   | 320               | 295     | 265      | 235       | 185       | 155     | _       | _                            | _   |  |
| 45                                                                                               | 40                   | 385               | 350     | 325      | 295       | 250       | 220     | _       | _                            | _   |  |
| 50                                                                                               | 44                   | 435               | 405     | 385      | 355       | 315       | 285     | 225     | 175                          | _   |  |
| 55                                                                                               | 48                   | 480               | 455     | 440      | 410       | 380       | 350     | 285     | 235                          | —   |  |
| 60                                                                                               | 52                   | 530               | 500     | 480      | 460       | 430       | 405     | 350     | 300                          | 240 |  |
| 65                                                                                               | 55                   | 570               | 540     | 520      | 500       | 470       | 440     | 390     | 340                          | 280 |  |
| 70                                                                                               | 58                   | 615               | 590     | 570      | 550       | 520       | 490     | 440     | 390                          | 340 |  |
| 75                                                                                               | 61                   | 660               | 635     | 620      | 600       | 575       | 535     | 490     | 440                          | 390 |  |
| 80                                                                                               | 64                   | 705               | 680     | 665      | 645       | 620       | 580     | 535     | 490                          | 440 |  |

V = design speed of highway (mph)

- $V_{g}$  = average running speed on highway (i.e., diverge speed) (mph)
- V' = design speed of controlling feature on ramp (mph)
- $V'_{a}$  = average running speed at controlling feature on ramp (mph)
- $L_a$  = deceleration lane length (ft)

#### Source: AASHTO

## Summary of Findings: Stopping Sight Distance

### Summary of Brake Reaction Time Research

| Unsuspecting Driver (Unexpe    | cted Even  | t)           |              |        |          |           |           |                            |
|--------------------------------|------------|--------------|--------------|--------|----------|-----------|-----------|----------------------------|
|                                |            |              | Distraction- | Mean   | Std. Dev | 85th Pct. | 95th Pct. |                            |
|                                | Ν          | Ages         | Involved?    | (sec.) | (Sec.)   | (Sec.)    | (Sec.)    | Stimulus                   |
| Field Collection (Drivers were | unaware    | of being o   | bserved)     |        |          |           |           |                            |
| Sivak et al., 1982             | 1,644      | Mix          | No           | 1.21   | 0.63     | 1.78      | 2.40      | Unexpected signal          |
| Wortman and Matthias, 1983     | 839        | Mix          | No           | 1.30   | 0.60     | 1.80      | 2.35      | Unexpected signal          |
| Chang et al., 1985             | 579        | Mix          | No           | 1.30   | 0.74     | 1.90      | 2.50      | Unexpected signal          |
|                                |            |              |              |        |          |           |           |                            |
| Test Track Driving (Drivers w  | vere awar  | e of being o | observed)    |        |          |           |           |                            |
| Olson and Sivak, 1986          | 49         | Young        | No           | 1.10   | 0.15     | 1.35      | 1.60      | Unexpected object          |
| Olson and Sivak, 1986          | 15         | Old          | No           | 1.06   | 0.10     | 1.40      | 1.50      | Unexpected object          |
| Lerner et al., 1995            | 56         | Mix          | No           | 1.51   | 0.40     | 1.91      | 2.20      | Unexpected object          |
| Fambro et al., 1997            | 38         | Mix          | No           | 0.99   | 0.22     | /         | /         | Unexpected object          |
| Fitch et al 2010               | 64         | Mix          | No           | 0.96   | 0.19     | /         | /         | Unexpected objected        |
|                                |            |              |              |        |          |           |           |                            |
| Naturalistic Driving (Drivers  | were awai  | re of being  | observed)    |        |          |           |           |                            |
| Dozza, 2013                    | 472        | Mix          | No           | 1.30   | 1.03     | /         | /         | Unexpected hazard          |
| Dozza, 2013                    | 472        | Mix          | Yes          | 1.55   | 1.08     | /         | /         | Unexpected hazard          |
| Dozza, 2013                    | 472        | Mix          | Yes (some)   | 1.45   | 1.07     | /         | /         | Unexpected hazard          |
| Gao and Davis, 2017            | 103        | Mix          | No           | 1.58   | 1.26     | /         | /         | Unexpected hazard          |
| Gao and Davis, 2017            | 103        | Mix          | Yes          | 2.11   | 1.36     | /         | /         | Unexpected hazard          |
| Cai and Savolainen, 2020       | 159        | Mix          | Mix          | 1.51   | 1.24     | 2.61      | 8.44      | Unexpected hazard          |
|                                |            |              |              |        |          |           |           |                            |
| Alerted Driver (Expected Even  | nt)        |              |              |        |          |           |           |                            |
| Test Driving (Drivers were aw  | are of bei | ing observe  | ed)          |        |          |           |           |                            |
| Olson, Sivak, 1985 [20]        | 49         | Young        | No           | 0.72   | 0.11     | 0.95      | 1.11      | Anticipated object         |
| Olson, Sivak, 1985 [20]        | 15         | Old          | No           | 0.73   | 0.10     | 1.00      | 1.29      | Anticipated object         |
| Fambro et al., 1997 [5]        | 26         | Mix          | No           | 0.59   | 0.19     | /         | /         | Anticipated object         |
| Fitch et al 2010 [44]          | 64         | Mix          | No           | 0.78   | 0.03     | /         | /         | Anticipated barricade      |
| Fitch et al 2010 [44]          | 64         | Mix          | No           | 0.55   | 0.02     | /         | /         | Anticipated auditory alarm |

#### Summary of Deceleration Rate Research

| Unsuspecting Driver (Unexpected Event, Unknown Time and Location) |                  |              |          |              |                    |  |  |  |  |  |
|-------------------------------------------------------------------|------------------|--------------|----------|--------------|--------------------|--|--|--|--|--|
| · · · · · · · · · · · · · · · · · · ·                             | Pavement/        |              |          |              |                    |  |  |  |  |  |
|                                                                   | Wheel            | Tangent/     | Mean     | Std. Dev     |                    |  |  |  |  |  |
|                                                                   | Condition        | Curve        | (g)      | (g)          | Stimulus           |  |  |  |  |  |
| Test Track Driving (Drive                                         | rs were aware of | being obser  | ved)     |              |                    |  |  |  |  |  |
| Fambro et al., 1997                                               | Dry/ABS          | Tangent      | 0.63     | 0.08         | Unexpected object  |  |  |  |  |  |
| Fambro et al., 1997                                               | Dry/No ABS       | Tangent      | 0.62     | 0.08         | Unexpected object  |  |  |  |  |  |
| Fitch et al., 2010                                                | Dry              | Tangent      | 0.48     | 0.03         | Unexpected barrica |  |  |  |  |  |
| Paquette and Porter, 2014                                         | Dry              | Tangent      | 0.82     | 0.27-0.67    | Unexpected Signal  |  |  |  |  |  |
|                                                                   |                  |              |          |              |                    |  |  |  |  |  |
| Naturalistic Driving (Drive                                       | ers were aware o | f being obse | rved, bu | t under real | environment)       |  |  |  |  |  |
| Wood, Zhang, 2017                                                 | Mix              | Mix          | 0.44     | 0.26         | Unexpected hazard  |  |  |  |  |  |
| Lindheimer et al., 2018                                           | Mix              | Mix          | 0.26     |              | Unexpected hazard  |  |  |  |  |  |
| Savolainen et al., 2021                                           | Mix              | Mix          | 0.40     | 0.17         | Unexpected hazard  |  |  |  |  |  |
|                                                                   |                  |              |          |              |                    |  |  |  |  |  |
| Alerted Driver (Expected ]                                        | Event, Unknown   | Time and L   | ocation) |              |                    |  |  |  |  |  |
| Test Track Driving (Drive                                         | rs were aware of | being obser  | ved)     |              |                    |  |  |  |  |  |
| Fambro et al., 1997                                               | Dry/No ABS       | Curve        | 0.54     | 0.20         | Anticipated object |  |  |  |  |  |
| Fambro et al., 1997                                               | Dry/No ABS       | Tangent      | 0.53     | 0.08         | Anticipated object |  |  |  |  |  |
| Fambro et al., 1997                                               | Wet/No ABS       | Curve        | 0.45     | 0.04         | Anticipated object |  |  |  |  |  |

Tangent

Tangent

Tangent

Tangent

Wet/No ABS

Dry

Dry

Dry

0.49

0.44

0.63

0.51

0.22-0.60

0.04

0.02

0.01

0.07

Anticipated object

Anticipated barrica

Anticipated alarm

Anticipated signal

Fambro et al., 1997

EI-Shawarby et al., 2007

Fitch et al., 2010

Fitch et al., 2010

Mean Estimates

### SHRP2 Naturalistic Driving Study (NDS):

Source: CTRE

- Largest NDS to date:
  - 6 geographic areas
  - 3,400+ drivers/vehicles
  - 5,400,000+ trips
  - 1800+ crashes
  - ~7000 near-crashes









Source: Campbell

Source: Wang et al.

- Roadway Information Database
  - 12,500+ miles of roadway information
  - Horizontal and vertical alignment
  - Cross-sectional characteristics



Source: Campbell

#### NDS Contextual Information



Rural





Suburban



Urban Core Source: AASHTO





Sample Screenshots of Forward-View Video

Number of Crash/Near-Crash Events by Contextual Environment

| <b>Contextual Environment</b> | Number of Crash/Near-Crash Events |
|-------------------------------|-----------------------------------|
| Suburban                      | 1,961                             |
| Rural                         | 453                               |
| Rural Town                    | 29                                |
| Urban                         | 1,263                             |
| Urban Core                    | 215                               |
| Total                         | 3,921                             |

Source: MSU

### NDS Reaction Time Results

| Samar'a                                 | Reaction Time (s) |           |  |  |
|-----------------------------------------|-------------------|-----------|--|--|
| Scenario                                | Mean              | Std. Dev. |  |  |
| NCHRP Report 400 (Fambro et al., 1997)  | 1.140             | 0.204     |  |  |
| SHRP 2 NDS – No secondary task events   | 1.120             | 0.884     |  |  |
| SHRP 2 NDS – All safety-critical events | 1.255             | 0.932     |  |  |
| SHRP 2 NDS – Only secondary task events | 1.332             | 0.950     |  |  |



▶ Mean and 90th-percentile reaction times were 1.3 s and 2.2 s.

### NDS Deceleration Rate Results

| Seenario                                | <b>Deceleration Rate (ft/s<sup>2</sup>)</b> |           |  |  |
|-----------------------------------------|---------------------------------------------|-----------|--|--|
| Scenario                                | Mean                                        | Std. Dev. |  |  |
| NCHRP Report 400 (Fambro et al., 1997)  | 29.302                                      | 4.508     |  |  |
| SHRP 2 NDS – No secondary task events   | 20.707                                      | 6.269     |  |  |
| SHRP 2 NDS – All safety-critical events | 21.996                                      | 6.078     |  |  |
| SHRP 2 NDS – Only secondary task events | 22.727                                      | 5.843     |  |  |



In higher-speed contexts and rural areas, 10th-percentile and average deceleration rates were 11.8 ft/s<sup>2</sup> and 20.4 ft/s<sup>2</sup>, respectively.

In lower speed contexts and urban areas, 10th-percentile and average deceleration rates were 15.0 ft/s<sup>2</sup> and 22.8 ft/s<sup>2</sup>, respectively.

### Headlight, Taillight, and Driver Eye Height



Example of Proposed Collection of Vehicle Dimensions from Roadside Video

#### Source: MSU



Vehicle Type Distribution

Source: HLDI

|                                  |                  | Headl | ight Height  |       | Taillight Height |       |              |        |
|----------------------------------|------------------|-------|--------------|-------|------------------|-------|--------------|--------|
| Descriptive                      | Passenger Cars   |       | Multipurpose |       | Passenger Cars   |       | Multipurpose |        |
| Statistics                       | Vehicles Vehicle |       |              |       |                  |       |              |        |
| Statistics                       | Present          | NCHRP | Present      | NCHRP | Present          | NCHRP | Present      | NCHRP- |
|                                  | Study            | -400  | Study        | -400  | Study            | -400  | Study        | 400    |
| Sample Size                      | 1,172            | 1318  | 1,442        | 992   | 1,172            | 858   | 1,442        | 534    |
| Mean (ft)                        | 2.31             | 2.13  | 3.00         | 2.76  | 2.97             | 2.38  | 3.57         | 3.16   |
| 10 <sup>th</sup> Percentile (ft) | 2.12             | 1.98  | 2.66         | 2.34  | 2.74             | 2.11  | 3.19         | 2.68   |

| Center of Headrest and Driver Eye Height |         |             |         |                       |  |  |  |  |  |
|------------------------------------------|---------|-------------|---------|-----------------------|--|--|--|--|--|
|                                          | Pas     | senger Cars | Multip  | Multipurpose Vehicles |  |  |  |  |  |
| <b>Descriptive Statistics</b>            | Present | NCHIDD 400  | Present | NCHDD 400             |  |  |  |  |  |
| •                                        | Study   | NCHKP-400   | Study   | NURRF-400             |  |  |  |  |  |
| Sample Size                              | 1,172   | 875         | 1,442   | 629                   |  |  |  |  |  |
| Mean (ft)                                | 3.86    | 3.77        | 4.59    | 4.86                  |  |  |  |  |  |
| 10 <sup>th</sup> Percentile (ft)         | 3.62    | 3.55        | 4.23    | 4.28                  |  |  |  |  |  |

#### Stopping Sight Distance - Safety Analysis



Source: RDV Systems

### Sample Corridor Data: Utah State Route 85



Source: MSU



Source: MSU

#### Crash Risk vs. Available SSD - Freeways

| Minimum<br>Available<br>SSD (ft) | No. of<br>Segments | No. of<br>Miles | Avg.<br>AADT | Total<br>MVMT | Total<br>Crashes | Crash<br>Rate per<br>MVMT |
|----------------------------------|--------------------|-----------------|--------------|---------------|------------------|---------------------------|
| ≤495                             | 72                 | 7.14            | 18702        | 242.76        | 104              | 0.43                      |
| 570                              | 13                 | 1.26            | 17468        | 40.02         | 15               | 0.37                      |
| 645                              | 34                 | 3.41            | 15550        | 94.65         | 20               | 0.21                      |
| 730                              | 37                 | 3.57            | 18146        | 117.17        | 31               | 0.26                      |
| 820                              | 54                 | 5.17            | 15952        | 149.54        | 43               | 0.29                      |
| 910                              | 26                 | 2.52            | 14749        | 67.36         | 18               | 0.27                      |
| 1010                             | 132                | 12.46           | 14392        | 322.37        | 80               | 0.25                      |



Source: NCHRP 15-75, TRB



#### Crash Risk vs. Available SSD - Non-Freeways

| Minimum   |          |        |       |       |         |            |
|-----------|----------|--------|-------|-------|---------|------------|
| Available | No. of   | No. of | Avg.  | Total | Total   | Crash Rate |
| SSD (ft)  | Segments | Miles  | AADT  | MVMT  | Crashes | per MVMT   |
| ≤155      | 53       | 5.01   | 1,054 | 9.41  | 8       | 0.85       |
| 200       | 56       | 5.28   | 881   | 8.45  | 14      | 1.66       |
| 250       | 95       | 8.84   | 1,237 | 19.31 | 49      | 2.54       |
| 305       | 172      | 16.40  | 1,102 | 31.82 | 77      | 2.42       |
| 360       | 164      | 15.70  | 831   | 23.03 | 54      | 2.34       |
| 425       | 265      | 25.66  | 683   | 32.00 | 71      | 2.22       |
| 495       | 82       | 7.85   | 884   | 12.14 | 22      | 1.81       |
| 570       | 84       | 8.27   | 842   | 12.85 | 30      | 2.33       |
| 645       | 59       | 5.34   | 911   | 8.82  | 14      | 1.59       |
| 730       | 51       | 4.69   | 821   | 6.61  | 13      | 1.97       |
| 820       | 46       | 4.61   | 862   | 6.99  | 12      | 1.72       |
| 910       | 55       | 5.32   | 1,083 | 10.87 | 12      | 1.10       |
| 1010      | 95       | 8.97   | 1,690 | 27.66 | 23      | 0.83       |





----ASD ----Log(ASD) -----ASD/SSD

Source: NCHRP 15-75, TRB

### PNC by Design Speed -SHRP 2 NDS (All Events)

| Design         |                    | Calculated Stopping Sight Distance (ft) |      |                             |                             |                 |  |  |  |  |
|----------------|--------------------|-----------------------------------------|------|-----------------------------|-----------------------------|-----------------|--|--|--|--|
| Speed<br>(mph) | AASHTO<br>SSD (ft) | PNC                                     | Mean | 85 <sup>th</sup> Percentile | 90 <sup>th</sup> Percentile | 99th Percentile |  |  |  |  |
| 15             | 80                 | 0.065                                   | 40   | 63                          | 71                          | 116             |  |  |  |  |
| 20             | 115                | 0.060                                   | 58   | 89                          | 101                         | 161             |  |  |  |  |
| 25             | 155                | 0.055                                   | 80   | 119                         | 134                         | 210             |  |  |  |  |
| 30             | 200                | 0.050                                   | 104  | 152                         | 170                         | 265             |  |  |  |  |
| 35             | 250                | 0.045                                   | 130  | 188                         | 209                         | 320             |  |  |  |  |
| 40             | 305                | 0.041                                   | 160  | 228                         | 253                         | 385             |  |  |  |  |
| 45             | 360                | 0.042                                   | 192  | 270                         | 299                         | 456             |  |  |  |  |
| 50             | 425                | 0.037                                   | 227  | 316                         | 348                         | 527             |  |  |  |  |
| 55             | 495                | 0.036                                   | 265  | 365                         | 403                         | 609             |  |  |  |  |
| 60             | 570                | 0.032                                   | 305  | 417                         | 458                         | 691             |  |  |  |  |
| 65             | 645                | 0.033                                   | 348  | 472                         | 518                         | 787             |  |  |  |  |
| 70             | 730                | 0.031                                   | 392  | 528                         | 579                         | 886             |  |  |  |  |
| 75             | 820                | 0.030                                   | 442  | 593                         | 652                         | 989             |  |  |  |  |
| 80             | 910                | 0.030                                   | 493  | 658                         | 721                         | 1,095           |  |  |  |  |
| 85             | 1,010              | 0.029                                   | 547  | 728                         | 798                         | 1,215           |  |  |  |  |



### Crest Vertical Curves -PNC by Design Speed



| Design |          |     | Calculated Sight Distance (ft) |                 |                 |                  |  |  |  |  |  |
|--------|----------|-----|--------------------------------|-----------------|-----------------|------------------|--|--|--|--|--|
| Speed  |          | K = |                                | 1 <sup>st</sup> | 5 <sup>th</sup> | 10 <sup>th</sup> |  |  |  |  |  |
| (mph)  | SSD (ft) | L/A | PNC                            | Percentile      | Percentile      | Percentile       |  |  |  |  |  |
| 15     | 80       | 3   | < 0.001                        | 87              | 89              | 91               |  |  |  |  |  |
| 20     | 115      | 7   | < 0.001                        | 132             | 137             | 139              |  |  |  |  |  |
| 25     | 155      | 12  | < 0.001                        | 173             | 179             | 182              |  |  |  |  |  |
| 30     | 200      | 19  | < 0.001                        | 218             | 225             | 229              |  |  |  |  |  |
| 35     | 250      | 29  | < 0.001                        | 269             | 278             | 283              |  |  |  |  |  |
| 40     | 305      | 44  | < 0.001                        | 331             | 342             | 348              |  |  |  |  |  |
| 45     | 360      | 61  | < 0.001                        | 390             | 403             | 410              |  |  |  |  |  |
| 50     | 425      | 84  | < 0.001                        | 458             | 473             | 481              |  |  |  |  |  |
| 55     | 495      | 114 | < 0.001                        | 534             | 552             | 561              |  |  |  |  |  |
| 60     | 570      | 151 | < 0.001                        | 614             | 634             | 645              |  |  |  |  |  |
| 65     | 645      | 193 | < 0.001                        | 695             | 717             | 729              |  |  |  |  |  |
| 70     | 730      | 247 | < 0.001                        | 786             | 812             | 825              |  |  |  |  |  |
| 75     | 820      | 308 | < 0.001                        | 877             | 906             | 921              |  |  |  |  |  |
| 80     | 910      | 384 | < 0.001                        | 979             | 1,012           | 1,029            |  |  |  |  |  |

#### 60 mph design speed



#### — NCHRP 15-75: All Vehicles

- NCHRP 15-75: Passenger Vehicles
- NCHRP 400: Passenger Vehicles

Source: NCHRP 15-75, TRB<sub>6</sub>

## Summary of Findings: Speed-Change Lanes

### Data Collection Setup



Loop, parallel entrance ramp



Diamond, parallel exit ramp

Sample Ramp Data Collection Locations in Michigan

Source: MSU





Sample LIDAR vehicle speed profiles from two sites in Michigan

Source: MSU

# Comparison of Field Data and Assumed Design Values for Acceleration Lanes

#### Entrance Ramp - Merge Speed



#### Entrance Ramp -Acceleration Rate





Pennsylvania

Michigan





= AASHTO Seld - Average Field - Maximum

Source: NCHRP 15-75, TRB

Rate (ft/s2)

### Entrance Ramp - Initial Speed (at Controlling Feature)



# Comparison of Field Data and Assumed Design Values for Deceleration Lanes



# Exit Ramp - Final Speed (at Controlling Feature)



### **PNC for Acceleration Lane Length**

All parameters are random

Merging speed is fixed (53 mph)

$$L_{Acc} = \frac{(1.47V_m)^2 - (1.47V_r)}{2a}$$

#### where:

LAcc = acceleration lane length (feet).

V<sub>m</sub> = merge speed (mph).

 $\mathrm{V}_{\mathrm{r}}$  = initial speed on ramp after exiting controlling geometric feature (mph).

a = acceleration rate ( $ft/s^2$ ).

#### Source: AASHTO





#### Source: AASHTO



# PNC Comparison between Field Observation and Simulation - Acceleration Lanes

| State   | Site         | Site          | AASHTO      | Ν    | PNC from   | PNC from   | State | Site  | Site        | AASHTO      | Ν    | PNC from   | PNC from   |
|---------|--------------|---------------|-------------|------|------------|------------|-------|-------|-------------|-------------|------|------------|------------|
|         |              | Length (ft)   | Length (ft) |      | Field Data | Simulation |       |       | Length (ft) | Length (ft) |      | Field Data | Simulation |
|         | CA-1         | 619           | 1,220       | 157  | 0.54       | 0.70       |       | MI-1  | 1 233       | 1 350       | 121  | 0.00       | 0.01       |
|         | CA-2         | 480           | 2,013       | 127  | 0.09       | 0.17       |       | MI 2  | 1,255       | 1,530       | 121  | 0.00       | 0.00       |
| nia     | CA-3         | 505           | 610         | 118  | 0.31       | 0.32       | -     | NII-2 | 1,931       | 1,020       | 12.5 | 0.38       | 0.99       |
| Califor | CA-4         | 692           | 2,745       | 151  | 0.50       | 0.47       | nigaı | MI-3  | 542         | 1,510       | 146  | 0.13       | 0.17       |
|         | CA-5         | 550           | 1.220       | 153  | 0.14       | 0.15       | Aich  | MI-4  | 2,159       | 1,620       | 147  | 0.37       | 0.94       |
|         | CA-6         | 866           | 1 310       | 134  | 0.00       | 0.00       | 4     | MI-5  | 1,196       | 820         | 153  | 0.00       | 0.01       |
|         |              | 540           | 220         | 04   | 0.00       | 0.19       |       | MI-6  | 977         | 1,350       | 145  | 0.01       | 0.03       |
|         | CA-/         | 340           | 520         | 94   | 0.18       | 0.18       |       | MI-7  | 475         | 1,230       | 146  | 0.10       | 0.15       |
|         | CA-9         | 479           | 1,310       | 160  | 0.50       | 0.49       |       | MI-8  | 1,607       | 1,230       | 124  | 0.19       | 0.22       |
|         |              |               |             |      |            |            |       |       |             |             |      |            |            |
| State   | Site         | Site Length   | AASHTO      | Ν    | PNC from   | PNC from   | State | Site  | Site Length | AASHTO      | Ν    | PNC from   | PNC from   |
|         |              | ( <b>ft</b> ) | Length (ft) |      | Field Data | Simulation |       |       | (ft)        | Length (ft) |      | Field Data | Simulation |
|         | NG 1         | 015           | 720         | 1.42 | 0.42       | 0.00       |       | PA-1  | 920         | 1,904       | 104  | 0.20       | 0.83       |
|         | NC-I         | 815           | 720         | 142  | 0.42       | 0.99       |       | PA-2  | 1,269       | 2,000       | 116  | 0.03       | 0.25       |
| a       | NC-2         | 585           | 175         | 120  | 0.01       | 0.02       | nia   | PA-3  | 462         | 150         | 124  | 0.94       | 0.92       |
| rolin   | NC-3         | 880           | 852         | 119  | 0.04       | 0.05       | ylvaı | PA-4  | 1,283       | 1,000       | 130  | 0.94       | 0.93       |
| ı Ca    | NC-4         | 835           | 672         | 115  | 0.04       | 0.03       | suus  | PA-5  | 2,948       | 1,410       | 106  | 0.00       | 0.48       |
| Vort    | NC-5         | 1,341         | 1,410       | 129  | 0.10       | 0.91       | Pe    | PA-6  | 2,132       | 846         | 107  | 0.85       | 0.99       |
| 4       | NC-6         | 1,403         | 1,410       | 128  | 0.35       | 0.92       |       | PA-7  | 2,289       | 960         | 120  | 0.98       | 0.94       |
|         | NC-7         | 1.420         | 1.904       | 102  | 0.00       | 0.00       |       | PA-8  | 1,724       | 1,410       | 104  | 0.02       | 0.35       |
|         |              | 1,120         | 1,000       | 102  | 0.02       | 0.02       |       | PA-9  | 1,311       | 670         | 110  | 0.00       | 0.53       |
|         | NC-7<br>NC-8 | 1,420         | 1,904       | 102  | 0.00       | 0.00       |       | PA-9  | 1,311       | 670         | 110  | 0.00       | 0.53       |

#### **PNC for Deceleration Lane Length**

$$L_{Decel} = 1.47V_h t_n - 0.5d_n (t_n)^2 + \frac{(1.47V_r)^2 - (1.47V_a)^2}{2d_{wb}}$$

#### Where:

 $\begin{array}{l} L_{Decel} = \mbox{deceleration lane length (feet).} \\ V_h = \mbox{highway speed (mph).} \\ V_a = \mbox{speed after tn second of deceleration without brakes (mph).} \\ V_r = \mbox{speed at the controlling feature of exit ramp (mph).} \\ t_n = \mbox{deceleration time without brakes (s).} \\ d_n = \mbox{deceleration rate with brakes (ft/s^2).} \\ d_{wb} = \mbox{deceleration rate with brakes (ft/s^2).} \end{array}$ 

#### Source: AASHTO



Source: NCHRP 15-75, TRB

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U.S. Customary       |                                                                             |     |     |     |     |     |     |     |     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
| U.S. Customary       Deceleration Lare Length, L <sub>x</sub> (ft) for Design Speed of Controlling Feature on Ramp, V'(mph)       Highway Design Speed, V'(mph)     Stop<br>Condition     15     20     25     30     35     40     45     50       Average Running Speed, V'(mph)     V'(mph)     15     20     25     30     35     40     45     50       Average Running Speed at Controlling Feature on Ramp, V''_w (mph)     0     14     18     22     26     30     36     40     44       30     28     235     200     170     140     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - |                      |                                                                             |     |     |     |     |     |     |     |     |  |  |  |
| Highway<br>Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Diverge              | Stop<br>Condition                                                           | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  |  |  |  |
| Speed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>g</sub> (mph) | Average Running Speed at Controlling Feature on Ramp, V' <sub>a</sub> (mph) |     |     |     |     |     |     |     |     |  |  |  |
| V(mph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0                                                                           | 14  | 18  | 22  | 26  | 30  | 36  | 40  | 44  |  |  |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                   | 235                                                                         | 200 | 170 | 140 | _   | _   | _   | _   | _   |  |  |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32                   | 280                                                                         | 250 | 210 | 185 | 150 | —   | _   | —   | _   |  |  |  |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                   | 320                                                                         | 295 | 265 | 235 | 185 | 155 | -   | —   | -   |  |  |  |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                   | 385                                                                         | 350 | 325 | 295 | 250 | 220 | _   | —   | _   |  |  |  |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                   | 435                                                                         | 405 | 385 | 355 | 315 | 285 | 225 | 175 |     |  |  |  |
| 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                   | 480                                                                         | 455 | 440 | 410 | 380 | 350 | 285 | 235 | _   |  |  |  |
| 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                   | 530                                                                         | 500 | 480 | 460 | 430 | 405 | 350 | 300 | 240 |  |  |  |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                   | 570                                                                         | 540 | 520 | 500 | 470 | 440 | 390 | 340 | 280 |  |  |  |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                   | 615                                                                         | 590 | 570 | 550 | 520 | 490 | 440 | 390 | 340 |  |  |  |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61                   | 660                                                                         | 635 | 620 | 600 | 575 | 535 | 490 | 440 | 390 |  |  |  |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64                   | 705                                                                         | 680 | 665 | 645 | 620 | 580 | 535 | 490 | 440 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                             |     |     |     |     |     |     |     |     |  |  |  |

#### Source: AASHTO



Example with High PNC

#### PNC Comparison between Field Observation and Simulation - Deceleration Lanes

| State | Site  | Site Length<br>(ft) | AASHTO<br>Length (ft)  | N   | PNC from<br>Field Data | PNC from<br>Simulation | State | Site  | Site Length<br>(ft) | AASHTO<br>Length (ft) | Ν   | PNC from<br>Field Data | PNC from<br>Simulation |
|-------|-------|---------------------|------------------------|-----|------------------------|------------------------|-------|-------|---------------------|-----------------------|-----|------------------------|------------------------|
|       | CA-11 | 791                 | 440                    | 155 | 0.61                   | 0.12                   |       | MI-9  | 1,958               | 490                   | 124 | 0.09                   | 0.05                   |
|       | CA-12 | 335                 | 500                    | 147 | 0.02                   | 1.00                   |       | MI-10 | 733                 | 520                   | 148 | 0.06                   | 0.36                   |
| a     |       |                     |                        |     |                        |                        | -     | MI-11 | 1,812               | 440                   | 115 | 0.01                   | 0.05                   |
| orni  | CA-13 | 599                 | 520                    | 99  | 0.28                   | 0.71                   | nigan | MI-12 | 1,000               | 624                   | 150 | 0.28                   | 0.13                   |
| Calif | CA-14 | 1,387               | 570                    | 130 | 0.18                   | -                      | Micł  | MI-13 | 302                 | 440                   | 130 | 0.02                   | 1.00                   |
| •     | CA-15 | 889                 | 520                    | 104 | 0.02                   |                        |       | MI-14 | 200                 | 520                   | 108 | 0.52                   | 1.00                   |
|       |       |                     |                        | -   |                        |                        |       | MI-15 | 300                 | 520                   | 111 | 0.36                   | 1.00                   |
|       | CA-16 | 915                 | 570                    | 115 | 0.13                   | _                      |       | MI-16 | 910                 | 615                   | 108 | 0.09                   | _                      |
| State | Site  | Site Length<br>(ft) | n AASHT<br>Length (ft) | Ν   | PNC from<br>Field Data | PNC from<br>Simulation | State | Site  | Site Length<br>(ft) | AASHTO<br>Length (ft) | Ν   | PNC from<br>Field Data | PNC from<br>Simulation |
|       | NC-9  | 404                 | 342                    | 118 | 0.19                   | 0.94                   |       | PA-10 | 335                 | 470                   | 103 | 0.10                   | 1.00                   |
|       | NC-10 | ) 410               | 423                    | 120 | 0.04                   | 1.00                   |       | PA-11 | 740                 | 459                   | 108 | 0.00                   | 0.06                   |
| ina   | NC-11 | 1 750               | 570                    | 119 | 0.31                   | _                      | ង     | PA-12 | 855                 | 396                   | 105 | 0.00                   | 0.04                   |
| Carol | NC-12 | 2 431               | 390                    | 120 | 0.08                   | 0.99                   | ylvan | PA-13 | 1,826               | 615                   | 107 | 0.00                   | _                      |
| rth ( | NC-13 | 3 730               | 387                    | 130 | 0.01                   | 0.14                   | ennsy | PA-14 | 1,385               | 480                   | 122 | 0.00                   | _                      |
| No    | NC-14 | 4 567               | 390                    | 111 | 0.03                   | 0.50                   | Ā     | PA-15 | 1,220               | 396                   | 99  | 0.00                   | -                      |
|       | NC-14 | 5 980               | 570                    | 132 | 0.03                   | _                      |       | PA-16 | 1 870               | 576                   | 120 | 0.00                   | /                      |

PA-17

964

380

104

0.00

0.21

NC-16

741

450

103

0.21
# Development of Revised Design Guidelines

Dr. Eric T. Donnell Professor & Senior Associate Dean Pennsylvania State University

- It is recommended to update the brake reaction time and deceleration rate values as follows:
  - Update brake reaction time from 2.5 s to 2.2 s
    - This represents 90th-percentile driver from NDS crash or near-crash events
  - Deceleration rate to be updated to 11.8 ft/s<sup>2</sup> in rural or high-speed contexts (greater than 45 mph)
    - This represents 10th-percentile driver from NDS crash or near-crash events
  - Deceleration rate to be updated to 15 ft/s<sup>2</sup> in urban and urban core context or low speed contexts (less than or equal to 45 mph)
    - This represents 10th-percentile driver from NDS crash or near-crash events

| Rural or High Speed |          |           |            |        |  |  |  |
|---------------------|----------|-----------|------------|--------|--|--|--|
|                     | U.S      | . Customa | ary        |        |  |  |  |
| Design              | Brake    | Braking   | Stopping   | Sight  |  |  |  |
| Speed               | Reaction | Distance  | Distan     | ce     |  |  |  |
| (mph)               | Distance | on Level  | Calculated | Design |  |  |  |
|                     | (ft)     | (ft)      | (ft)       | (ft)   |  |  |  |
| 15                  | 48.5     | 20.5      | 69.0       | 70     |  |  |  |
| 20                  | 64.7     | 36.4      | 101.1      | 105    |  |  |  |
| 25                  | 80.9     | 56.9      | 137.8      | 140    |  |  |  |
| 30                  | 97.0     | 82.0      | 179.0      | 180    |  |  |  |
| 35                  | 113.2    | 111.6     | 224.8      | 225    |  |  |  |
| 40                  | 129.4    | 145.8     | 275.1      | 280    |  |  |  |
| 45                  | 145.5    | 184.5     | 330.0      | 335    |  |  |  |
| 50                  | 161.7    | 227.8     | 389.5      | 390    |  |  |  |
| 55                  | 177.9    | 275.6     | 453.5      | 455    |  |  |  |
| 60                  | 194.0    | 328.0     | 522.0      | 525    |  |  |  |
| 65                  | 210.2    | 384.9     | 595.1      | 600    |  |  |  |
| 70                  | 226.4    | 446.4     | 672.8      | 675    |  |  |  |
| 75                  | 242.6    | 512.4     | 755.0      | 760    |  |  |  |
| 80                  | 258.7    | 583.1     | 841.8      | 845    |  |  |  |
| 85                  | 274.9    | 658.2     | 933.1      | 935    |  |  |  |

Proposed Table 3-1: Stopping Sight Distance on Level Roadways

Low Speed Urban

| U.S. Customary |          |          |           |         |  |  |
|----------------|----------|----------|-----------|---------|--|--|
| Design         | Brake    | Braking  | Stopping  | g Sight |  |  |
| Speed          | Reaction | Distance | Distai    | nce     |  |  |
| (mph)          | Distance | on Level | Calculate | Design  |  |  |
|                | (ft)     | (ft)     | d         | (ft)    |  |  |
|                |          |          | (ft)      |         |  |  |
| 15             | 48.5     | 16.1     | 64.6      | 65      |  |  |
| 20             | 64.7     | 28.7     | 93.3      | 95      |  |  |
| 25             | 80.9     | 44.8     | 125.6     | 130     |  |  |
| 30             | 97.0     | 64.5     | 161.5     | 165     |  |  |
| 35             | 113.2    | 87.8     | 201.0     | 205     |  |  |
| 40             | 129.4    | 114.7    | 244.0     | 245     |  |  |
| 45             | 145.5    | 145.1    | 290.7     | 295     |  |  |

Source: AASHTO

Proposed Table 3-2: Stopping Sight Distance on Grades

Rural or High Speed

| U.S. Customary |     |            |            |        |            |            |  |
|----------------|-----|------------|------------|--------|------------|------------|--|
| Design         |     | Stoppir    | ng Sight   | Distar | nce (ft)   | )          |  |
| Speed          | Do  | wngrad     | des        | U      | pgrade     | es         |  |
| (mph)          | 3%  | <b>6</b> % | <b>9</b> % | 3%     | <b>6</b> % | <b>9</b> % |  |
| 15             | 71  | 73         | 76         | 68     | 67         | 65         |  |
| 20             | 105 | 109        | 113        | 99     | 96         | 94         |  |
| 25             | 143 | 149        | 157        | 134    | 130        | 127        |  |
| 30             | 187 | 195        | 206        | 173    | 168        | 163        |  |
| 35             | 235 | 247        | 261        | 217    | 209        | 203        |  |
| 40             | 288 | 304        | 323        | 264    | 255        | 247        |  |
| 45             | 347 | 366        | 390        | 316    | 304        | 294        |  |
| 50             | 410 | 434        | 464        | 372    | 358        | 345        |  |
| 55             | 478 | 507        | 543        | 433    | 415        | 399        |  |
| 60             | 551 | 586        | 629        | 497    | 476        | 457        |  |
| 65             | 629 | 670        | 720        | 566    | 541        | 519        |  |
| 70             | 712 | 760        | 818        | 639    | 610        | 585        |  |
| 75             | 800 | 855        | 921        | 716    | 683        | 654        |  |
| 80             | 893 | 955        | 1031       | 797    | 759        | 727        |  |
| 85             | 991 | 1061       | 1147       | 883    | 840        | 803        |  |

#### Low Speed Urban

| U.S. Customary |     |        |            |         |        |            |  |  |
|----------------|-----|--------|------------|---------|--------|------------|--|--|
| Design         | St  | opping | g Sight    | . Dista | nce (f | t)         |  |  |
| Speed          | Dov | wngra  | des        | U       | pgrad  | es         |  |  |
| (mph)          | 3%  | 6%     | <b>9</b> % | 3%      | 6%     | <b>9</b> % |  |  |
| 15             | 66  | 67     | 69         | 64      | 63     | 63         |  |  |
| 20             | 96  | 98     | 101        | 92      | 91     | 89         |  |  |
| 25             | 129 | 133    | 137        | 123     | 121    | 119        |  |  |
| 30             | 166 | 171    | 177        | 158     | 155    | 151        |  |  |
| 35             | 207 | 214    | 222        | 196     | 191    | 187        |  |  |
| 40             | 252 | 261    | 272        | 237     | 231    | 226        |  |  |
| 45             | 301 | 312    | 326        | 282     | 274    | 267        |  |  |

Source: NCHRP 15-75, TRB

It is recommended to update the criteria for measuring SSD as follows:

- ▶ Driver's eye height be increased from 3.50 ft to 3.75 ft
  - This represents 90th-percentile driver eye height from passenger vehicle field measurements
- ► No change in truck driver's eye height
  - 7.6 ft is recommended in the 2018 Green Book
- Object height for SSD scenarios should remain the same
  - Vehicle taillight height increased from 2.0 to 3.0 ft
  - But taillights are not the only relevant objects of concern for SSD scenarios
- These updates will also result in updating object height criteria for passing sight distance (PSD) and intersection sight distance to 3.75 ft
  - Eye height is reciprocal for these cases (object height equals eye height)

### Guidelines Related to Crest Vertical Curves

- Following updates to design parameters are recommended:
  - ► Eye height should be increased to 3.75 ft
  - Object height should not be changed and remain 2.00 ft.
- These updates will result in revised design controls for crest vertical curves based on SSD and PSD, i.e., revised values for rate of vertical curvature (K<sub>a</sub>).



## Guidelines Related to Sight Distance at Undercrossings

- Following updates to design parameters are recommended:
  - Eye height should be changed from 8.0 ft to 7.6 ft for truck eye height
  - Object height should be increased to 3.0 ft for taillights of a vehicle
    - Taller object height reduces sight distance at undercrossings



### Acceleration Lane Length

- Merging behavior
  - ► Late merges (after start of taper) were more frequent on shorter SCLs.
  - ► Late merges were less frequent among heavy vehicles.
  - Vehicles merged earlier on loop ramps versus diagonal ramps.
  - ► Under designed ramps (RE: AASHTO) had fewer late merges.
- Merging speeds were closer to mainline speeds
  - On freeways with lower speed limits and ramps with higher design speeds.
  - Where the crossroad terminal was the controlling feature (compared to horizontal curves).
  - On ramps with higher design speeds.

### Acceleration Lane Length

- Speed at controlling feature
  - Passenger cars had higher speeds at the controlling feature than heavy vehicles.
  - ► Heavy vehicles had speeds close to the ramp design speed.
  - Under designed acceleration lanes (RE: AASHTO) had higher speeds at the controlling feature.
- Acceleration rates along entrance ramps
  - Were only marginally different between parallel- and tapered-type lanes.
  - Straight ramps had lower acceleration rates than loop ramps.
  - Under-designed acceleration lanes (RE: AASHTO) showed higher acceleration rates.

### **Deceleration Lane Length**

- Diverging behavior
  - Similar behavior on ramps with parallel- versus tapered-type lanes, as well as when the controlling feature was a crossroad versus horizontal curve.
  - Under-designed deceleration lanes (RE: AASHTO) showed vehicles exiting before the start of the SCL.
- Diverging speeds were higher
  - On exit ramps with parallel-type versus tapered-type lanes.
  - On ramps that met recommended deceleration lane lengths (RE: AASHTO).
- Diverging speeds were generally not related to ramp design speeds.
- Field diverge speeds were close to the assumed values from AASHTO.

### **Deceleration Lane Length**

- Speed at controlling feature
  - Passenger cars entered the controlling feature at higher speeds than heavy vehicles.
  - ► Heavy vehicles entered curves near ramp design speeds.
- Deceleration rates along exit ramps
  - Passenger cars and heavy vehicles showed similar average deceleration rates, but passenger cars showed higher maximum deceleration rates.
  - Tapered-type ramps showed slightly higher deceleration rates than parallel-type ramps.
  - Under designed deceleration lanes (RE: AASHTO) showed higher deceleration rates.

## Guidelines Related to Acceleration Lane Lengths for Entrance Ramps

|                                | U.S. Customary                |                   |                 |                   |                |                                 |                     |                   |               |     |
|--------------------------------|-------------------------------|-------------------|-----------------|-------------------|----------------|---------------------------------|---------------------|-------------------|---------------|-----|
| Highv                          | way                           | Accel             | eratior<br>Cont | n Lane<br>rolling | Lengt<br>Featu | h, L <sub>a</sub> (f<br>re on F | t) for l<br>Ramp, ' | Design<br>V' (mpl | Speed (<br>n) | of  |
| Design<br>Speed,<br>V<br>(mph) | Merge<br>Speed,<br>V<br>(mph) | Stop<br>Condition | 15              | 20                | 25             | 30                              | 35                  | 40                | 45            | 50  |
| 30                             | 23                            | 180               | 130             | -                 | -              | -                               | -                   | -                 | -             | -   |
| 35                             | 27                            | 280               | 210             | 130               | -              | -                               | -                   | -                 | -             | -   |
| 40                             | 31                            | 360               | 290             | 240               | 150            | -                               | -                   | -                 | -             | -   |
| 45                             | 35                            | 560               | 480             | 400               | 310            | 170                             | -                   | -                 | -             | -   |
| 50                             | 39                            | 720               | 650             | 570               | 470            | 330                             | 170                 | -                 | -             | -   |
| 55                             | 43                            | 960               | 890             | 770               | 700            | 540                             | 360                 | 140               | -             | -   |
| 60                             | 47                            | 1200              | 1120            | 1060              | 940            | 780                             | 600                 | 370               | 130           | -   |
| 65                             | 50                            | 1410              | 1340            | 1270              | 1130           | 980                             | 800                 | 580               | 320           | -   |
| 70                             | 53                            | 1620              | 1540            | 1470              | 1330           | 1210                            | 1020                | 800               | 530           | 200 |
| 75                             | 55                            | 1790              | 1710            | 1580              | 1490           | 1370                            | 1200                | 960               | 730           | 380 |
| 80                             | 57                            | 2000              | 1880            | 1750              | 1660           | 1530                            | 1380                | 1130              | 920           | 560 |

48

## Guidelines Related to Deceleration Lane Lengths for Exit Ramps

| U.S. Customary |                |           |        |         |                     |            |          |         |          |        |
|----------------|----------------|-----------|--------|---------|---------------------|------------|----------|---------|----------|--------|
|                |                | Decelera  | tion L | ane Len | gth, L <sub>a</sub> | (ft) for [ | Design S | peed of | f Contro | olling |
| Highway        | Divorgo        |           |        | геа     |                     | Kamp, v    | (mpn)    |         |          |        |
| Desima         | Diverge        |           |        |         |                     |            |          |         |          |        |
| Design         | speea,         | Stop      | 15     | 20      | 25                  | 30         | 35       | 40      | 45       | 50     |
| Speed,         | V <sub>a</sub> | Condition |        |         |                     |            |          |         |          |        |
| V (mph)        | (mph)          |           |        |         |                     |            |          |         |          |        |
| 30             | 28             | 235       | 195    | 155     | 125                 | -          | -        | -       | -        | -      |
| 35             | 32             | 280       | 245    | 195     | 160                 | 125        | -        | -       | -        | -      |
| 40             | 36             | 320       | 290    | 250     | 210                 | 145        | 75       | -       | -        | -      |
| 45             | 40             | 385       | 345    | 310     | 275                 | 215        | 165      | -       | -        | -      |
| 50             | 44             | 435       | 400    | 370     | 335                 | 285        | 230      | 170     | -        | -      |
| 55             | 48             | 480       | 450    | 430     | 390                 | 350        | 305      | 240     | 175      | -      |
| 60             | 52             | 530       | 495    | 470     | 440                 | 400        | 355      | 305     | 240      | 205    |
| 65             | 55             | 570       | 535    | 510     | 480                 | 440        | 395      | 345     | 280      | 215    |
| 70             | 58             | 615       | 585    | 560     | 530                 | 490        | 445      | 395     | 330      | 265    |
| 75             | 61             | 660       | 630    | 610     | 580                 | 545        | 490      | 445     | 380      | 320    |
| 80             | 64             | 705       | 675    | 655     | 625                 | 590        | 535      | 495     | 430      | 370    |

49

### Future Research

- Further investigation is warranted for:
  - Crash risk versus available SSD, including in other states and contextual environments.
  - Object heights as they relate to SSD and crash risk.
  - Speed-change lane performance at mainline speed limits of 75 mph or more.
  - Deceleration lane performance leading into controlling features with design speeds of 45 mph or above.
  - ▶ Impacts of advanced driver assistance systems on driver behavior and design.

### Integration of Advanced Driver Assistance Systems (ADAS) into New Vehicles



Figure 6: Proportion of vehicle series with forward collision warning,

Figure 7: Proportion of vehicle series with forward collision warning with autobrake, 2006–20 model years



Source: HLDI

### Fleet Penetration for Forward Collision Warning and Automatic Emergency Braking

Figure 8: Percentage of registered vehicles with front crash prevention by calendar year



Figure 8 shows the percentage of registered vehicles by calendar year with either standard or optional front crash prevention. In 2006, front crash prevention had become standard on less than 1 percent and optional on less than 1 percent of registered vehicles. By 2018, front crash prevention was standard or optional on 21 percent of registered vehicles, with about 10 percent of registered vehicles estimated to be exuipped with the feature.

Figure 11: Percentage of registered vehicles with front automatic emergency braking by calendar year



Figure 11 shows the percentage of registered vehicles by calendar year with either standard or optional front AEB. In 2012, AEB had become standard on less than 1 percent and optional on 1 percent of registered vehicles. By 2018, AEB was standard or optional on 13 percent of registered vehicles but estimated to be equipped only on 5 percent.



Figure 9 takes into account a voluntary commitment by many manufacturers to make front AEB standard on most of their vehicles by 2022. It shows the predicted registered vehicles by calendar year with front crash prevention. One prediction is for vehicles with front crash prevention available (standard or optional) and the other prediction is for vehicles equipped (standard or optional) equipped) with front crash prevention. It is predicted that 95 percent of registered vehicles will be equipped with the feature in 2043.

#### Figure 12: Predicted percentage of registered vehicles with front automatic emergency braking by calendar year



Figure 12 takes into account the 2022 voluntary commitment and shows the predicted registered vehicles by calendar year with front AEB. One prediction is for vehicles with AEB available (standard or optional) and the other prediction is for vehicles equipped (standard or optionally equipped) with AEB. It is predicted that 95 percent of registered vehicles will be equipped with AEB in 2044. 52

Source: HLDI

## Automatic Emergency Braking (AEB) Test Scenarios

Vehicle-to-Vehicle Test (AEB) Vehicle-to-Pedestrian Test Scenarios (P-AEB) -tests run at 12 and 25 mph Parallel adult: Adult in Perpendicular child: Child Perpendicular adult: Stationary balloon car: runs into road; parked right lane near edge of road, Adult walks across road Stationary dummy vehicle facing away from traffic vehicles obstruct view -tests run at 12 and 25 -tests run at 12 and 25 mph -tests run at 25 and 37 mph -tests run at 12 and 25 mph mph CPNA-25 CPNC-50 CPLA-25

Source: NCHRP 15-75, TRB

### **AEB Test Results**

| Test Type | Test Speed<br>(mph) | Sample Size | Success Rate<br>(%) | Avg. Speed<br>Reduction<br>(mph) | Avg. FCW<br>TTC(s) | Avg. AEB<br>TTC (s) | Max. Decel.<br>Rate (ft/s <sup>2</sup> ) |
|-----------|---------------------|-------------|---------------------|----------------------------------|--------------------|---------------------|------------------------------------------|
| AEB       | 12                  | 1323        | 87.0                | 11.6                             | 1.4                | 0.8                 | 27.1                                     |
| AEB       | 25                  | 1273        | 62.4                | 19.0                             | 2.1                | 1.1                 | 27.1                                     |
| P-AEB     | 12                  | 400         | 88.0                | 18.1                             | 1.1                | 0.7                 | 29.6                                     |
| P-AEB     | 25                  | 400         | 75.8                | 34.4                             | 1.3                | 0.9                 | 30.1                                     |
| P-AEB     | 12                  | 402         | 80.3                | 16.9                             | 1.0                | 0.7                 | 27.8                                     |
| P-AEB     | 25                  | 401         | 48.6                | 27.9                             | 0.9                | 0.7                 | 29.6                                     |
| P-AEB     | 25                  | 400         | 82.3                | 21.8                             | 1.7                | 1.2                 | 29.0                                     |
| P-AEB     | 37                  | 400         | 34.0                | 25.2                             | 1.7                | 1.2                 | 28.9                                     |



Source: NCHRP 15-75, TRB

-**o**-12 mph

2020

**→**25 mph

2021

### PNC by Design Speed - IIHS (AEB Tests)

| Design | AASHTO   | Calculated Stopping Sight Distance (ft) |      |                  |                  |                  |  |
|--------|----------|-----------------------------------------|------|------------------|------------------|------------------|--|
| Speed  | SSD (ft) | PNC                                     | Mean | 85 <sup>th</sup> | 90 <sup>th</sup> | 99 <sup>th</sup> |  |
| (mph)  |          |                                         |      | Percentile       | Percentile       | Percentile       |  |
| 15     | 80       | < 0.001                                 | 28   | 40               | 44               | 63               |  |
| 20     | 115      | < 0.001                                 | 41   | 57               | 63               | 88               |  |
| 25     | 155      | < 0.001                                 | 55   | 77               | 84               | 115              |  |
| 30     | 200      | < 0.001                                 | 72   | 98               | 106              | 144              |  |
| 35     | 250      | < 0.001                                 | 91   | 121              | 130              | 175              |  |
| 40     | 305      | < 0.001                                 | 111  | 146              | 158              | 209              |  |
| 45     | 360      | < 0.001                                 | 134  | 174              | 186              | 245              |  |
| 50     | 425      | < 0.001                                 | 158  | 203              | 216              | 283              |  |
| 55     | 495      | < 0.001                                 | 184  | 234              | 250              | 323              |  |
| 60     | 570      | < 0.001                                 | 212  | 267              | 285              | 366              |  |
| 65     | 645      | < 0.001                                 | 242  | 303              | 322              | 413              |  |
| 70     | 730      | < 0.001                                 | 274  | 341              | 362              | 461              |  |
| 75     | 820      | < 0.001                                 | 308  | 381              | 404              | 516              |  |
| 80     | 910      | < 0.001                                 | 343  | 421              | 446              | 572              |  |
| 85     | 1010     | < 0.001                                 | 381  | 466              | 492              | 624              |  |



Source: NCHRP 15-75, TRB

# Translating Results into Practice

James A. Rosenow Design Flexibility Engineer Minnesota Department of Transportation



### **Translating Results Into Practice**

Jim Rosenow

TRB Webinar: Speed and Sight Distance Criteria for Geometric Design

February 6, 2025

#### DEPARTMENT OF TRANSPORTATION



#### AASHIO

### A Policy on Geometric Design of Highways and Streets



### **MnDOT FDG**

### **AASHTO Green Book**

### Outline

- •For implementation in each of those guidance documents...
  - Stopping sight distance model/criteria
  - Acceleration and deceleration lengths
- Policy and practice needs: gaps and future research

### What's new







### Stopping Sight Distance

### What's new



### PRT 2.5 s → 2.2 s

Deceleration rate  $11.2 \longrightarrow 11.8$  rural  $11.2 \longrightarrow 15.0$  urban Eye height

3.5 ft → 3.75 ft

### **Risk and conservatism**

| <u>Component</u>         | <u>Percentile</u>       |
|--------------------------|-------------------------|
| Perception-reaction time | 90 <sup>th</sup>        |
| Deceleration rate        | <b>90</b> <sup>th</sup> |
| Eye height               | <b>90</b> <sup>th</sup> |
| Taillight height         | <b>90</b> <sup>th</sup> |
| Multiplicative total     | = 99.999%               |

Jibes with Report 1081's percentage of non-compliance (PNC) of 0.001

### Variance

| <u>Component</u>         | <u>90<sup>th</sup> %-ile</u> | <u>Average</u>        |
|--------------------------|------------------------------|-----------------------|
| Perception-reaction time | 2.5 sec                      | 1.3 sec               |
| Deceleration rate        | 11.8 fps <sup>2</sup>        | 20.4 fps <sup>2</sup> |

### **Precision**



PRT2.2 sDeceleration11.8 rural<br/>15.0 urbanEye height3.75 ft

### **Local Angle**

### **Bob Uecker:**

"The easiest way to catch [a knuckleball] was to wait until it stopped rolling and just pick it up."



### **Local Angle**

### **Exercising reasonable flexibility**

- Understand the SSD model and how it works
- Be aware of how conservative and ripe for flexibility the current SSD components are
- Perception/reaction time: much of the rest of the world uses 2.0 seconds, which is still a high-percentile value
- Deceleration rate:
  - The standard value is fairly leisurely and comfortable as emergency maneuvers go
  - Example: an earlier version of the ITE Traffic Engineering Handbook suggested 15 ft/sec<sup>2</sup> as the comfort threshold value

### FACILITY DESIGN GUIDE

#### STATE OF MINNESOTA

DEPARTMENT OF TRANSPORTATION





### Ramp Acceleration and Deceleration Length



# Likely to be incorporated verbatim

### **Practical effects of the change**

Common application:50 mph ramp design speed70 mph mainline design speed

|                     | <b>Current Criterion</b> | Report 1081   |
|---------------------|--------------------------|---------------|
| Ramp speed          | 44 mph                   | 50 mph        |
| Merging speed       | 53 mph                   | 53 mph        |
| Acceleration length | 580 ft                   | <b>200 ft</b> |



#### Exhibit 7G-4

#### Turning Roadway Acceleration Lengths



L<sub>a</sub>: ACCELERATION LENGTH V: RAMP/LOOP DESIGN SPEED CONTROLLING ALIGNMENT FEATURE REPRESENTING THE RAMP DESIGN SPEED

Length of acceleration is assumed to include the steering maneuver out of the controlling curve of the ramp/loop, occurring over a travel time of two seconds—approximately three times the design speed on either side of the curve P.C.




#### Gaps and Research Needs



Remains the rational stopping sight distance model without known direct relationships to empirical safety and operational performance



#### NCHRP Report 839 (2017)

Finding 4: AASHTO dimensional criteria should ideally be based on known and proven measurable performance effects.



Figure 4. Conceptual Relationship Between Available Sight Distance and Safety at Crest Vertical Curves

#### **NCHRP Report 400 (1997):**

"Accident rates are high for short sight distances and relatively insensitive to sight distance beyond some threshold values."

#### Texas study:

- Data from 222 segments of highway were collected and analyzed
- Hypothesis: crash rates were a function of sight distance
- In the sight distance ranges studied (>300 ft), limited stopping sight distance had no discernable effect on crash frequency or rate.

#### Michigan study:

- Ten crest vertical curves with limited SSD were studied in comparison to ten crest VCs with "adequate" SSD
- VCs with SSD less than 90 m [300 ft] had a higher number of crashes than VC's with very long SSD's



#### NCHRP Report 875: Guidance for Evaluating the Safety Impacts of Intersection Sight distance

- "...provides information on how to estimate the effect of intersection sight distance (ISD) on crash frequency at intersections and describes data collection methods and analysis steps for making safety-informed decisions about ISD."
- Crash modification factors for incorporation into the next edition of the Highway Safety Manual.



#### Acceleration and deceleration lane design



Report 1081: Observations and recommendations for tapered vs parallel geometry

#### **Acceleration and deceleration lane design**

Report 730 (2012): Observations and recommendations for tapered vs parallel geometry



#### Acceleration and deceleration lane design





# Questions/discussion...

**Jim Rosenow** 

james.rosenow@state.mn.us

651-366-4673

#### Today's presenters



Peter T. Savolainen Michigan State University pete@msu.edu

MICHIGAN STATE UNIVERSITY



Eric T. Donnell Pennsylvania State University etd104@psu.edu





James A. Rosenow Minnesota Department of Transportation james.rosenow@state.mn.us



#### NATIONAL ACADEMIES Sciences Engineering Medicine

TRANSPORTATION RESEARCH BOARD

#### Upcoming events for you

#### February 11, 2025

TRB Webinar: Quality Assurance of Transportation Materials and Construction—Part I

February 19, 2025

TRB Webinar: Collaborative Metrics for Strategic Freight Demand Performance Management

https://www.nationalacademies.org/trb/ events





## Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry





#### Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!

https://mailchi.mp/nas.edu/trbwebinars

And follow #TRBwebinar on social media



ΝΛΤΙΟΝΛΙ Engineering ACADEMIES Medicine

Sciences

#### Get involved

TRB mobilizes expertise, experience, and knowledge to anticipate and solve complex transportation-related challenges.

TRB's mission is accomplished through the hard work and dedication of more than **8,000 volunteers**.

https://www.nationalacademies.org/trb/get-involved







#### We want to hear from you

Take our survey

λςλdemies

# Tell us how you use TRB Webinars in your work at trbwebinar@nas.edu

Copyright © 2025 National Academy of Sciences. All rights reserved.