

TRANSPORTATION RESEARCH BOARD

TRB Webinar:

Guiding Truckers to Safe and Available Parking

December 15, 2025

2:00 – 3:30 PM (eastern)

PDH Certification Information

1.5 Professional Development Hour (PDH) – see follow-up email

You must attend the entire webinar.

Questions? Contact Andie Pitchford at TRBwebinar@nas.edu

The Transportation Research Board has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP.

AICP Credit Information

One (1.5) American Institute of Certified Planners (AICP) Certification Maintenance (CM) Credit

You must attend the entire webinar

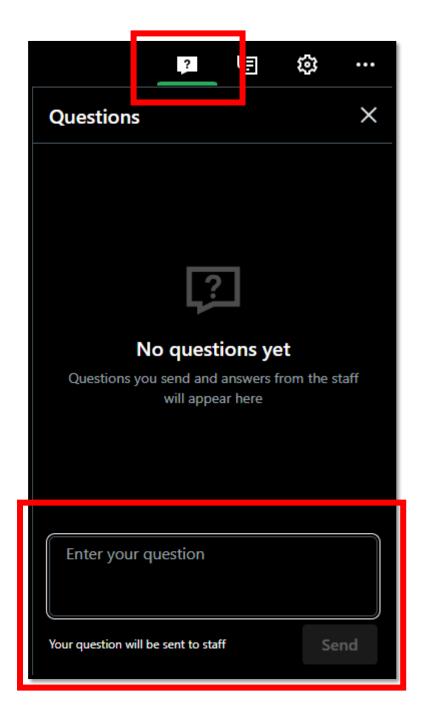
Log into the American Planning Association website (https://www.planning.org/) to claim your credits

Contact AICP (AICPCM@planning.org), not TRB, with questions

Purpose Statement

This webinar will explore key considerations for developing and implementing Truck Parking Information Management Systems (TPIMS) to communicate real-time parking availability to truck drivers. Presenters will discuss strategic planning, design choices, and operational aspects, drawing on proven practices and technologies.

Learning Objectives


At the end of this webinar, participants will be able to:

- (1) Identify the core components and benefits of TPIMS for addressing critical truck parking challenges
- (2) Determine key planning and design decisions necessary for successful TPIMS implementation, including technology choices and business models
- (3) Evaluate strategies for effective stakeholder engagement and identifying funding opportunities to support TPIMS development and expansion

Questions and Answers

- Please type your questions into your webinar control panel
- We will read your questions out loud, and answer as many as time allows

Today's Presenters

Dr. Sadaf Khosravifar skhosravifar@nas.edu

Peter Rafferty
p-rafferty@tti.tamu.edu

Dr. Charles Miller cmiller@hntb.com

Marie Tucker marie.tucker@dot.state.fl.us

From Problem to Practice: Solving Truck Parking Challenges

Peter Rafferty
Texas A&M Transportation Institute (TTI)

TRB WEBINAR DECEMBER 15, 2025

What are the Issues?

- Safety 13% of commercial motor vehicle (CMV) drivers were considered to have been fatigued at the time of their crash
 - Risks of unauthorized parking locations; Jason's Law (Jason Rivenburg, 2009)
- **Economic** Time searching for parking contributes to congestion and hazards
 - Drivers concerned about timing out, and wages are often based on origin-destination miles only
- Regulatory Policies and enforcement may come into conflict for both authorized and unauthorized parking
- Social Local stakeholders may oppose land use changes or trucks parking on local roads
- Infrastructure Inadequate capacity contributes to related maintenance issues (e.g., shoulders)

What is the Problem?

What creates the truck parking need?

- Not enough parking
- Rest needs and hours-of-service (HOS) safety regulations
- Supply not where demand is
- Drivers don't know if space available

Challenges are Widespread

- More goods are being transported by truck
- Truckers need to rest regardless of requirements
- Drivers may lack good information about available parking

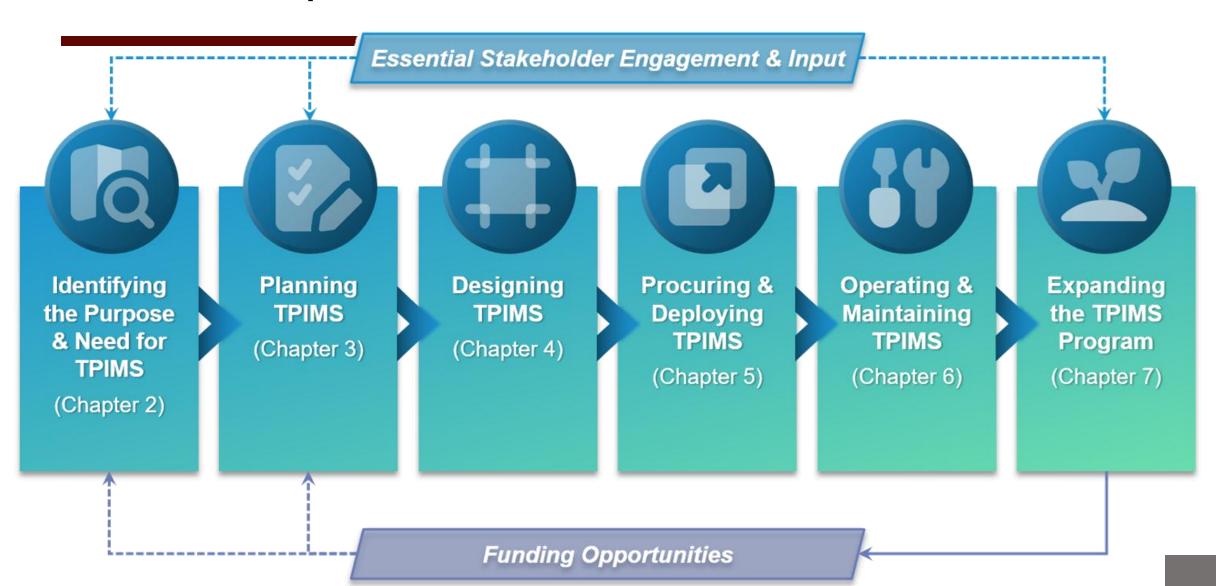
What is one Solution?

- Truck Parking Information Management Systems (TPIMS) informs about parking <u>availability</u>
 - Availability influenced by capacity, access, location, time, and more
 - Helps point truck drivers to where parking is currently available

Why a Guide?

- TPIMS is Never Boilerplate
 - ITS standards, legacy systems, lot designs, policies, procurement rules, O&M, weather (heat, snow, rain, wind, fog, etc.)
- Lifecycle Elements are very
 Sensitive to Other Decisions
 - E.g., Count Methodology
- Agencies usually not in the parking operations business
 - "What's the first step?"

GUIDING TRUCKERS TO SAFE & AVAILABLE PARKING


Guide for TPIMS

NCHRP 08-140

Key Findings During Guide Development

- Many, many deployments are in the United States
- Driver preferences vary widely
 - Public rest area versus private-sector stops depending on trip type
- What we know of TPIMS is one type... other business models exist
 - Private lot Airbnb model
 - Curb management
- Various technologies are commonly used for TPIMS
 - Many align with agency ITS programs

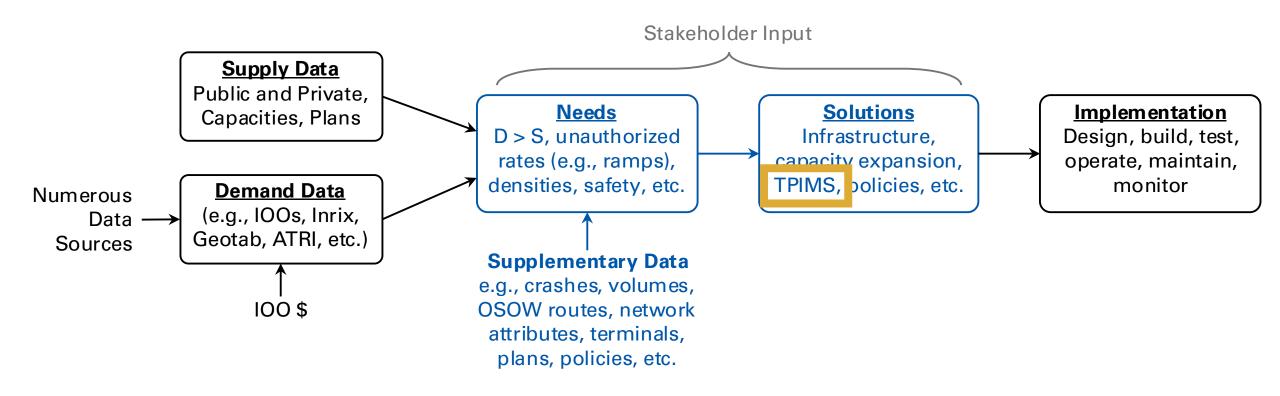
TPIMS Development & Guide Outline

Chapter 1: Overview of TPIMS

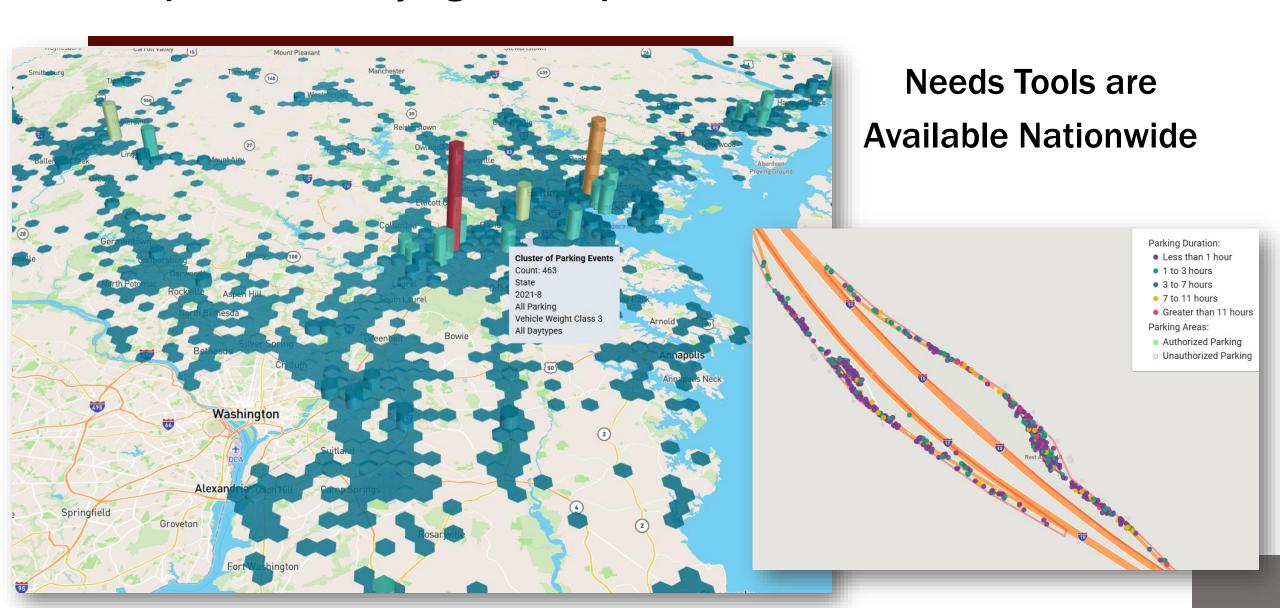
National Cooperative Highway Research Program

Guide for Truck Parking Information Management Systems

- The "who," "what," "where," "when," and "why" for TPIMS
 - The remainder of the Guide is the "how"
- Familiarizes the reader with the topic area, establishes the purpose of this guide, and outlines the practice areas that the guide will consider

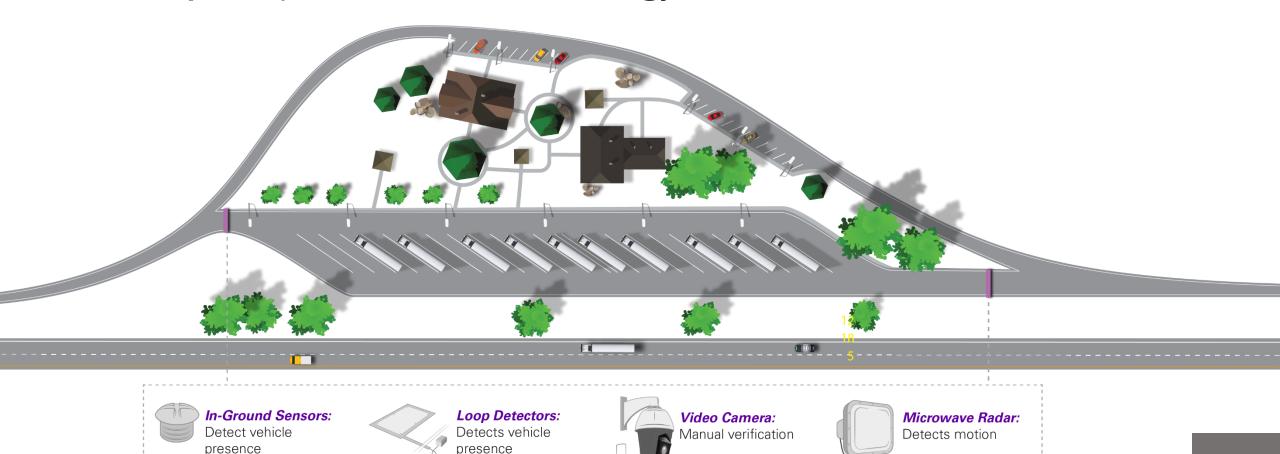

NATIONAL Sciences Engineering Medicine

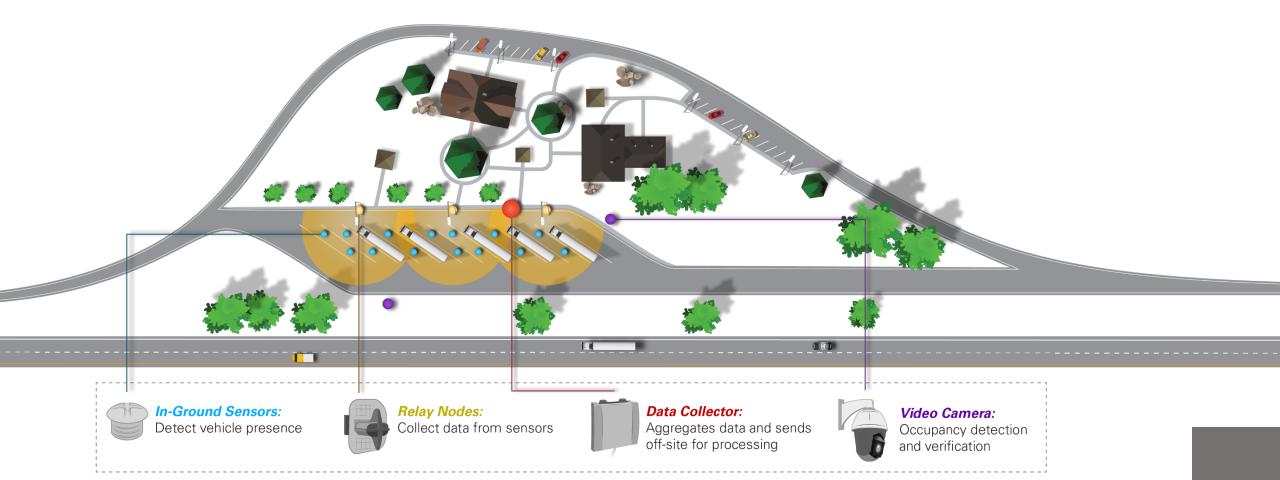
Chapter 2: Identifying the Purpose and Need


- Needs Identification
- Peer Agency Successes
- Stakeholder Engagement
 - Both Public and Private Sector
- Tailored TPIMS Solutions
- Identify a Process for Project Delivery
- Identify Funding Opportunities

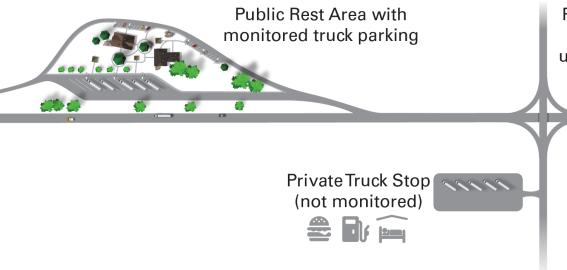
The Guide for TPIMS provides numerous examples of past and present TPIMS deployments, including funding sources, systems, and technologies.

Chapter 2: Identifying the Purpose and Need


Chapter 2: Identifying the Purpose and Need


- Business Models
- Eligible TPIMS Sites
- Count Methodology
- Data Processing
- Information
 Distribution
- Operational Policies
- Identify Other Considerations

Example: In/Out Count Methodology



Example: Space Occupancy Methodology

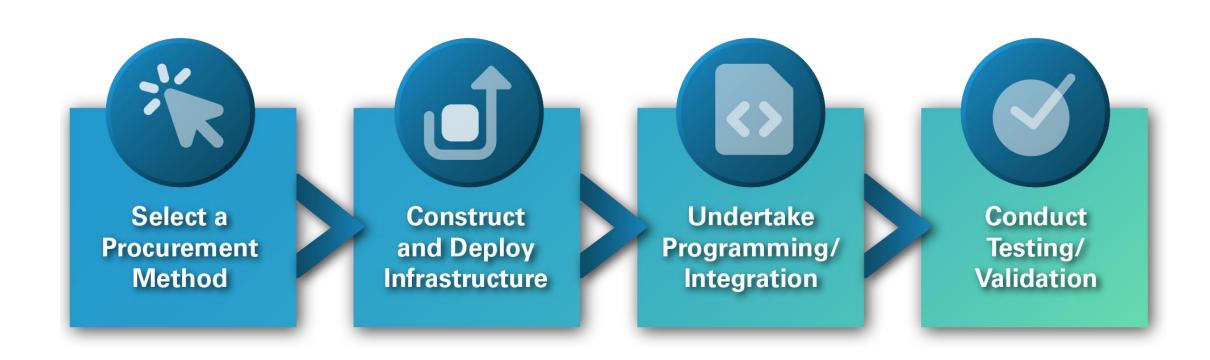
- Data Processing:
 - Central / Integrated Software
 - Independent Software
 - Software-as-a-Service

- Information Distribution:
 - Roadside signs
 - Web platforms
 - In-cab, radio, phone, kiosks, C-V2X, etc.

Real-TimeTruck Parking Availability sign (approx. 10 miles from Rest Area and upstream of interchange with Truck Stop) Real-Time Truck Parking Availability sign (approx. 1 hour from Rest Area)

Chapter 4: Designing TPIMS

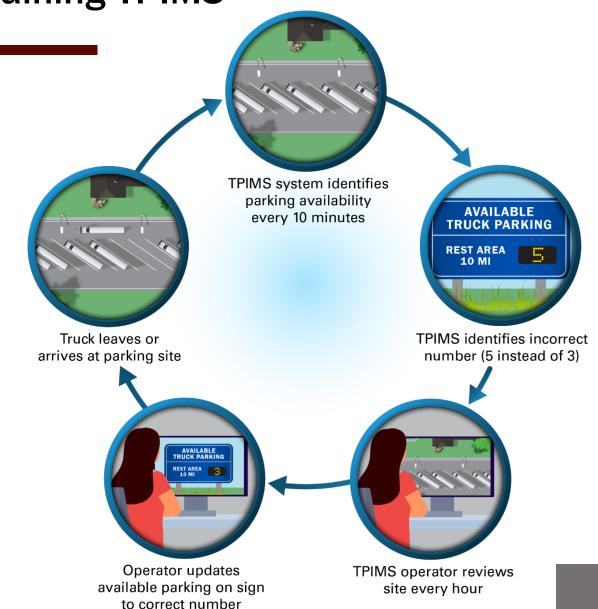
- Detection Technology
- Site Surveillance
- Site Infrastructure
- Roadside Assets
- Data Processing
- Supporting Comm Network
- Information Sharing
- Data Exchange Protocols



Chapter 4: Designing TPIMS – Information Distribution

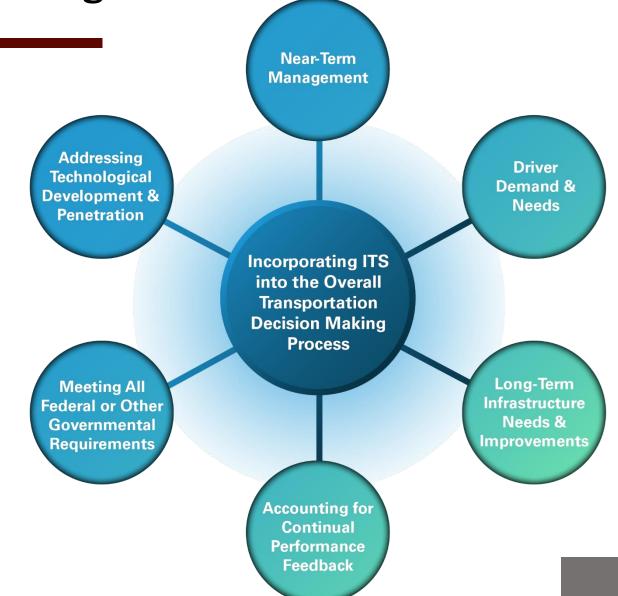
- Roadside Signs
- Web-Based Platforms
- In-Cab Systems
- GPS Navigation Systems
- Highway Advisory Radio
- Citizens Band Radio
- Other Radio Systems
- Call-in Phone Systems
- Travel Information Kiosks
- Network C-V2X

Chapter 5: Procuring and Deploying TPIMS


Chapter 6: Operating and Maintaining TPIMS

Operating TPIMS

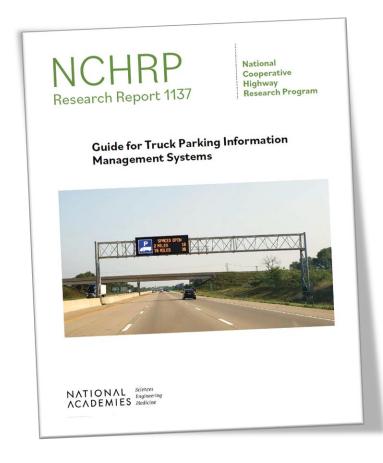
- Reporting Availability
- Tracking Performance
- Data Management


Maintaining TPIMS

- Asset Management
- Routine Maintenance
- Malfunctions
- Lifecycle Costs (software, hardware, mounts, power, communications)

Chapter 7: Expanding the TPIMS Program

- Integrating into Planning
- Scalable Design
- Regional Expansion
 - Multistate and corridor collaboration
 - Part of digital infrastructure
 - Interoperability
- Funding Opportunities
 - Federal (including grants), regional, state, and others



TPIMS Lifecycle Feedback

Discussion & Questions

Scan or click QR for the Guide ⇒

Peter Rafferty

PE, PTOE, AICP, PMP **Senior Research Engineer** p-rafferty@tti.tamu.edu 608-516-9382 in/PeterRafferty

THANK YOU

Texas A&M Transportation Institute

1111 RELLIS Parkway Bryan, TX 77807 info@tti.tamu.edu 979-317-2000

Follow us on social media

The Truck Parking Challenge

National Challenge:

- 1 space for every 11 trucks
- Truck drivers spend on average 1 hour looking for parking each day

Florida Challenge:

Most truck parking facilities along Florida's interstates experience **overcrowding** during any given 24-hour period

- Mostly overnight (peak utilization 9pm-5am)
- Tuesday, Wednesday, and Thursday generally experience the highest rates

Truck Parking Program 3

Solving aligns with FDOT's Priorities

SAFETY: Parking shortage forces drivers to park in unauthorized locations that creates hazards for themselves and others.

COMMUNITIES: Lack of truck parking forces drivers to park on local roads in residential communities.

WORKFORCE DEVELOPMENT: Providing parking facilities for truck drivers attracts industry which increases economic opportunities.

RESILIENCY: Truck parking sites can be used during disaster recovery to stage crews and equipment, or provide space for rapid debris removal.

TECHNOLOGY: Technology is allowing us to provide real-time safe parking availability information to drivers.

ROBUST SUPPLY CHAIN: Time is money for drivers. Lost time looking for parking wastes fuel, increases maintenance costs, and eventually leads to higher prices for consumers.

FDOT Research - FIU

PART 1:

Determine current supply and demand of public parking

Parking use unbalanced, some over-utilized while others under-utilized

PART 2:

Assess technology to improve parking management

- Provide advanced notification of parking availability
- Two pilot projects
 - Leon (in-pavement Sensors)
 - St. Johns County (ingress/egress counts with MVDS)

Federal Grants

FDOT Received two (2) federal grants to support statewide implementation:

- Federal AID: \$1 Million
- FASTLANE: ~ \$11 Million

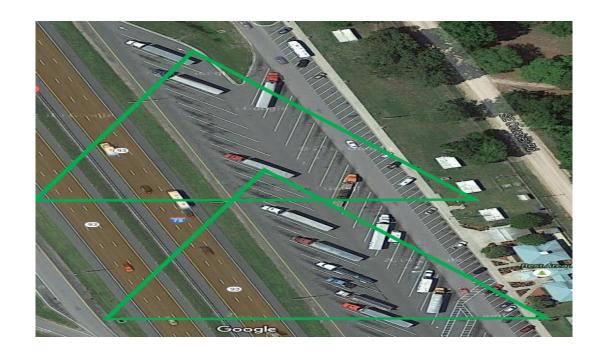
Commercial Vehicle (

Funding for agencies to use innovations to deliver projects faster, better, and smarter,

Commercial Vehicle Parking System Project

Location Florida: I-95 and I-4 Corridors Florida Department of **Award Recipient** Transportation Commercial Vehicle Innovation Parking Availability Notification System Award Fiscal Year 2015 **Project Aspect** Operation

Description


This project will provide reliable real-time information about commercial vehicle parking availability to dispatchers and commercial vehicle drivers allowing for educated decisions on parking at rest areas and weigh stations. FDOT has completed the Concept of Operations and a draft Project Systems Engineering Management Plan and system engineering analysis is in progress. Final design efforts for the installation of the detection system is in progress. The FDOT will also make software enhancements to process the new system's data in the SunGuide® software. A systems manager approach to the design, oversight, integration, operations and maintenance is being employed.

Grant Award \$1,000,000

FDOT Research - UF

- Evaluation of in-ground sensors to examine their capabilities
 - Tested four different vendors
- Ground-truth data through video logs
- Performance Accuracy Requirements
 - Turnover Accuracy 90%
 - Occupancy Accuracy 95%
 - Detection system test conducted over two 15-hour (6:00 pm to 9:00 am) sessions
- Developmental Specification 660
- Three products listed on Innovative Products List (IPL)

VEHICLE DETECTION SYSTEM. (REV 12-20-16)

ARTICLE 660-2 is expanded by the following:

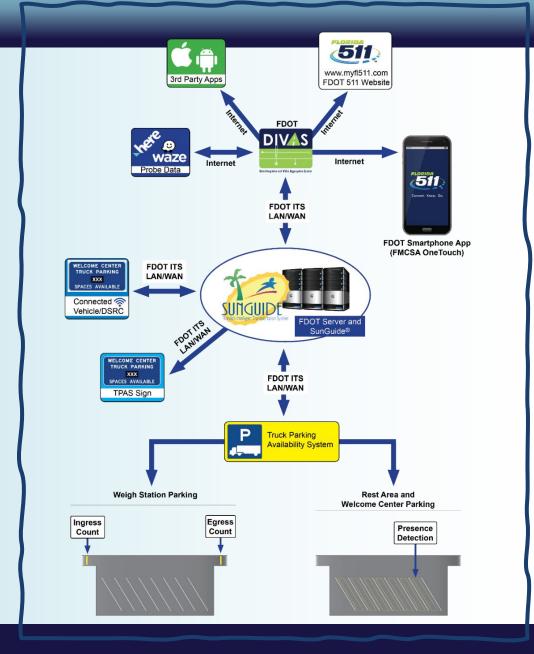
660-2.5 Truck Parking Detection System: Furnish and install a truck parking detection system in accordance with the details shown in the Plans. The detection system must be capable

TPAS Architecture

Data Collection

Through TPAS sensors

Data Communications


Existing ITS SICN

Data Collection, Processing, and Storage

RTMC using SunGuide® system

Data Dissemination

- Embedded roadside Dynamic Message Sign (DMS)
- Data Integration and Video Aggregation System (DIVAS)
 - Florida 511, 3rd Party Apps, Waze

12/15/2025 Truck Parking Program 37

Lessons Learned

Design:

- Internal Parking Layout Additional Directional Signs
- API for Interface with other states
- Power service for remote sign locations
- Systems Engineering documents with well-defined validation
- Include future sponsorship opportunity in signpost design

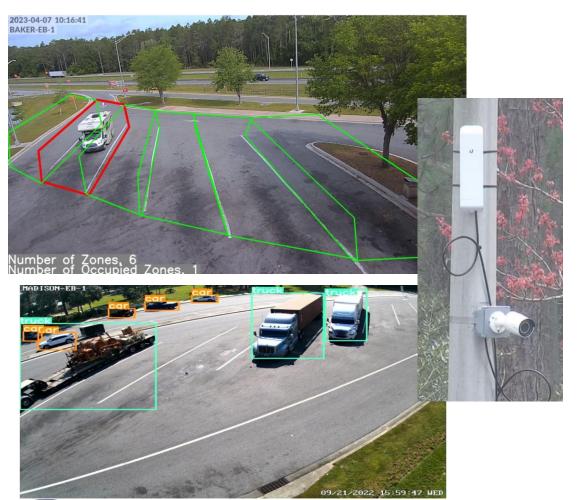
Construction:

- Let by Districts due to funding resulted in different vendors
- Early coordination with other projects
- Single oversight team from concept through construction

FUTURE SUPPLEMENTAL SIGN

Lessons Learned: Count-in/Count-out Systems

- Works best with tightly controlled truck entry and exit points
 - Needs dedicated ingress/egress for best accuracy
- Unable to provide additional data (e.g., individual space utilization, etc.)
- Count detectors are imperfect
- Human intervention often required


Lessons Learned: Wireless Detectors

- Can provide additional operational information besides overall counts (e.g., space utilization metrics, overstay, etc.)
- Significant detector failures
- Frequent site visits and repairs needed to keep operational
- Supply chain issues with replacement pucks
- Cost of hardware removal/replacement
- Software licensing costs

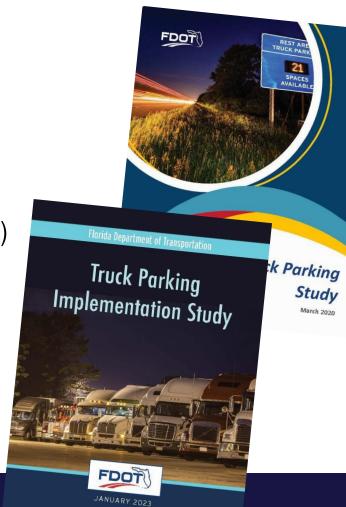
TPAS 2.0 – Video Analytics

- Fixed camera retrofit on existing light pole
- Poles are often positioned adjacent to travel lanes for angle parking, etc.
- Low-cost camera and wireless system can be used (only requires power connection at pole).
- Sample image shows typical field of view with camera at 20' height.
- Images processed by YOLOv5 detection module

TPAS 2.0 – Video Analytics

TPAS Architecture Capability Matrix							
Function	Supp	port					
	Count in/out	Per Space					
otal count of vehicles in lot	Yes	Yes					
Ouration of stay (e.g., overstay alerts that warrant occupant health/safety checks)	Yes*	Yes					
Duration of stay per space	No	Yes					
Handicapped space utilization	No	Yes					
Parking behavior (e.g., identifying preferred spaces, space selection/use trends)	No	Yes					
Space utilization by vehicle class (e.g., tractor-trailer, bus, RV)	No	Yes**					
Detection of vehicles parking outside of designated spaces	No	Yes**					

^{*}Only supported if counting system is also capable of unique vehicle ID (e.g., license plate recognition at ingress/egress)



^{**}Generally requires use of systems that rely upon video analytics

Research, Studies, and Plans

More than 30 studies and plans have been initiated by FDOT regarding the truck parking issue.

- Re-purposing closed rest areas for truck parking (D1)
- Rest area redesigns to accommodate additional parking (D1, D2, D5, D7)
- Add parking or re-purpose existing FDOT-owned facilities/ROW (D2, D4, D7)
- Truck-only facilities (D2, D5, D6, D7)
- Local government coordination for sites and policy (D1, D5, D6)
- Truck parking studies to identify sites (D1, D5, D6)
- Truck Parking Conceptual Design and Feasibility Study (D3)

Past, Present, and Future Projects

TRUCK PARKING

VENDING - WIFI

Partially Funded

Projects

6 Completed projects

U.S. Department of Transportation

Rura

I-4 Truck Parking Facilities

INFRA Award: \$180,009,420

Osceola, Seminole and Volusia Counties, Florida

Applicant: Florida Department of Transportation

32

Fully Funded Projects

Truck Parking Program

Thank you

REST AREA TRUCK PARKING

SPACES
AVAILABLE

Marie Tucker
Programs Manager
(850) 410-5619
Marie Tucker@dot.state.fl.us

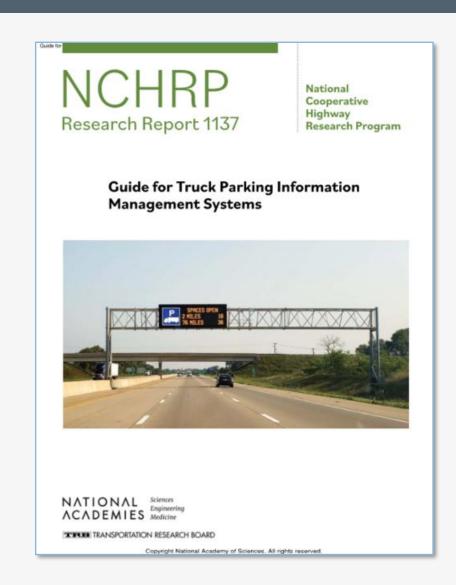
HNTB

TPIMS: For Success, the Details Matter

Chuck Miller, PhD, PTOE

TRB Webinar – December 15, 2025

Presentation Overview


Truck Parking Information Management System (TPIMS)

- Implementing
- Procuring and Deploying
- Operating and Maintaining

Basis of Presentation

- NCHRP Research Report 1137 Guide for Truck Parking Information Management Systems
- Project Experience
 - MAASTO TPIMS Program Management
 - Kansas DOT TPIMS Design
 - Iowa DOT TPIMS Procurement Guidance
 - Kansas Turnpike TPIMS Deployment Support
 - I-10 TPAS (Texas, New Mexico, Arizona & California)

TPIMS: For Success, the Details Matter

Implementing TPIMS

- Identify Detection Technology
- Determine Methods for Site Surveillance
- Select Roadside Assets
- Consider Methods for Information Sharing
- Choose Data Exchange Protocols

TPIMS: For Success, the Details Matter

Identify Detection Technology - Options

Entrance and Exit Counting Technologies

- Magnetometer
- Video Detection
- Microwave Radar
- Laser
- Loop Detectors
- Access Gate
- Space Occupancy Detection Technologies
 - Magnetometer
 - Combined Magnetometer and Microwave Radar
 - Magnetometer with Infrared
 - Video Detection
 - Radar Detection

Identify Detection Technology – Selection Considerations

- Type of Traffic on Driveways
- Driveway Geometrics
- Intrusive Versus Non-Intrusive
- Number of Sensors to Maintain
- Exposure to Trucks

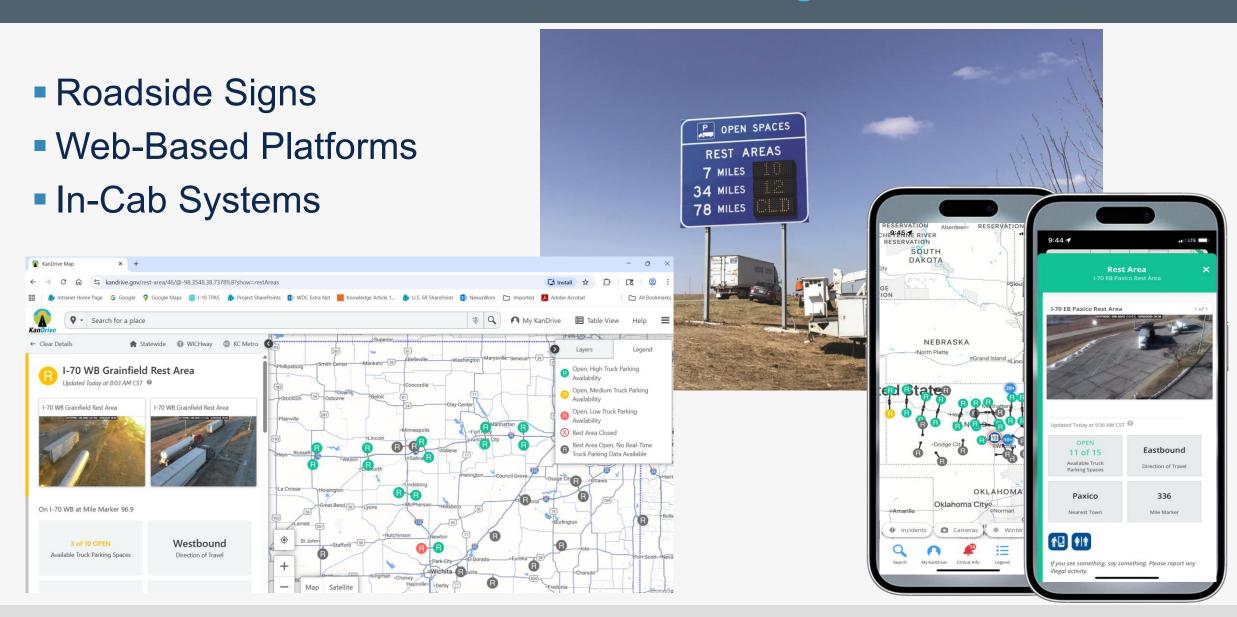
Source: Google Earth

Source: Google Eart

Determine Methods for Site Surveillance

- Maintain System Accuracy
- Manual Visual Checks/Resets
- Surveillance Cameras
- Critically Important Entrance and Exit Counting
- Improved Technology
- Parking Area Configuration

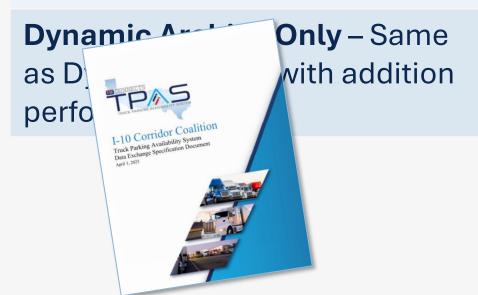
Source: Google Earth

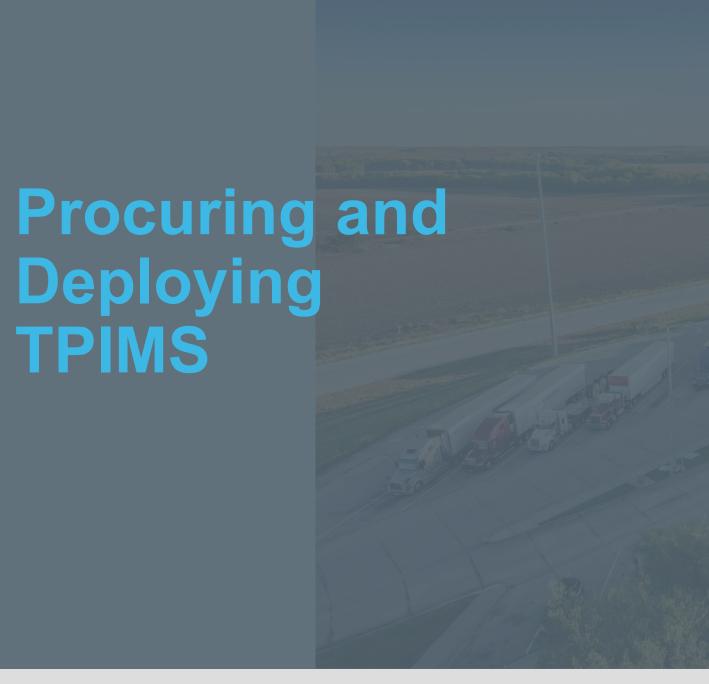

Select Roadside Assets

- Truck Driver Surveys Found Signs Preferred
- Types of Signs
 - Static Panel Matrix Displays
 - Full Dynamic Message Signs
- Distance Upstream
- Number of Locations Shown
- Type of Parking Facility
- Other Parking Facilities
- Other Signs

Consider Methods for Information Sharing

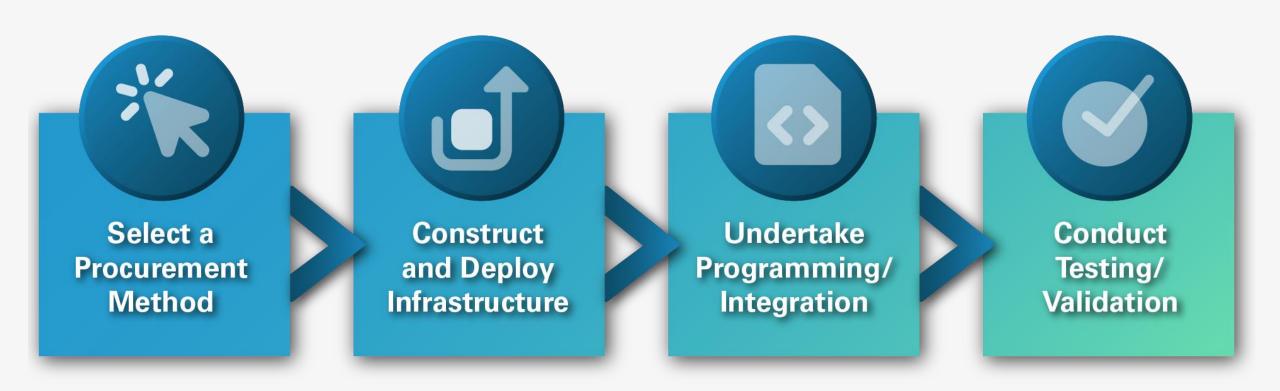
TPIMS: For Success, the Details Matter


Choose Data Exchange Protocols


- Potential Data Users
 - Other State Applications
 - Adjacent States
 - Third-Party Travel Information Providers
 - Performance Measurement Evaluators
- Data Exchange Specification
 - Data Exchange Protocol
 - Data to be Shared
 - Data Format

MAASTO Project API

Dynamic Public – Availability and status data, Update at least every 5 minutes


Static Public – Parking area attributes, Updated as needed

Steps to Procure and Deploy TPIMS

Select Procurement Method

Procurement Options	Pros	Cons
Design-Bid- Build	 Typical process used by agencies for infrastructure deployment. Provides the transportation agency with the most control over the final product. 	 Construction cost is not fully known until project bids are received. May lead to selection based on the lowest bidder.
Design-Build	 Reduce the time required to deploy a system by eliminating a second procurement process and allowing concurrent design and construction. Reduces agency effort in the design and specifications 	 Lack of a bidding process can result in higher costs. Requires more oversight from the transportation agency, either from the agency or a third party.

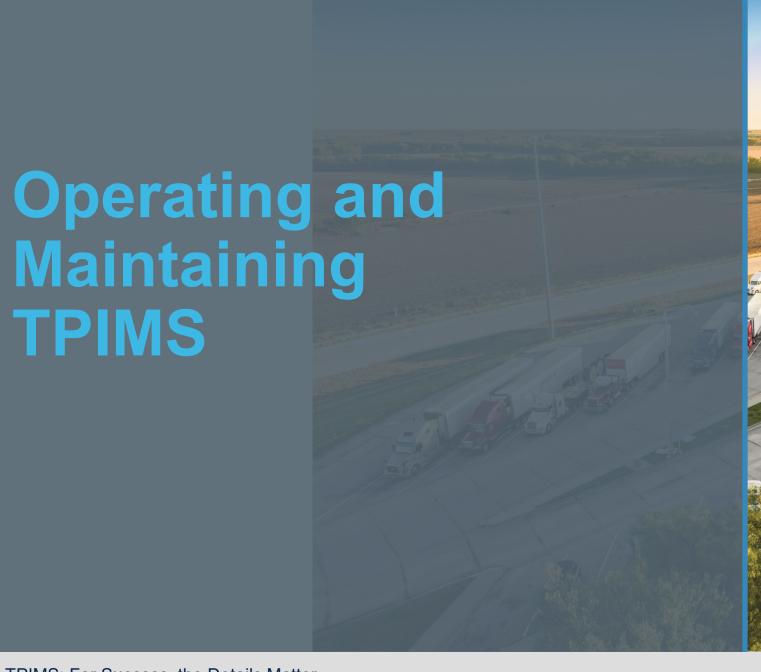
Construct and Deploy Infrastructure

- Typical Infrastructure Covered by Standard Plans and Specs
 - Sensor Support Structures
 - Conduits
 - Pull Boxes
 - Cabinets
 - Camera Poles
- Sensor Technology Evolving
 - Polit Tests
 - Best Value Procurement

- Signs
- Sign Support Structures
- Power Supplies
- Communications and power Cables
- Communication Network Devices

Undertake Programing/Integration

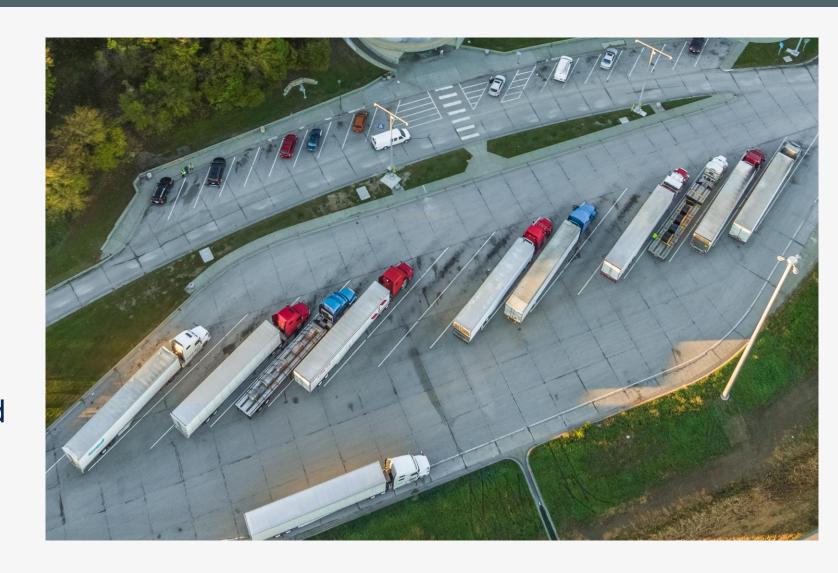
- Back-Office System Functionality
 - Communication with Sensor Technology
 - Process Sensor Data into Parking Availability
 - Site Camera Viewing
 - Reset Parking Availably Counts
 - Post Parking Availability on Roadside Signs
 - Provide Parking Availability Data to Agency's Advanced Traveler Information System
 - Provide an API to Share Data
 - Archive the Availability Data


Parking Availability Data Processing Approaches

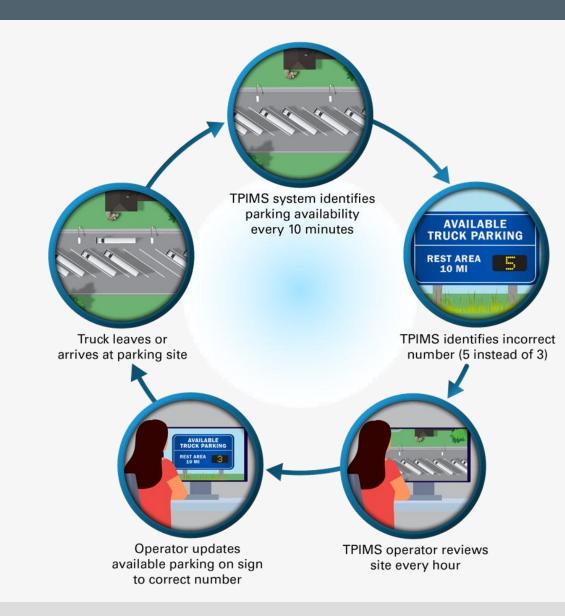
- Central/Integrated
 Software
- Independent Software
- Software-as-a-Service

Conduct Testing/Validation

- Critical Step in a Successful System
- Fulfills the Systems Engineering Process
- Typical Steps
 - Component Testing
 - Standalone Site Testing
 - Subsystem Testing
 - System Acceptance Testing/System Verification
 - System Validation



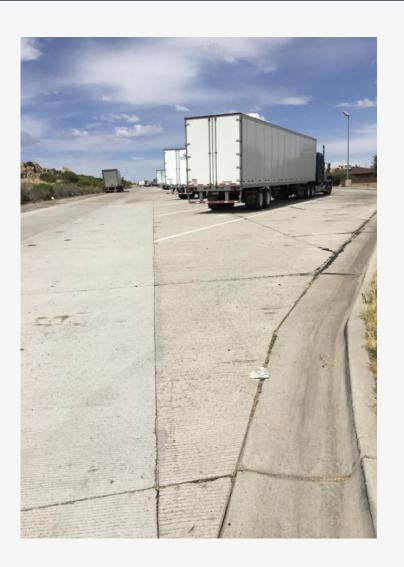
TPIMS


Operating and Maintaining Considerations

- Operating Requirements
- Reporting of Parking Availability
- Methods for Capturing Performance Measures
- Maintenance Requirements
- Data Management and Archiving

Operating Requirements

- Resetting Incorrect Parking Availability
 - Manual Visual Review
 - Entrance and Exiting Counting vs. Space Occupancy
- Monitoring System Component Operations
 - Automating Malfunction Reporting
- Improving Technology
 - Reduce Errors
 - Automate Reviews
- Support Staff Available


Reporting of Parking Availability

- Types of Error Consideration
 - Inaccurate Parking Availability Calculated
 - Driver Perception of Parking Capacity
 - Timing Lag
- Suggested Mitigation
 - Report "LOW" Instead of an Actual Number When Parking Area is Near Full

Methods for Capturing Performance Measures

- System Performance Measures
 - Accuracy
 - Downtime
- Other Performance Measures
 - Parking Usage
 - Informal Parking
- Driver Surveys

Maintenance Requirements

- Types of Maintenance
 - Field Devices
 - Communications Links
 - Back-Office Systems
- Who Does Maintenance
 - Agency Staff
 - Contract Staff
- Other Maintenance Impacts
 - Mill and Overlays
 - Parking Reconfigurations

Data Management and Archiving

- Data Uses
 - Performance Measures
 - Freight Planning
- Data Management
 - Archiving Policies
 - Methods of Sharing Data
- Agency Data Policies

SITE_ID	TIME_STAMP	TIME_STA AVAILABLE	TREND	OPEN	TRUSTDAT REPORTED	AVAILABLE	MANUAL_RESET	
KS00070IS000071OWRULETORA	17-JAN-19 12.02.31 AM	26-DEC-18	7	1	1	7	,	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.07.01 AM	26-DEC-18	7	1	1	7	7	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.11.44 AM	26-DEC-18	8	1	1	8	3	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.16.34 AM	26-DEC-18	8	1	1	8	3	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.21.40 AM	26-DEC-18	7	1	1	7	7	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.26.35 AM	26-DEC-18	7	1	1	7	,	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.31.31 AM	26-DEC-18	7	1	1	7	1	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.36.26 AM	26-DEC-18	6	1	1	6	5	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.41.24 AM	26-DEC-18	6	1	1	6	5	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.46.39 AM	26-DEC-18	6	1	1	6	5	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.51.31 AM	26-DEC-18	5	1	1	5	5	-1
KS00070IS000071OWRULETORA	17-JAN-19 12.56.34 AM	26-DEC-18	5	1	1	5	5	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.01.38 AM	26-DEC-18	5	1	1	5	i	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.06.26 AM	26-DEC-18	4	1	1	4		-1
KS00070IS000071OWRULETORA	17-JAN-19 01.11.32 AM	26-DEC-18	5	1	1	5	i	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.16.33 AM	26-DEC-18	2	1	1	2	!	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.21.32 AM	26-DEC-18	3	1	1	3	3	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.26.32 AM	26-DEC-18	2	1	1	2	2	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.31.33 AM	26-DEC-18	1	1	1 LOW			-1
KS00070IS000071OWRULETORA	17-JAN-19 01.36.34 AM	26-DEC-18	2	1	1	2		-1
KS00070IS000071OWRULETORA	17-JAN-19 01.41.34 AM	26-DEC-18	3	1	1	3	3	-1
KS00070IS000071OWRULETORA	17-JAN-19 01.46.30 AM	26-DEC-18	1	1	1 LOW			-1
KS00070IS000071OWRULETORA	17-JAN-19 01.51.29 AM	26-DEC-18	4	1	1	4		-1
KS00070IS000071OWRULETORA	17-JAN-19 01.56.31 AM	26-DEC-18	4	1	1	4		-1

HNTB

Chuck Miller, PhD, PTOE HNTB Corporation Phone: 816-527-2696

Email: cmiller@hntb.com

Today's Presenters

Dr. Sadaf Khosravifar skhosravifar@nas.edu

Peter Rafferty
p-rafferty@tti.tamu.edu

Dr. Charles Miller cmiller@hntb.com

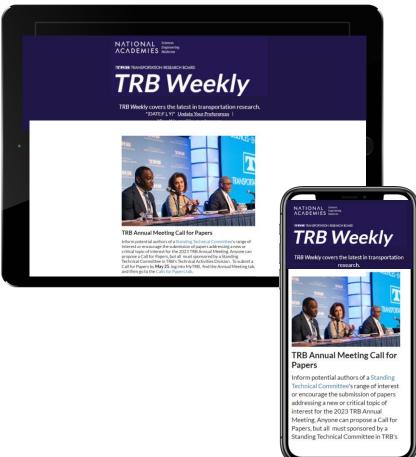
Marie Tucker marie.tucker@dot.state.fl.us

Upcoming events for you

January 11-15, 2026

2026 TRB Annual Meeting Washington, DC

https://trb-annual-meeting.nationalacademies.org

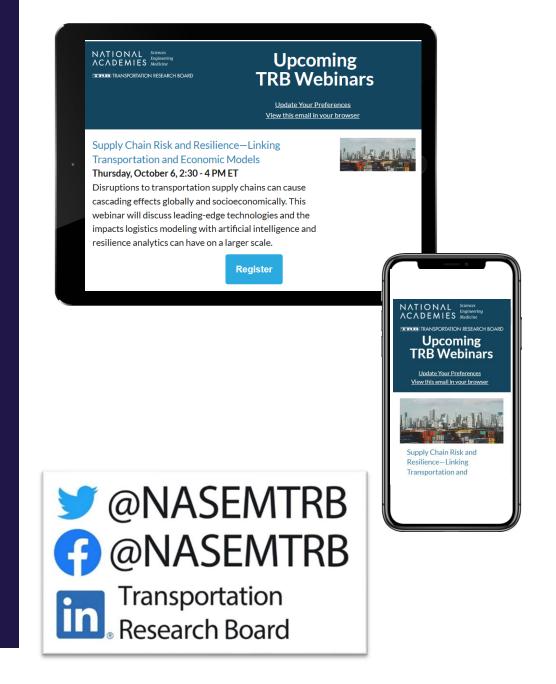


Subscribe to TRB Weekly

If your agency, university, or organization perform transportation research, you and your colleagues need the *TRB Weekly* newsletter in your inboxes!

Each Tuesday, we announce the latest:

- RFPs
- TRB's many industry-focused webinars and events
- 3-5 new TRB reports each week
- Top research across the industry

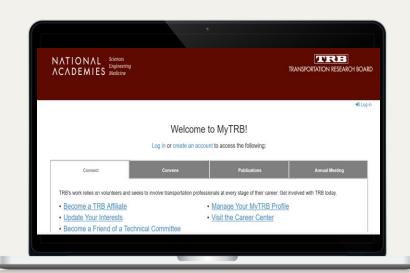

Spread the word and subscribe! https://bit.ly/ResubscribeTRB Weekly

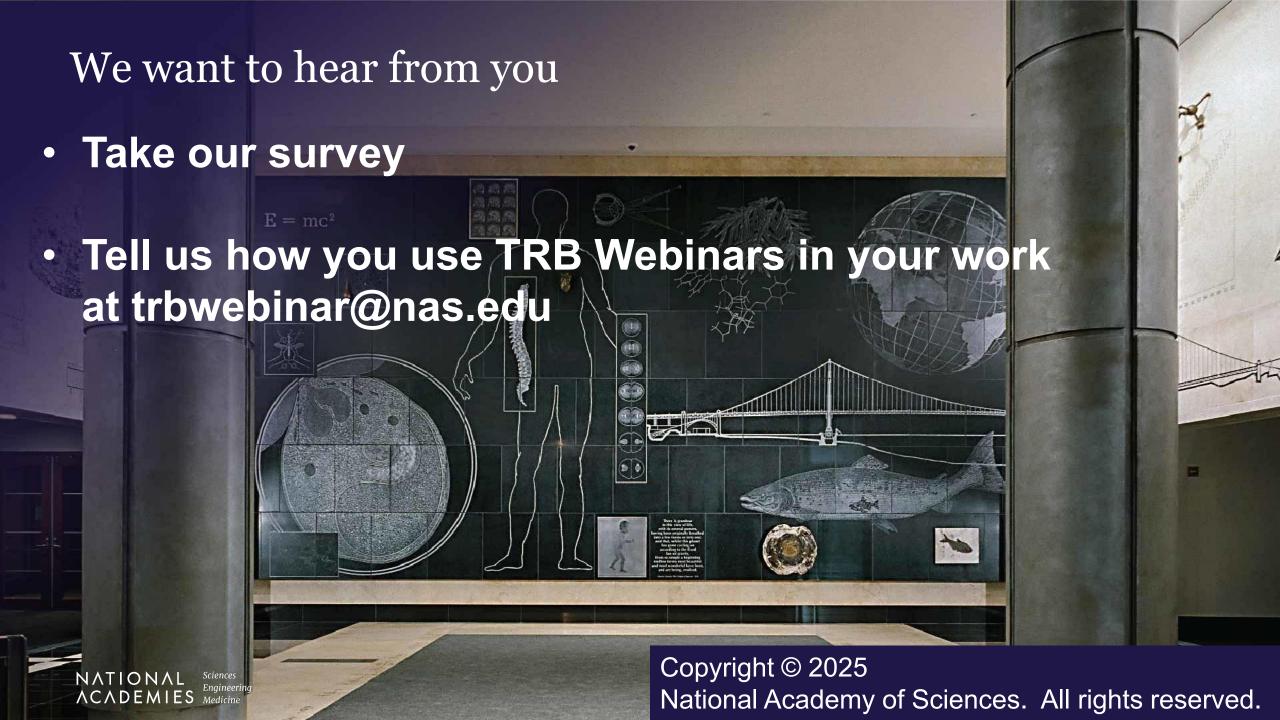
Discover new TRB Webinars weekly

Set your preferred topics to get the latest listed webinars and those coming up soon every Wednesday, curated especially for you!

https://mailchi.mp/nas.edu/trbwebinars

And follow #TRBwebinar on social media


Get involved


TRB mobilizes expertise, experience, and knowledge to anticipate and solve complex transportation-related challenges.

TRB's mission is accomplished through the hard work and dedication of **thousands of volunteers**.

https://www.nationalacademies.org/trb/get-involved

