

Beta Testing and Validation of HMA PRS

NCHRP 9-22 WEBINAR

December 15, 2010

Introduction to Project

- Project Team
- Specification Developments
 - Materials and Method Specifications
 - Performance Based Specifications
 - Performance Related Specifications
- NCHRP 9-22
 - Project history
 - Objectives

Project Team

Fugro Consultants, Inc., Austin, TX

- Prime contractor and project management
- Manual of Practice of the HMA PRS
- Software de-bugging
- Arizona State University
 - Technical program development
 - Spreadsheet solution for the three MEPDG distresses
 - Software de-bugging
- Transmetric America Inc.
 - C++ Software Development lead
 - Users Manual

- Materials and Method Specifications
 - Direct the contractor to use specified materials in definite proportions and specific types of equipment and methods to complete the work
 - Each step is usually directed by a representative of the agency

- Quality Assurance Specifications
- Materials and construction (M&C) variables used in process control and acceptance
- HMA volumetric properties (air voids, asphalt content, aggregate gradation, etc.) are assumed to relate to performance
- These properties referred to as Acceptance Quality Characteristics (AQCs)
- Primarily tied to performance through intuition, engineering judgment, or both

Performance Based Specifications (PBS)

- The AQCs of the mixture and the pavement are defined in terms of performance using *measured* fundamental engineering properties and prediction models
- Specifications describe how the finished product should perform over time
- Has had limited acceptance in the industry because of timely acceptance testing issues and with no consensus as to the performance time period

Performance Related Specification (PRS)

- Similar to Performance Based Specifications
- AQCs are correlated to fundamental engineering characteristics and in turn to performance through prediction models
- Connection to performance through valid empirical or mechanistic prediction models
- Relationships between material properties such as HMA layer thickness, strength, and pavement distresses to fundamental engineering properties

- Performance Related Specification (PRS) con't
- Performance of the pavement predicted based on the as-designed and the asconstructed properties.
- Difference in predicted performance between the as-designed and asconstructed pavement is the basis calculating incentive/disincentive for contractors.

- In 1994 the FHWA funded the design, construction, and application of loads on a test track project, Westrack, that provided the basis for the development of a prototype PRS
- Quantified the effects of variation in materials and construction (M&C) properties on overall pavement performance

- The project team developed empirical relationships and formed the basis for the performance prediction models used in the supporting software, HMA Spec
- Limitations were identified in the HMA Spec software and project NCHRP 9-22 was initiated

- Awarded to Fugro Consultants LP (Fugro), October 2000
- Project Scope
 - Evaluate and refine the HMA PRS and supporting HMA Spec software
 - Calibrate and validate the Level I and II performance models
 - Develop a training course to assist the implementation of the HMA Spec software

- Scope modified in April 2001 to include the MEPDG Prediction Models
- Use the Mechanistic-Empirical (M-E) Design Guide Software produced in NCHRP Project 1-37A as the "engine" for performance prediction models in the HMA PRS.

- Project "on hold" awaiting development of the MEPDG models
- MEPDG software "run times" for specification simulation were unacceptable
- Project "on hold" to resolve run time problem

- Scope revised in 2005 to develop spreadsheet solutions
- Excel® based distress prediction model simulation runs were instantaneous
- Since Excel® software is "version dependent", decision made in 2006 to convert to C++ software

- Development of Spreadsheet Solutions (rutting, fatigue, thermal cracking)
 - Preliminary integration of spreadsheet solutions into HMA Spec
 - Rename software to Quality Related Specification (QRSS)

- Prepare QRSS alpha version
- Prepare and test QRSS beta version
- Final Report and presentation of results to the NCHRP Panel

Arizona State University Presentation

TRB Webinar Series

A Rational Methodology to Assess Performance Related Pay Factors for Asphalt Pavements

Introduction and Overview

Dr. M. W. Witczak Professor, Civil and Environmental Engineering

Program Demonstration

Dr. M. Jeong Pavement Specialist AMEC Earth and Environmentl, Inc.

STUDY PURPOSE

Ultimate Goal in Pavement Technology is...

Asphalt Mix Design NCHRP 9-19 (SPT)

Simultaneous Asphalt Mix and Structural Pavement Design

ME PDG Pavement Design NCHRP 1-37A/ NCHRP 1-40

HMA Probabilistic PRS Methodology: NCHRP 9-22

Mark .

ME-PDG Version 1.0 Solution-Necessity for Rapid Solution

m so				
	<u>No of</u> <u>Variables</u>	<u>Comp Hrs</u>	<u>Comp Days</u>	<u>Comp Yrs</u>
	6	32	1.33	-
	10	512	21	.06
	20	524,288	21,845	59.9
	50	5.63xE^14	2.35xE^13	6.43xE^10
	64	9.2xE^18	3.84xE^17	1.05xE^15
	NCHRP9-22 B	eta Testing and		

Validation of HMA PRS

General Approach

Develop Closed Form Solutions for Major M-E PDG HMAC Distress Types

- HMAC Rutting
- HMAC Fatigue (Alligator)
- HMAC Thermal Fracture

□ Solutions Need to Be:

- Rapid (Seconds or Minutes)
- Highly Accurate When Compared to M-E PDG Solutions
- Simple to Implement
- Code Methodology
 - Spreadsheet to C++

General Approach

Run simulation of M-E PDG

Matrix of runs for all key variables

Develop accurate statistical closed form predicted model

Damage M-E PDG ≈ Damage PM

Develop spreadsheet (Excel) system solution

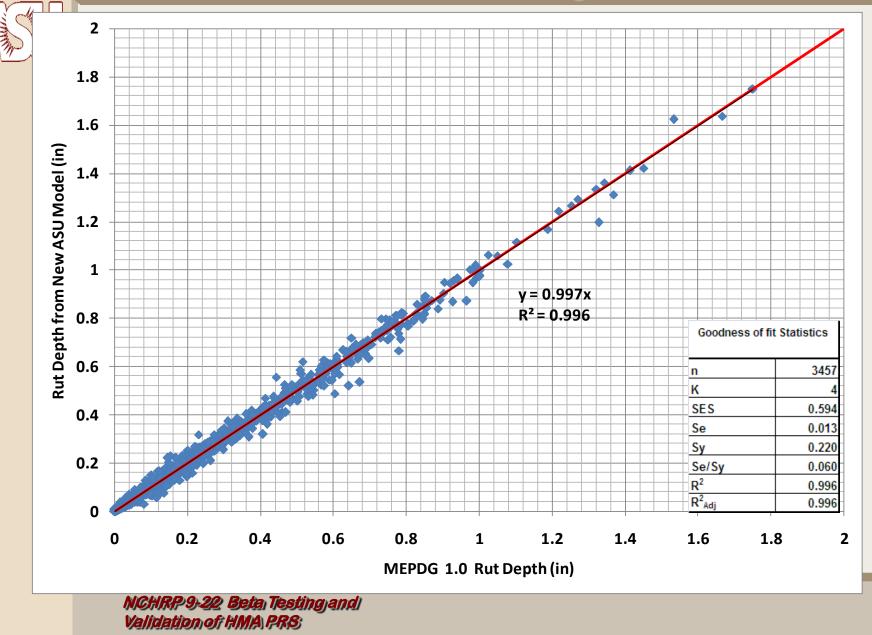
Deterministic Job Mix assessment vs. Plant Mix assessment.

□ Incorporate Probabilistic solution

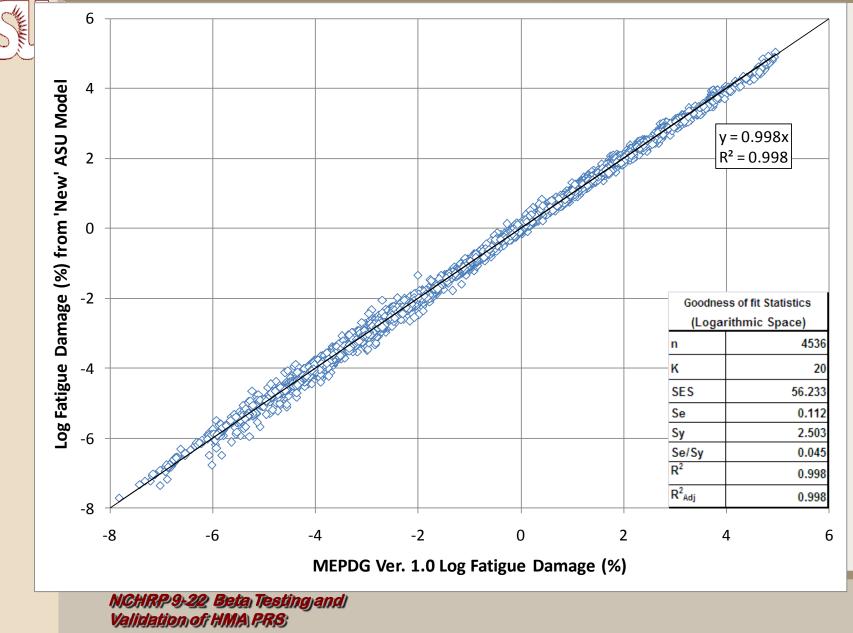
Probabilistic Job Mix assessment vs. Plant Mix assessment (Rosenblueth, Monte Carlo simulation, Taylor series).

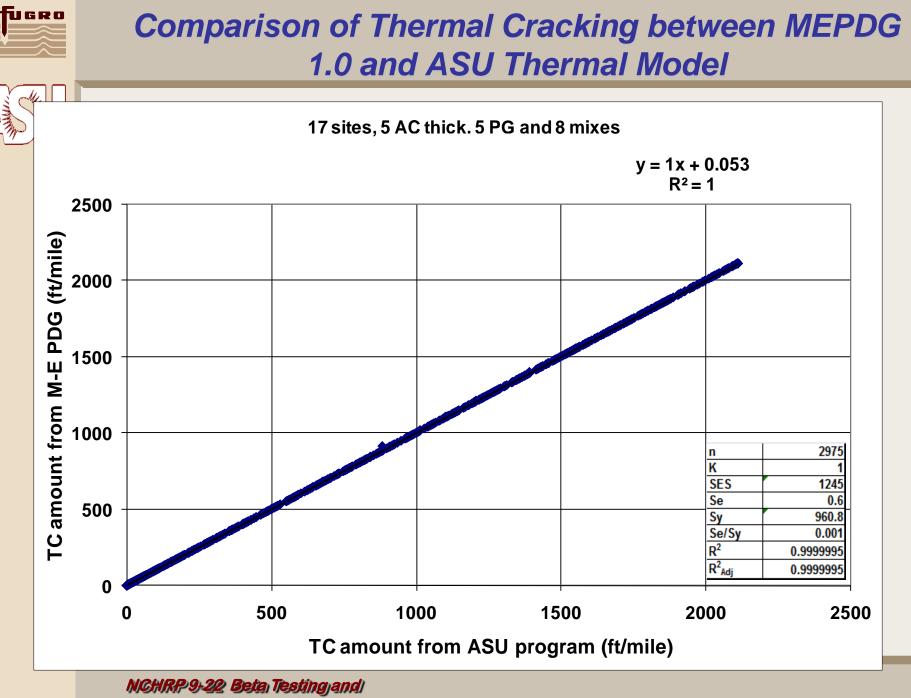
Develop C++ user friendly program

Insure that spreadsheet deterministic yields accurate solution to M-E PDG.



- No Seasonal changes for unsaturated E (base/subbase/subgrade).
- PLD: Service Life Difference between Job Mix design (Lab) AC mix and Field (In-situ) AC mix
- Predicted Life Difference is the basis of the Pay Factors
- Deterministic and Probabilistic Analysis.
- □ Final Product :User Friendly C++ Code (Mimics AASHTO MEPDG)




Comparison of Rut Depth between MEPDG 1.0 and ASU Rutting Model

Comparison of Fatigue Damage between MEPDG 1.0 and ASU Fatigue Model

Validation of HMA PRS

Effective Temperature for Fatigue Cracking (Cont'd)

$$T_{eff} = -1.016814 \sqrt{f_{eff}} - 17.691387 + T'_{f}$$

 $T'_{f} = 1.110(MAAT) + 1.254(\sigma_{MMAT}) - 1.132(Wind) + 0.337(Sunshine) + 0.071(Rainfall)$

- = effective temperature for bottom-up fatigue cracking,
- $\Box f_{eff} = effective frequency$
- $\Box T'_{f} = climatic factor$
- □ MAAT = mean annual air temperature, °F
- □ Sunshine = mean annual sunshine, %
- □ Wind = mean annual wind speed, mph
- Rainfall = mean cumulative rainfall depth, inches

Note that this climatic factor is the same for both AC rutting and Alligator Fatigue Cracking.

Effective AC Modulus (E* eff)

$$\begin{split} \text{Log } \text{E}^*_{\text{eff}} &= -1.249937 + 0.029232 \cdot \text{p}_{200} - 0.001767 \cdot (\text{p}_{200})^2 - 0.002841 \cdot \text{p}_4 \\ &- 0.058097 \cdot \text{Va} - 0.8022 \cdot \frac{\text{Vb}_{\text{eff}}}{(\text{Vb}_{\text{eff}} + \text{Va})} \\ &+ \frac{3.87197 - 0.0021 \cdot \text{p}_4 + 0.003958 \cdot \text{p}_{38} - 0.000017 \cdot (\text{p}_{38})^2 + 0.00547 \cdot \text{p}_{34}}{1 + e^{(-0.603513 - 0.31335 \cdot \log(f_{\text{eff}}) - 0.393532 \cdot \log(\eta_{T_{\text{eff}}}))}} \end{split}$$

 E_{eff}^* = effective Asphalt Mix Dynamic Modulus, in 10⁵ psi.

 η_{Teff} = bitumen viscosity in 10⁶ poise (at effective temperature for fatigue).

Vbeff = % effective bitumen content, by volume

p34 = % retained on the ³/₄ inch sieve, by total aggregate weight (cumulative)

p38 = % retained on the 3/8-inch sieve, by total aggregate weight (cumulative)

p4 = % retained on the No. 4 sieve, by total aggregate weight (cumulative)

p200 = passing the No. 200 sieve, by total aggregate weight

Input Variables for Each Distress

□ Three INPUT parts

- **1.** Initial User Input
 - General and Basic information for the project (Project Info, Traffic, Climatic, Structure...)
- **2.** As-Design Job Mix Formula Input
 - Mean and Standard Deviation of necessary variables for the Stochastic Analysis

(Volumetric Properties, Gradation...)

3. As-Constructed Data (each lot)

- Raw data collected from the field
- From the raw data, the mean and standard deviation will be computed

Development of Probabilistic Based PRS Model Requirements

As Built si^2 (Variance) of all Key Specific Mix and Pavement Cross Section Variables for a Unique Project in a Given Environment

- Mix Volumetrics (Va%, Vb%)
- Mix Gradation (P200, P4 etc..)
- PG Grade (Gb*, Viscosity, Pen)
- HMA Mass Density
- Pavement Cross Section (hac....)

Start Thinking of these Parameters for Two Conditions

Lab or Job Mix Design (Demand Function)

Actual Product Produced by Contractor in-Situ (Capacity Function)

Job Mix Vs. Plant Produced Variability

		Job Mix (Design) Formula – Demand Function		
_		μ _i = X _i X _i (use Job Mix Formula)	σ _i (use historical literature review for "typical" plant variability expected)	
		Plant Produced –	Capacity Function	
	_	μ _i = X _i X _i (use Job Mix Formula)	σ _i (use as produced variation of parameters from plant production)	
2		NCHRP9-22 Beta Testing and Velidation of HMA PRS:		

Input Variables for Each Distress

Critical Inputs for Probabilistic Analysis of JMF

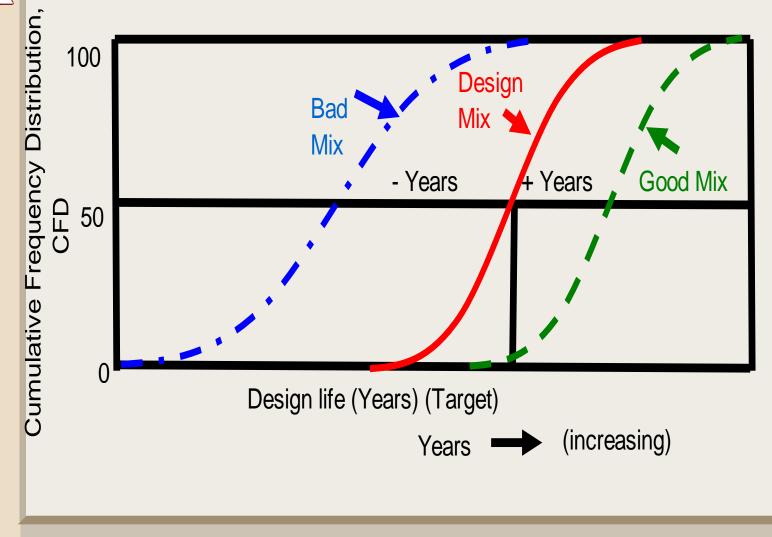
Critical Inputs	Unit	Rutting		Fatigue .C.		Thermal C.	
Childa inputs		Mean	S.D.	Mean	S.D.	Mean	S.D.
Target In-Situ Air Voids	%	Т	H.V.	Т	H.V.	Т	H.V.
Effective Binder Content by Vol.	%	С	С	С	С	С	С
Cum. Retained 3/4	%	Т	H.V.	Т	H.V.		
Cum. Retained 3/8	%	Т	H.V.	Т	H.V.		
Cum. Retained #4	%	Т	H.V.	Т	H.V.		
Passing #200	%	Т	H.V.	Т	H.V.		
Gmm	N/A	D	H.V.	D	H.V.	D	H.V.
Gmb	N/A	D	H.V.	D	H.V.	D	H.V.
Gsb	N/A	D	H.V.	D	H.V.	D	H.V.
T – Transported from	Initial In	Dut D	– Direct I	Icor Input	or Dafaul	t Valua	

T = Transported from Initial Input D =

D = Direct User Input or Default Value

C = Computed by Other Variables NCHRP 9-22 Beta Testing and Validation of HMA PRS

H.V. = Historical Value or User can input

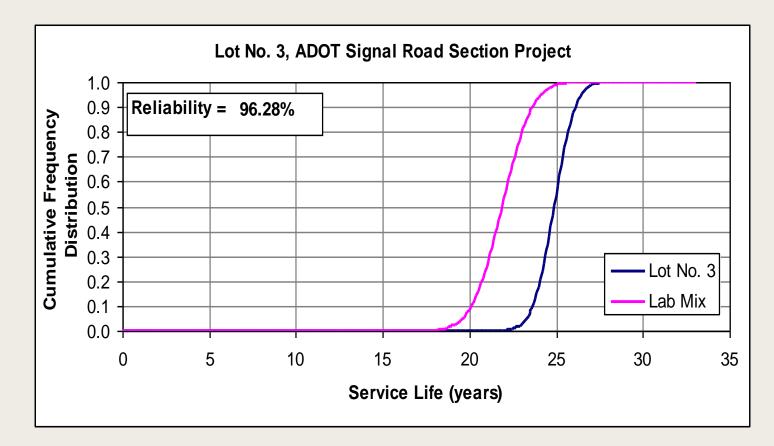

Calculation of the Variance Associated with the Service Life

- Each of the variables in the equation is treated as a random number following a Normal Probability distribution with a mean and standard deviation calculated from the statistical analysis of the field measured values for the as-constructed mix.
- For the JMF (JMD), historical (National or State) standard deviations of these variables are used.
- □ For the "As Produced" product, actual Lot-Project standard deviations of same key variables are used.
- The AC distress type mean and variance is then predicted based on these E* values from Monte Carlo simulation runs.

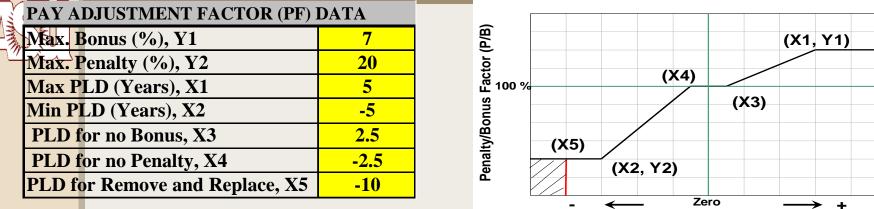
Cumulative Frequency Distribution of the Service Life

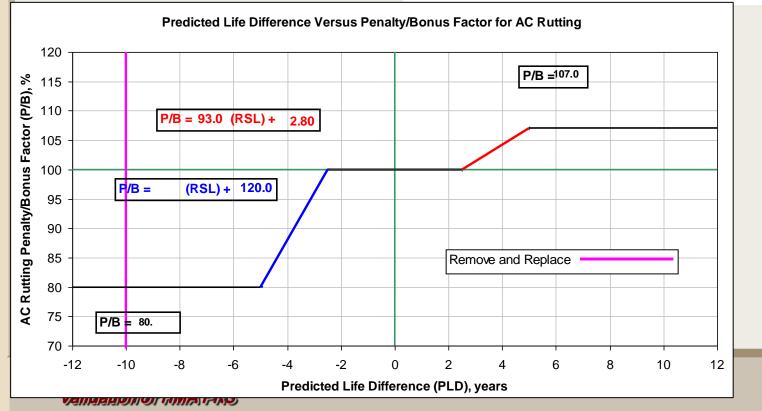
Calculation of Predicted Life Difference (PLD)

- The program allows the user to select the PLD to be calculated using either one of the following methods:
 - a) $PLD_T = (In Situ Mix Life Target Life)$ In this case, the predicted life difference " PLD_T " is calculated as the average difference between the cumulative frequency distribution curve of the In Situ Mix Life and the constant Target Design Life.


b)PLD_J = (In Situ Mix Life - JMF Life)

In this case, the predicted life difference "PLD_J" is calculated as the average difference between the cumulative frequency distribution curves for the In Situ Mix Life and the Job Mix


Example Comparison between Cumulative Distributions of Service Life Between Design and As Constructed Mix (Single Lot)


 $PLD_T = (In Situ Mix Life - JMF Life)$

Project Input Data (Cont's)

Predicted Life Difference (PLD), years

Final P/B Cost

$$PB Cost for IRI$$

$$PB Cost for IRI$$

$$PB Cost for three distresses$$

$$C_{PB} = C_{PB1} + C_{PB2}$$

$$PB Cost for three distresses$$

$$\left(\sum_{PB1} = \beta_r \left\{ P_{r,s} \left(\sum_{n,k} (P/B)_{n,k} - 1 \right) C_{AC_{-S}} + P_{r,s} \left$$

Mode I Output

MODE I : Simultaneous Asphalt Mix and Pavement Structural Design (M-E PDG Shortcut)

SUMMARY OF PROGRAM INPUT

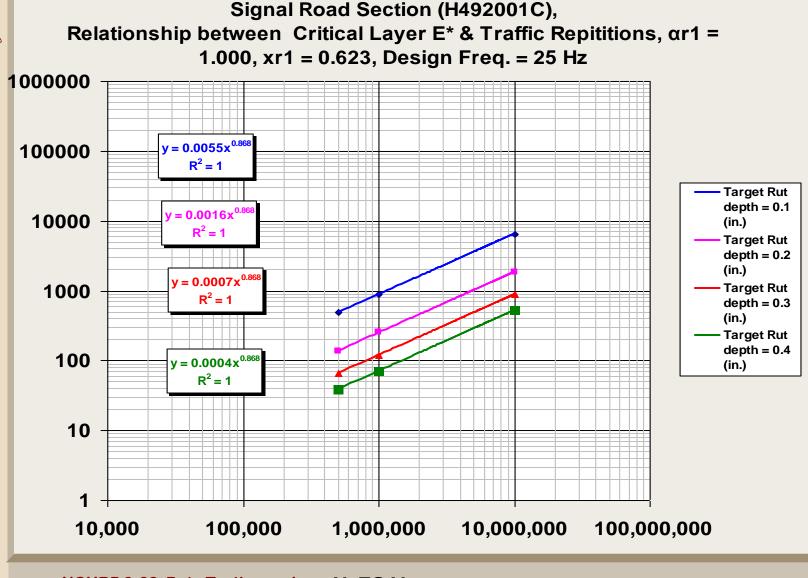
PROJECT GENERAL INPUT DATA

Project ID	H492001C
Project Location	Signal Road Station
Date of Analysis	1/16/2007
Operator's Name	Ajatshatru Patni

PROJECT TRAFFIC AND CLIMATIC CONDITION

Desired Speed (mph)	65
Desired Traffic (ESALs)	5,900,000
Mean Annual Air Temperature (oF)	57.86
Mean Monthly Air Temp St. Dev. (oF)	18.80
Mean Annual Wind Speed (mph)	8.24
Mean Annual Sunshine (%)	89.41
Annual Cummulative Rainfall Depth (in)	8.23

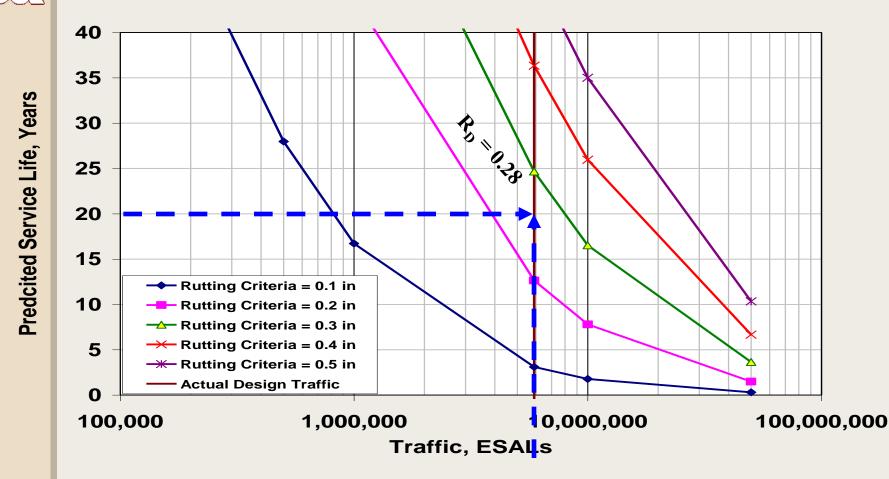
SUMMARY OF PROGRAM OUTPUT


(Deterministic Solution Results)

Layer Label ID	SHRP 3/4"		
Layer Thickness (in)	5		
Effective Frequency (Hz) **	33.74		
Effective Temperature (oF)	103.16		
SPT Recom. Frequency (Hz)	25	25	
SPT Recom. Temperature (oF)	100.95		
Allowable Rut Depth (in)	0.30		
Allowable Layer E* (ksi)	557.178		
Predicted Rut Depth (in)	0.34		
Predicted Layer E* (ksi)	461.119		
		<u> </u>	
Acceptable (Rut) ???	NO		
Acceptable (E*) ???	NO		

Critical E*(ksi)

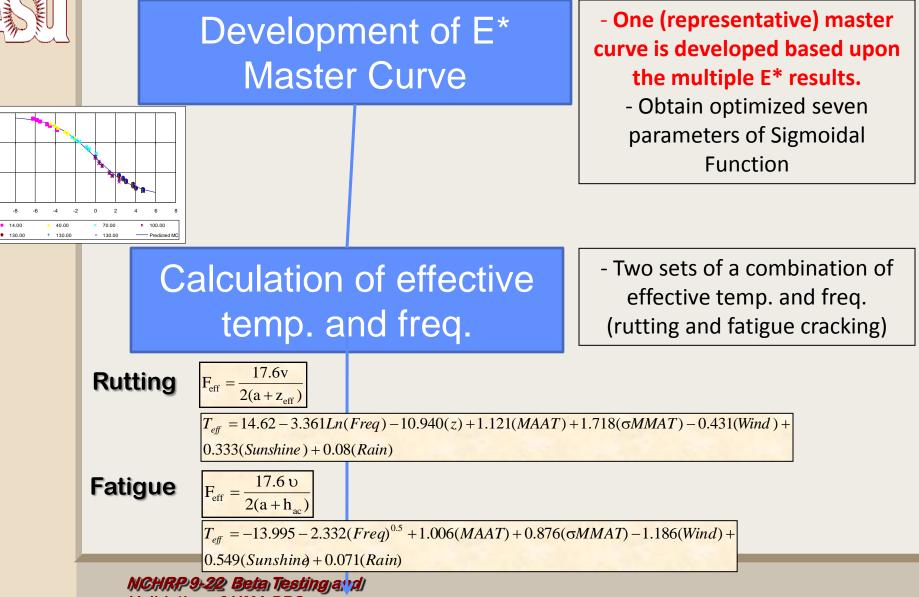
Influence of the Traffic Repetitions upon the Critical E* for Signal Road Section


NCHRP 9-22 Beta Testing and Validation of HMA PRS

N, ESALs

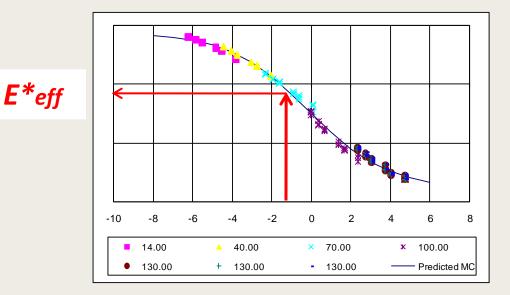
Influence of Traffic Level upon Predicted Service Life (ADOT Signal Road Section Project – ADOT Traffic

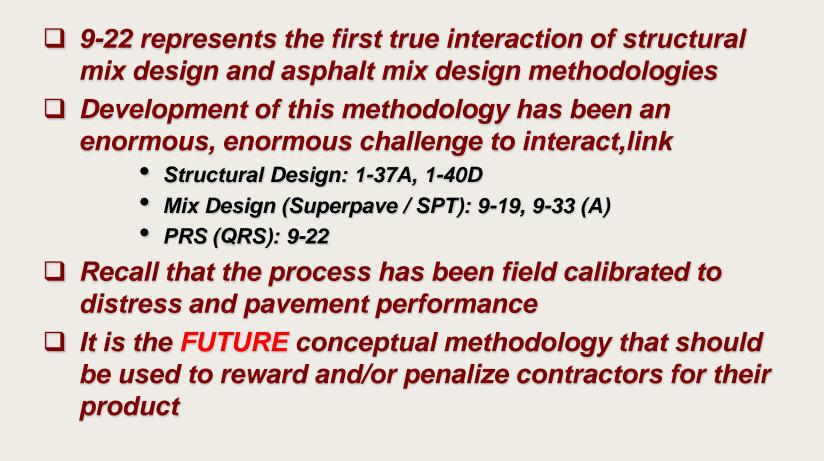
Known)


Simple Performance Test Procedure

The developed prediction models include Mix Characterization Property

- Dynamic Modulus
 - For the analysis of rutting and fatigue cracking
- Creep Compliance
 - For the analysis of thermal fracture
- Two options available to obtain the properties
 - 1: Use of Lab-measured data (Simple Performance Test)
 - Dynamic Modulus Test and Creep Compliance Test
 - 2: Use of Volumetric information
 - WPE for E* and a set of regression equations for D


Validation of HMA PRS


Calculation of Effective Dynamic Modulus.

 Based upon the master curve as well as eff. Temp. and freq. ,
 E*eff s are calculated for rutting and fatigue cracking

$$log(E^*) = \delta + \frac{\alpha}{1 + exp(\beta + \gamma \log t_r)}$$
$$aT_{eff}^2 + bT_{eff} + c = log(a(T))$$
$$log(a(T)) = log\left(\frac{1}{f_{eff}}\right) - log(t_r)$$

