

PAYNE & DOLAN INCORPORATED

Overview of Warm-Mix Asphalt for Virgin and Reclaimed Asphalt Mixes

TRB Warm Mix
May 25, 2010
John Bartoszek
jbartoszek@crmanagement.com

Overview

- Payne & Dolan Inc
- Driving factors for Warm Mix
- Warm Mix Asphalt Technology
- First Trial with Warm Mix
- Project Application
- Lessons Learned

Payne & Dolan Inc Vertically Integrated Construction Company

European Scan Tour-Group

- Eric Harm, chairman
- John D'Angelo, co-chairman
- Gaylon Baumgardner
- John Bartoszek
- Matthew Corrigan
- Jack Cowsert
- Tom Harman
- Mostafa (Moe) Jamshidi
- Wayne Jones
- Dave Newcomb
- Brian Prowell, reporter
- Ron Sines
- Bruce Yeaton

- Illinois DOT
- FHWA
- Paragon Technical Services
- Payne & Dolan
- FHWA
- North Carolina DOT
- FHWA
- Nebraska DOT
- Asphalt Institute
- NAPA
- Adv. Materials Services LLC
- P.J. Keating
- Maine DOT

Warm Mix Asphalt Benefits: Reduced Worker Exposure

Typical reductions:

✓ 30% to 50%

 asphalt
 fumes and
 poly-cyclic
 aromatic
 hydro-carbons
 (PAHs)

Warm Mix Asphalt Benefits: Reduced Plant Emissions

Typical reductions:

- √ 25% Co₂
- √ 25% SO₂
- √ 35% VOC
- √ 20% CO
- √ 40% NO_x

Payne & Dolan's Interest initially was emissions

Warm Mix Asphalt Benefits: Reduced Fuel Usage

Burner Fuel Savings are typically 11% to 25%

Warm Mix Asphalt Benefits: Paving Benefits

- Improved workability
- Extend Paving Season
- Pave through cooler temperatures
- Haul longer distances
- Improved Compaction
- ✓ Better Ride IRI

Experiences

- First Warm Mix Project In Wisconsin and Michigan 2006 -350K ton To Date
 - Sasobit-Wax
 - Evotherm-Emulsion Based and 3G
 - Advera-Zeolite-Additive "Foaming"
 - Gencor-Green Machine "Foaming"
 - Maxam-AquaBlack "Foaming"

Experiences

- First Warm Mix Project in Wisconsin 2006
 - Sasobit-Wax-1500 ton
 - Evotherm-Emulsion Based Technology-1500 ton

Mix Design-First Trial

- Used existing WisDOT approved mix design
- 14% RAP, 4.6% Added AC
- SUPERPAVE 12.5mm E-3
- BINDER PG 64-28
- SPECIFIED THICKNESS 1-3/4"
- NORMAL MIX TEMP. 320 F

Warm Mix Asphalt Trials

- Sasobit Sasol International
 - Fisher-Tropsch wax technology
 - Manufactured in South Africa
 - Added to bitumen at the Asphalt Cement plant or pneumatically fed through the fiber port of a drum plant.
 - Melting Temperature 210F
 - Reduces the viscosity of the mix

Sasobit

- Sasobit Wax Additive
 Superpave E-1, E-3
 - Binder Type 64-22, 58-28,64-28
 - Used in Conjunction RAP(10-20%)
 - Average Mix Reduction Temp 55 F
 - Average Field Density Improvement .9 Percent

Evotherm

- Manufactured by MeadWestvaco
- Three Products:
 - Evotherm Emulsion Technology with Chemical Package.- 30% water
 - Evotherm DAT Chemical Package 10% water
 - Evotherm 3G M1 Waterless technology.
 - Superpave E.3,E-1,E-3
 - Binder 64-22, 58-28,64-28
 - Average Temp Reduction 65 F
 - Average Field Density Improvement 1.1 Percent

Muskego Plant

Asphalt Binder Testing

Lab

PAYNE & DOLAN INCORPORATED

Muskego Plant Emissions

PAYNE & DOLAN INCORPORATED

Field Emissions Testing

Asphalt Fumes (at the paver)

Sasobit

43% - 91% Lower than HMA

Evotherm

22% - 82% Lower than HMA

Field Testing

Field Results (Mix-Overall)

2006 Ryan Road - 12.5mm E3											
		SAMPLE VOLUMETRIC PROPERTIES									
Property	JMF	HMA #1	HMA #2	HMA #3	SAS#1	SAS#2	SAS#3	EVO#1	EVO#2	EVO#3	
G _{mm}	2.534	2.521	2.533	2.516	2.526	2.517	2.518	2.518	2.519	2.521	
G _{mb}	2.433	2.441	2.428	2.424	2.437	2.427	2.434	2.436	2.441	2.431	
Va	4.0%	3.2%	4.1%	3.7%	3.5%	3.6%	3.3%	3.3%	3.1%	3.6%	
VMA	14.2	13.8	14.2	14.4	13.9	14.3	14.0	14.0	13.8	14.1	
VFB	71.8	76.8	71.1	74.3	74.8	74.8	76.4	76.4	77.6	74.5	
P _b	5.30%	5.17%	5.16%	5.29%	5.20%	5.19%	5.17%	5.23%	5.23%	5.21%	

Final Product

Moving forward with WMA

- Very successful first trials
- Several new technologies researched
- Advera
- Evotherm 3G
- Foaming Units
- All products very different but had similar results

Advera® WMA

PAYNE & DOLAN INCORPORATED

Advera-Foaming

- Added through fiber port
- Superpave E-1, E-3, E-10, SMA, Commercial Mixes
- Binder 58-28, 64-22, 70-28P
- Mix Temperatures Reduced 10-50 F
- Densities are always equal to or better than control mix

West Bend Airport

West Bend Airport

- City of West Bend Wisconsin
- Existing Runway severe distress cracking
- E3-12.5mm, 20% RAP, PG64-38 2 inch overlay
- Abundance of crack sealant
- Runway 75 feet wide
- Paved in echelon 37.5 feet wide
- Lay down temp 235 degrees or below

www.payneanddolan.com

Paving in Echelon

Finished Product

- Densities Average 93.2
- Little to no reflective bumps from crack sealant
- Mix volumetrics 100 percent pay
- Extremely happy owner

Key Factors for Good Plant Operations

- Aggregate Moisture and Stockpiling
- Burner Optimization at reduced
 Temperatures
- Baghouse Operations
- Drum Operations and Flighting
- Liquid Storage and Handling at Lower Temperatures

Aggregate Moisture Critical

PAYNE & DOLAN
INCORPORATED

- Keeping moisture out is a great way to start
- Keep track of temperature drop of material
- > 20°F from drum discharge to load out can indicate moisture

Baghouse Operations

- Erratic air voids and dust can indicate
 Baghouse problems
- Keep an eye on pressure differential across the Baghouse
- Pressure should be consistent, if you have a large variance.
 You can have problems.

2

Due to lower erations

temperatures and addition of RAP, buildup on the flights and in the drum can occur more rapidly

- Frequent starts and stops can be more of a problem with warm mix in cooler temperatures
- Excessive buildup will affect mix quality

/.payneanddolan.com

Liquid Binder

- Cooler Asphalt Production temperatures doesn't necessary mean cooler liquid binder temperatures
- Cooler liquid binder can affect pumping and meter accuracy
- Produce and pump liquid binder at the temperature you are calibrated for
- Modified binders have a steeper viscosity curves and dramatically increase the problems with meter accuracy if you try to pump at too cool of temperatures

www.payneanddolan.com

Things to Watch

- Production
 - Make sure aggregates are dried properly
 - Monitor by watching TSR values
 - Don't go too cold too fast
 - Double check procedures
 - BMP's for adding modifiers
- Laydown
 - Cold weather make sure to warm up equipment
 - Start hotter and cool down slowly
 - Longitudinal joints Joint Heater?
 - Listen to the field crew
- Testing
 - Have a procedure for repeatability
 - Reheated samples not the same as fresh samples

Benefits

Production

- Quality/consistent mix (Rap/Shingles)
- Fuel Savings
- Ability to sell Superpave mix to FOB customers
- Higher production rates late season
- Longer haul distances

Laydown

- More consistent mat temperature
- Better densities
- Better ride (Less bumps paving over crack sealant)
- Less shadowing/segregation
- Aesthetics better handwork

Profitability

- Work later in season
- Customer base-FOB customers
- Lower operational costs (fuel usage/ rollers)?

Advera® WMA

Advera-Attributes

- Handwork segregation much improved at higher temperatures
- Can be stored for 8 plus hours in silo and maintain properties
- Improved ride with harsh mixes
- Very consistent volumetrics
- No change in TSR ratios
- Very versatile in being used as compaction aid or warm mix
- Paved in December in Wisconsin E-10 with 70-28P oil
- Extends the paving season
- Cost \$1.25-\$2.00 ton

Sasobit

- Sasobit –Benefits
 - Field Crews Slightly better hand work
 - Mix Tests and Volumetrics consistent
 - Very good densities at lower temperatures
 - No change in TSR values noticed
 - Mix costs associated with material \$2.25-\$3.00 ton
 - May give slightly stiffer binder grade
 - Plant modification costs \$60K

Evotherm

Evotherm Attributes-3G

- Improved Workability and Handwork
- Probably the most diverse product used to date
- Mix Tests and Volumetrics consistent but not as repeatable when reheated samples taken
- TSR ratios slightly better
- Mix costs associated with material \$2.00-\$2.75 ton
- New chemical package very easy to use at plant
- Can be added directly to the tank at the plant
- Plant modification costs \$10-\$15K

Gencor Green Machine

- Gencor-Foaming Water
 - Installed directly on AC Line
 - Superpave E-1,E-3
 - Binder 58-28, 64-22
 - Mix Temp Average Reduction 35F
 - Densities equal to or better than control
 - Workability and handwork Improved
 - Material laydown behind screed improved less dragging

Gencor Green Machine

Gencor-Foaming Water

- Mix Volumetrics slightly harder to control not as consistent as with control
- Mix cools faster in cold temperatures than control at same temperature
- Ideal for use during the summer and on commercial mixes
- Unit cost \$45-\$55k
- Water costs minimal
- Very economical

Maxam AquaBlack

- Maxam-Foaming Water
 - Installed directly on AC Line
 - Superpave E-1,E-3
 - Binder 58-28, 64-22
 - Mix Temp average reduction 35F
 - Densities equal to or better than control
 - Workability and handwork Improved
 - Material laydown behind screed improved less dragging

Maxam AquaBlack

Maxam

- Mix Volumetrics slightly harder to control not as consistent as with control
- Mix cools faster in cold temperatures than control at same temperature
- Ideal for use during the summer and on commercial mixes
- Unit cost \$45-\$55k
- Water costs minimal
- Very economical

Questions?

www.payneanddolan.com

Virginia's Warm Mix Experience

Stacey Diefenderfer, PhD., P.E.

Research Scientist

Virginia Transportation Research Council

May 24, 2010

VA's Road to Implementation

- Evaluate warm mix asphalt
 - Field evaluation during construction
 - Lab evaluation of plant mix
 - Specimens compacted on-site
 - Reheated specimens
 - Lab evaluation of lab-produced mix
 - Long-term performance monitoring
- Long-term goals of studies
 - Verify performance
 - Specification

Research Program

- Monitored Field Installations 2006
 - Sasobit US Rt. 211, Rappahannock County
 - Sasobit US Rt. 220, Highland County
 - Evotherm ET State Rt. 234, Williamsburg
- Lab Evaluation
 - Sasobit
 - Did not proceed with Evotherm ET
- Pending Work
 - Foam processes

Field Evaluation

- HMA and WMA sections
 - Same paving procedures
- Three trials / three contractors
- Evaluation
 - In-place density
 - Cores
 - Density & Permeability
 - Visual inspection
 - Returned at 3-months, 6-months, 1-year, 2-years
 - Plan to return at 5-years (2011)

Expectations

- Equal (or improved) properties
- Equal (or improved) paving
- Equal (or improved) performance

 Except for temperature, no changes were made to plant or paving operations

Keys to Success

- Communication, Cooperation, and Planning
 - Agency
 - Contractor
 - Technology manufacturer/representative

- Minimized "interference"
 - No changes to typical operations
- Document successes and any reasons for lack of success

Trial A – Aug. 11, 2006

- Rappahannock County, VA
- AADT: 1,100 vehicles, 2% trucks
- Haul distance: 30 mi
- 1.5 in overlay
- 9.5mm NMAS surface mix, PG 64-22
- 5.5% AC
- 20% RAP
- Sasobit

Field Testing Summary

- No significant differences
 - Nuclear density at construction
 - Core air voids at construction, 3mo, 1yr, 2yr
 - Permeability at all ages
- Significant difference
 - Core air voids at 6mo (HMA: 6.2; WMA: 7.8)
 - Due to random variability in coring
- QC results within acceptable limits
 - No penalties assessed
- Visual assessment no difference

Trial B – Aug. 14-15, 2006

- Highland County, VA
- AADT: 780 vehicles, 9% trucks
- Haul distance: 45 miles, 1 hr 45 mins
- 1.5 inch overlay
- 12.5mm NMAS surface mix, PG 64-22
- 5.3% AC
- 10% RAP
- Sasobit

Field Testing Summary

- No significant differences
 - Nuclear density at construction, 3mo, 6mo, 1yr, 2yr
 - Core air voids at construction, 3mo, 6mo, 1yr
- Significant difference
 - Core air voids at 2yr (HMA: 9.5; WMA:7.4)
 - Due to random variability in coring
- QC results within acceptable limits
 - No penalties assessed
- Visual assessment no differences

VTRC Trial C - Oct. 26 & Nov. 2, 2006

- York County, VA
- Haul distance: 10 miles
- 1.5 inch overlay
- 9.5mm NMAS surface mix, PG 70-22
- 5.7% AC
- 20% RAP
- Evotherm ET

Field Testing Summary

- No significant differences
 - Core air voids at construction, 3mo, 6mo, 1yr, and
 2 yr
- Significant difference
 - Nuclear density at construction
- WMA density not within acceptable limits
 - Penalties were assessed
- Visual assessment
 - WMA appears more open
 - Similar performance to date

Laboratory Testing

- Plant-compacted and lab-compacted plant mix specimens
- Lab production at different temps
- Testing plan
 - Volumetrics
 - Binder content and gradation
 - Moisture susceptibility
 - TSR, Hamburg
 - Rutting potential APA
 - Fatigue

Trial A Laboratory Summary

- Similar results volumetric properties, gradations
- Permeability
 - Similar performance, acceptable <9.5% air voids
- TSR
 - HMA passed, WMA failed even after reheating
- Hamburg similar performance
- APA Rutting acceptable, similar performance
- Fatigue similar performance

Trial B Laboratory Summary

- Volumetric properties, gradations
 - Similar results
- Permeability
 - Similar performance, acceptable <8.0% air voids
- TSR
 - Acceptable, WMA indicated lower strengths
- Hamburg
 - WMA indicated slightly better performance
- APA Rutting acceptable, similar performance
- Fatigue similar performance

Path to Specification

- Trial sections (2006)
- Special Provision (July 1, 2008)
 - Allowed technologies from Approved List
 - Limited initial production of 500T or one day production
 - Superpave properties will be determined after cooling to 100°F and reheating
 - Minimum TSR requirement ≥ 0.60
- Special Provision Copied Note (Aug. 1, 2009)
 - Minimum TSR requirement ≥ 0.80

Path to Specification

- Supplemental Specification (Dec. 3, 2010)
 - Addendum to Road & Bridge Specifications
 - Allows technologies from Approved List
 - Limited initial production of 500T or one day production
 - Superpave properties will be determined after cooling to 100°F and reheating
 - TSR requirement ≥ 0.80

Approved Products List

- Requires cooperation
 - Manufacturer and Contractor
- Submittals to Agency
 - Documentation and independent test data
 - Mix design
 - Trial section or limited production
- Review by committee
- Addition to Approved Products List

Challenges Within Agency

- Risk-aversion
- "I don't want to be a guinea pig."
- Education
 - What is WMA?
 - What are benefits to Agency?
 - What are the risks to Agency?
 - What is the cost of WMA?
 - How to we specify WMA as a bid item?
 - Should we expect a reduction in bid price?
 - Should Value Engineering proposals be required for WMA?

Summary

- Field trials were generally successful
 - Production, construction
- WMA field performance to date has been comparable to HMA
- Lab performance was comparable

- Specification
 - Evolved over three years
 - WMA allowed under Supplemental Specification

More Information

- For additional information please visit our website: www.vtrc.net
- Reports available on website:
 - Diefenderfer, McGhee, and Donaldson. (2007)
 Installation of Warm Mix Asphalt Projects in Virginia, VTRC 07-R25.
 - Diefenderfer and Hearon. (2008) Laboratory Evaluation of Warm Asphalt for Use in Virginia, VTRC 09-R11.
 - Diefenderfer and Hearon. (2010) Performance of Virginia's Warm Mix Asphalt Trial Projects, VTRC 10-R17.

Virgin and RAP WMA

Andrea Kvasnak

Benefits of WMA for Binders

 Lower temperature reduces oxidation of binder

Less oxidation results in a softer binder

- Potential for improved fatigue and low temperature cracking resistance
 - Jury is still out

However....

 WMA tends to have lower indirect tensile strengths than HMA

Often results in lower tensile strength ratios

- Adding RAP to mix will typically increase indirect tensile strengths
 - Also partially offsets the additional cost of WMA

<u>at Au</u>burn University

Unconditioned Indirect Tensile

Conditioned Indirect Tensile

Percent Difference

Does Adding RAP Always Help?

Plant Produced Mix ITS

What Are The Binder Performance Grade Differences?

Binder Grade Differences

 Typically, at the time of construction WMA is softer than HMA

 However, after about 2 years the WMA binder grade is often similar to the HMA

High Performance Grade

Low Performance Grade

Can a standard PG be used with high RAP WMA?

Use of Standard and Soft Binder

WMA at the standard grade and HMA at the softer grade

On-Going Research

- NCAT Test Track
 - Evaluating WMA with and without RAP compared to HMA with and without RAP
- NCHRP 09-43
 - Mix Design for WMA Final Report
- NCHRP 09-47A
 - Performance and Emissions of WMA
- WMA Certification

2009 Test Track Group Experiment

www.pavetrack.com

Virgin WMA

- S9
 - Control for group experiment
- S10
 - WMA Water InjectionSystem
 - Same mix as S9
- S11
 - WMA Chemical Package
 - Same mix as S9

9.5mm PG 76-22

19.0mm PG 76-22

19.0mm PG 67-22

High RAP and WMA

- N10:
 - Similar gradation and effective asphalt to S9
 - 50% RAP HMA
 - Fractionated RAP
- N11:
 - Same gradation as N10
 - -50% RAP WMA
 - Water injection system

9.5mm PG 67-22

19.0mm PG 67-22

19.0mm PG 67-22

NCHRP 09-43

- Superpave Mix Design
 - Required Testing: Coating, Aging Index,
 Compactability, TSR, Flow Number
 - Optional: Indirect Tensile Creep Compliance and Strength, and AMPT Fatigue
- Evaluated Blending with RAP
 - Blending does occur at WMA temperatures

Final Report Under Review

NCHRP 09-47A

 Document the production and construction of WMA and HMA pavement sections

 Compare construction practices, field performance, laboratory performance, emissions, and fuel usage

WMA Certification

 Evaluating WMA technologies in the field and in the laboratory

Evaluating plant- and laboratory-produced mixes

Will identify acceptable and unacceptable technologies

at Auburn University

WMA Resources

- http://www.warmmixasphalt.com
- NAPA documents (www.hotmix.org)
- Research Reports
 - NCAT (www.ncat.us)
 - VTRC
 - TTI
 - University of California HVS

QUESTIONS

ank0004@auburn.edu

