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A n analysis is presented of the kinetic behavior of a road supported 
by a uniform subgrade reaction and subject to various boundary condi­
tions. The static behavior of the road in response to a single centrally 
located concentrated load force is obtained by direct integration of a 
differential equation derived to represent the static road model and by 
a difference equation numerical analysis technique. In addition, the 
effect of road width on static deflection profile is derived on an approxi­
mate basis, and the division of input potential energy between the 
subgrade and the pavement is determined as a function of road width. 

The differential equation of the road model is extended to include 
time as an independent variable, thus including transient forces in the 
analysis. The resultant partial differential equation is solved, using 
difference-differential equations and an electronic differential analyzer, 
for the dynamic response of the road to a step function of force. The 
analysis is shown to be valid for any arbitrary road loading force time 
history. 

It is concluded from the results of the study that paved roads can be 
dynamically analyzed in much the same manner as the vehicles that 
traverse them have been. The theory presented is uncorroborated by 
experimental analysis, however, and the necessity of performing ex­
periments to confirm the theory is shown. Suggested paths for con­
tinued, more comprehensive, theoretical and experimental analyses are 
presented. 

• T H R O U G H O U T the history of experimental program that generally 
highway transportation, road design confirmed the theoretical analysis 
and construction has been based on technique was performed and re-
empirical knowledge of road life as ported by Teller and Sutherland (5 ) . 
a function of the size, form, and vol- Several limitations to the Wester-
ume of the traffic flow. It has been gaard analysis immediately present 
only comparatively recently that con- themselves, however. The boundary 
certed efforts have been made to pre- conditions inherent in the problem 
diet road response to the traffic flow due to a finite road width and various 
on a quantitative analytical basis, types of joints are not included in 
Perhaps the first of the analyses that the analysis of road response to loads 
was generally supported by experi- spaced remotely from the edge. Also, 
mental data was performed by Wes- and perhaps most significantly, the 
tergaard (11), whose analysis was analysis technique does not provide 
based on a treatment of the road as for a solution for the dynamic be-
a semi-infinite circular plate of finite havior of the road in response to 
bending rigidity, uniformly sup- time-varying road load forces, 
ported on an elastic subgrade. A n Since Westergaard's analysis (11), 
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several analysis techniques have been to just one form of applied force—a 
developed to predict the steady-state sinusoidal time-varying force. A l -
frequency response of a road. Sam- though it can be argued that the 
pies of this work are reported by transient response of the road to im-
Van der Poel and co-workers (7, 8) ; pulse and step functions of applied 
experimental programs that in gen- force can be computed from the 
eral confirm the analysis techniques steady-state frequency response in a 
are reported by Nijboer and Jones linear system, the computational 
{9, 10) . These methods are some- task would be enormous for a distrib-
what limited in that they yield the uted parameter system, such as a 
road steady-state dynamic response road. Furthermore, experimental 

NOMENCLATURE 

The symbols used throughout this paper are defined as follows: 

Symbol Definition Nominal Units 

c Subgrade damping Ib-sec/cu in. 
D Pavement modulus of rigidity per unit width in.-lb 
E Young's modulus psi 
F Applied road load force b 
h Pavement thickness in. 
i Number of stations in difference-equation technique — 
k Subgrade spring modulus Ib/cu in. 
I Road slab length in. 

Longitudinal bending moment per unit road width in.-lb/in. 
My Lateral bending moment per unit road width in.-lb/in. 
M i „ Twisting moment per unit road width in.-lb/in. 
m Pavement mass Ib-secVcu in. 
iV Pavement width function — 
P Road surface pressure distribution psi 
q Intensity of the distributed load psi 
t Real time sec. 
Ur Static pavement strain potential energy in.-lb 
U, Static subgrade potential energy in.-lb 
Ur Total static road-subgrade energy in.-lb 
u Vertical road deflection in. 
Un Difference equation road deflection variable in. 
V, Longitudinal shear per unit width lb/in. 
Vy Lateral shear per unit width lb/in. 
w Road slab width in. 
X Longitudinal distance from the load center in. 
Ax Distance between stations in the difference-equa­

tion solution technique in. 
y Lateral distance from the load center in. 
(3 Road space frequency parameter rad/in. 
8'(x) Dirac delta function in.-^ 
X Road space wavelength in. 
M Poisson's ratio — 
^ Road vibration damping ratio — 
p Slab length road deflection parameter — 
cTx.B Pavement tensile stress psi 
ojn Road vibration natural frequency rad/sec 
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results show that the natural fre­
quency of road vibrations can be a 
function of vibration input ampli­
tude, which, is not a property of linear 
systems. 

No literature has been found in 
which an analysis technique was pre­
sented to yield the transient response 
of a road to an arbitrary time-vary­
ing road-load force, such as the ver­
tical road load transmitted to the 
lavement through the tires of a ve­
hicle traversing the road. This paper 

presents a preliminary treatment of 
the generalized input force-kinetic 
road response problem. 

PRELIMINARY ROAD MODEL 

To predict the over-all behavior of 
a road in response to a time-varying 
road-load force, it is necessary to de­
termine the differential forces and 
moments that exist on any given 
microscopic element of road, as a 
function of time, and integrate the 
results over the entire road surface. 
The necessity of describing the re­
sponse of the road in terms of both 
space and time as independent vari ­
ables requires the use of partial dif­
ferential equations in the analysis 
technique. The following assump­
tions are made in the analysis: 

1. The pavement is supported by 
a uniformly distributed linear sub-
grade spring and damping reaction. 

2. The pavement material obeys 
Hooke's law with respect to bending 
stresses and strains. 

3. The load acting on the road is 
normal to the surface. 

4. The road deflections are small 
relative to pavement thickness. 

5. The edges of the pavement are 
free to move in the plane of the sur­
face. 

6. The thickness of the pavement 
is small in comparison with the di­
mensions of the surface. 

The forces and moments acting on 

an element of road pavement are dia­
gramed in Figure 1. A derivation 
of the differential equation of the 
pavement deflection suface may be 
found elsewhere {20, Chap. 4) and is 
not repeated here. The resulting 
equation is 

D t) (1) 

This equation was originally obtained 
by Lagrange in 1811, and has since 
been used extensively in beam, plate, 
and shall analyses. I n the case of 
the uniformly supported road, the 
load intensity is given by 

q{x, y, t) =P{x, y, t)-m-^ -c—-ku 

(2) 

The right side of E q . 2 represents 
the applied surface-loading pressure 
less the surface material inertia, sub-
grade damping, and subgrade spring 
reactions. The force due to the static 
mass of the beam can be considered 
to be contained in the loading term 
P(x,y,t). I t is not of importance, 
inasmuch as concern is with pave­
ment deflections relative to the un­
loaded rest position of the surface. 

Past experience has demonstrated 
that the major difficulty associated 
with the solution of E q . 1 is in the 
application of initial and boundary 
conditions to the equation to obtain 
a mathematical solution in closed 
form. It has been demonstrated that 
an exact closed-form mathematical 
solution to most partial differential 
equations is nonexistent. They must, 
in general, be solved by approxima­
tion techniques such as Fourier or 
power series expansions, or numeri­
cal analysis methods. E q . 1, when 
combined with E q . 2, is no exception. 
None of the classical closed-form 
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Figure 1. Differential road element. 

solution techniques will solve this 
three-dimensional road equation. 

The analysis problem can be sim­
plified considerably by assuming the 
road width to be small, and solving 
the resultant narrow-road equation. 
This is the technique demonstrated 
in this paper. The unit-width road 
equation becomes 

=P(x,t)-m~~c^^-ku (3) 

E q . 3 follows from E q . 1 when road 
deflections are the same laterally 
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(across the road) at any given longi­
tudinal distance from the point of 
loading. 

It is necessary in the solution of 
E q . 3 to specify four boundary con­
ditions in space, and two initial con­
ditions in time. The boundary con­
ditions result from the manner and 
form of the road construction; the 
initial conditions result from the pre­
vailing displacement and velocity of 
each point on the road at the instant 
that the solution commences. E q . 
3, therefore, represents the equation 
of the analytical dynamic road model 
that is considered in this paper. 

I t should be recognized that the 
dynamic model represented by E q . 3 
is an "instantaneous model"; that is, 
it yields the dynamic response of the 
road to time-varying force inputs, 
and reaches steady state very rapidly 
after removal of the transient load 
force. The coefficients of E q . 3 can, 
on the other hand, be time-varying 
quantities but will vary over a period 
of minutes, days, months, or years. 
They vary with the physical condi­
tion of the road, ambient tempera­
ture, subgrade moisture content, etc. 
Analysis of the long-term variation 
in these parameters is beyond the 
scope of the dynamic road model con­
sidered in this paper. Suffice it to 
say that the kinetic road behavior 
can be determined for any given road 
parameters by solution of E q . 3 at a 
given instant in time, and that the 
road parameters can be considered 
to remain constant during the solu­
tion time of the "instantaneous 
model." 

STATIC ANALYSIS T E C H N I Q U E 

Deflections and Bending Moments 
Before attempting a solution of E q . 

3 in both the space and time domains, 
it is advisable to determine the equa­
tion of the static road deflection pro­
file so that the steady-state response 
of the road will be known when the 
dynamic analysis is performed. The 

steady-state solution is a special case 
of the dynamic solution and provides 
a check on the dynamic solution tech­
nique. 

Two cases are analyzed—a very 
long ribbon road with no joints, and 
a single finite-length slab of pave­
ment. In each case, the load con­
sidered is a force uniformly distrib­
uted laterally across the road and 
concentrated in the longitudinal di­
rection to a single point. The force 
is assumed to act at the origin of the 
axis system. To solve for the static 
deflection profile, the static pressure 
distribution P(x) must be known in 
terms of the applied load force F. 
I f the width of the road is w, and the 
load is distributed uniformly across 
the width as well as longitudinally 
along the dimension S, the load in­
tensity becomes 

P{x) = 
w s 

as shown in Figure 2. 
Because a longitudinally concen­

trated load is assumed, the desired 
loading condition is achieved when 
dimension S is reduced to zero. The 
longitudinal load distribution is de­
scribed by a rectangle of height 
F/wS and width w, the area of which 
remains constant at F/^v as dimen­
sion S is reduced to zero. This is 
mathematically represented by a 
space impulse function, called the 
Dirac delta function, S'(x), described 
more fully elsewhere (25). Mathe­
matically 

8'{x) = 00 when x=0 

where 
S'(x)=0 when a;5̂ OJ 

l ' " ^ 5 ' i x ) d x = l 

Using this notation, and noting that 
8'(x) has units of inverse inches, the 
pressure distribution can be repre­
sented by 
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Figure 2. Relation of static pressure distribution P{x) and applied load force F. 

(4) 

I n the static analysis, all time 
derivatives can be set equal to zero, 
and E q . 3 reduces to the ordinary 
differential equation 

D^^+ku = -5'{z) (5) 

The solution of E q . 5 for both infinite 
and finite length road slabs has been 
performed elsewhere {19, pp. 1-20). 
The boundary conditions for the in­
finite road are that the deflection and 
slope of the deflection curve are zero 
at x=ao; that is, 

M( O O ) =0, du/dx{ oo) =0 (6) 

Also, the slope of the deflection curve 
is zero beneath the load (because of 
symmetry in the x-z plane) and the 
shear at the origin is equal to one-
half the magnitude of the load. E x ­
pressed mathematically. 

du 
dx (0) =0, K ( 0 ) = - Z ) g = ^ 2w (7) 

These four boundary conditions can 
be combined with the general solu­
tion of E q . 3 to give: 

u{x) =M(0)e-''^(cos;S a;-|-sin/3 x) (8a) 

2k w (8b) 

M(a;)=M,(0)e-^^(cos/3a;-sin)3a;) (9a) 

MM = 

in which 

and 
' 4 

4;8w; 

' Z 
AD 

D = Eh' 
12(1-M^) 

(9b) 

(10a) 

(10b) 

The static deflection and bending 
moment profiles that are represented 
by Eqs . 8 and 9 are shown as the solid 
line plots of Figures 6 and 7. 

One of the most important param­
eters in the prediction of the static 
defiection profile is the factor /?, as 
defined by E q . 10a. The term p rep­
resents the space frequency of the 
deflection profile wave and is a di­
rect measure of the ratio of the sub-
grade reaction stiffness to the bend­
ing rigidity of the pavement mate­
rial . The length of the space wave, \ , 
resulting from a concentrated load on 
a long uniformly supported pavement 
section is 

27r 
(11) 
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The wavelength. A, decreases as /8 
increases; /3 can increase by increas­
ing the subgrade spring modulus, k, 
and/or by decreasing the bending 
rigidity, D, of the surface material. 
Thus, for a given subgrade modulus, 
concrete surfaces generally exhibit 
longer surface waves than asphaltic 
surfaces because of the larger bend­
ing rigidity of the concrete. This re­
sult is borne out by actual test. 

A n interesting comparison can be 
made between the narrow road 
theory and the infinite uniformly sup­
ported circular-plate results reported 
by Westergaard {11). Figure 3 
shows a comparison of the normalized 
deflection profiles computed by the 
two methods and plotted against a 
common abscissa scale, px. The 
agreement indicates that pavement 
width effects on the longitudinal de­
flection profile are small, because the 
Timoshenko analysis is based on unit 
pavement width, and the Wester­
gaard analysis is based on an infinite 
pavement width (circular plate r a ­
dius) . I n the comparison of bending 
moment profiles (F ig . 4 ) , it is evi­
dent that agreement between the two 
methods is good, except in the vi­
cinity of the point of load applica­
tion. The Westergaard analysis {11), 
based on thin plate theory, requires 
an infinite bending moment in the 
pavement directly beneath the load. 
To circumvent this problem, Wester­
gaard used thick plate theory to ob­
tain a local bending moment of finite 
value, even when the loading area re­
duced to zero. The local bending 
moment that results from narrow 
beam theory is finite for a zero load­
ing area, as indicated in Figure 4, 
and is of smaller magnitude than that 
produced by the Westergaard thick 
plate theory. It is desirable to use 
the narrow beam theory whenever 
possible, because of its simplicity 
when compared with the circular 
plate theory. 

The foregoing analysis deals with 
the static deflections of a very long 

pavement section caused by a single 
concentrated load. Of equal interest 
are the deflections and moments 
caused by a concentrated load acting 
at the center of a slab whose length 
is shorter than one space wavelength 
but greater than the width of the 
road; that is, w<l<\. The boundary 
conditions for this case depend on the 
method of jointing the pavement. 
One assumption is that both the shear 
and the bending moment vanish at 
the extremes in a given pavement 
slab. Expressed mathematically 

y , ( z / 2 ) = y . ( - « / 2 ) = o (12) 

M,{l/2)=M,{-l/2)=0 (13) 

The analysis technique used was 
that suggested by Timoshenko {19, 
pp. 15-20), and is originally due to 
Hetenyi. The resultant equations 
are long and cumbersome and are not 
included in this analysis, except for 
the following three relations: 

u{l/2) =ui-l/2) 

w 

cos h ^ cos 2" 

sinh pl+sin fil 

it(0) = 
2k w 

cosh fil+cos0l+2 
sink I3l+smi3l 

MM = 4:I3W 
cos h fil — cos/3? 
sin/i pl+sinpl 

(14) 

(15) 

(16) 

E q . 14 allows computation of the end 
deflections of the pavement slab. 
The increase in deflection under the 
load due to the removal of the sub-
grade reaction beyond the ends of the 
slab is given in E q . 15. Similarly, 
the decrease in bending moment un­
der the load can be determined from 
E q . 16. 

The deflection profile of a finite 
slab length is plotted in Figure 5 for 
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Figure 3. Static comparison of Westergaard circular plate analysis with narrow beam 
theory; deflection profile. 
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Figure 4. Static comparison of Wester­
gaard circular plate analysis with narrow 

beam theory; bending moments. 

several values of dimensionless slab 
length fil. In Figure 5, the factor p 
that multiplies the ordinate scale in­
dicates the amount by which the load 
deflection is increased as the length 
of the pavement slab is decreased 
(for a constant load) relative to the 
deflection beneath the infinite slab 
length road. I t should be noted that 
a decrease in slab length (with ^ held 
constant) results in an increase in 
deflections and a decrease in bending 
compared to the long ribbon-pave­
ment response (shown as a dashed 
line in F i g . 5 ) . Actually, the impor­
tant parameter is the fil product, 
which completely determines the 
static deflection and bending moment 
response of the road to a single con­
centrated load. It is not necessary 
to know /3 or I individually if all 
that is desired is the deflection 
and moment profiles normalized to 
the values beneath the load. The 
factors /? and I must be individ-
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ually specified, however, if the actual 
values of load defiection and pave­
ment bending moment are desired. 

T A B L E 1 

S T A T I C S O L U T I O N F O R C E N T E R L I N E 
D E F L E C T I O N S O F A L O N G C O N T I N U O U S 

R I B B O N P A V E M E N T R O A D 

u(x. 0) 

Sta No. 
Equation 

8 
Analog 

Computer 
Digital 

Computer 

1 0.0118 0.0113 0.0115 
2 0.00575 0.00560 0.00562 

3 0.00139 0.00152 0.00151 
4 -0.000331 -0.000124 -0.000140 

5 -0.000548 -0.000420 -0.000420 

0 -0.000305 -0.000270 -0.000205 
7 -0.0000917 -0.000100 -0.0000989 
8 0.0000122 -0.0000180 -0.0000180 

Normalized data plotted in Figure 5. Computed for D = 
2.56X10* in.-lb, k=50 lb/ in.», /3=0.0149 in.^", if = 114 in., 
h = 10 in., F = 10,000 lb, u{0, 0) =0.0132 in. (Eq. 86). 

Figure 5 also demonstrates that 
the analysis procedure to be used in 
pavement defiection problems de­
pends on the fil product. The analy­

sis can be separated into three cate­
gories {19, p. 20) , as follows: 

(a) Short slabs, /il<OM 
(b) Medium length slabs, 

0.60<;8J<5 
(c) Long slabs, ^l>5 

In case ( a ) , the slab is short enough 
that pavement bending strength far 
exceeds subgrade reaction, and the 
entire slab is pushed into the sub-
grade as a rigid body. Here, the 
deflection is constant along the slab 
and is given by 

u{x) = 
k w I (17) 

and the bending moment is zero. In 
case ( c ) , the slab is long enough that 
the end appears to be an infinite dis­
tance from the load. The deflections 
are given by E q . 8 and the bending 
moment by E q . 9. The medium slab-
length analysis of case (b) flts 
neither of the simplifications of cases 
(a) or ( c ) , and must be analyzed as 
previously explained. 

--1.0-

= 6 

- 0 

0 
1 

_ cosh ex + cos SZ 4 Z ^ Z 0 
1 1 sinh Bl I-+ sin ej. 

4.0 
/ 5/'!/ 2 

Figure 5. Effect of product on static deflection beneath the load, and deflection profile. 
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It should be noted that all of the 
foregoing conclusions can be reached 
without assuming numerical values 
for the system parameters other 
than the product. A plot of the 
bending moment profile for ^1=2 
(case b) is given in Figure 13. The 
corresponding deflection profile plot 
is shown in Figure 12. 

Potential Energy Distribution 
The static deflection of a road 

caused by an applied force requires 
the storage of potential energy in the 
subgrade and the pavement because 
of their elastic properties. I t is of 
interest to investigate the distribu­
tion of input energy into the pave­
ment surface and subgrade for vari­
ous boundary conditions. The en­
ergy stored in the subgrade can be 
determined from 

U,==hr" r'u\x,y) dxdy (18) 
^ j~u-nJ-ii-i 

Similarly, the energy stored in the 
pavement because of bending is given 
by 

dx dy (19) 

E q . 18 results from summing the en­
ergy stored in each differential ele­
ment of subgrade over the entire area 
of paved surface. E q . 19 sums the 
bending energy in each element of 
pavement material over the entire 
pavement surface area. I t neglects 
energy storage in the twisting of the 
pavement surface, and is derived by 
Timoshenko (20) . The potential en­
ergy storage due to lateral road con­
traction can be shown to be negligible 
when compared with pavement bend­

ing strain energy. Consequently, the 
term 

/d-u\/d-u\ 

in E q . 19 is neglected in the follow­
ing. 

To evaluate the division of poten­
tial energy between the subgrade 
and the pavement using Eqs . 18 and 
19 it is necessary to have quantitative 
knowledge of the variation in deflec­
tion due to inclusion of the effects 
of road width in the analysis. A 
rigorous analysis of road width ef­
fects requires the static solution of 
the bi-harmonic E q . 1 with the proper 
road-edge boundary conditions in­
cluded. A previous report ( I f f ) , how­
ever, indicates that road width ef­
fects can be approximated quite sat­
isfactorily by assuming that the 
width and length solutions can be 
separated and considered to be in­
dependent of each other. Based on 
this assumption, the static road de­
flection is given (16) by 

u(x, y) =w(0, 0)e-^*[coS|8a;-fsin/Ja;] 

X i ( ^ . ) w f f - ^ Y - | 2 . v 
[w 

fiw<2 (20a) 

u{x, y) =M(0, 0) e-̂ (̂ +'') 

X [cos^(x - y) +sin,3(a; -\-y)] 

/3M; > 5 (20b) 
in which 

2+cosh fiw+cosfiw ^ ' 

and 

M(0, 0) = F/3 
2k w 

Combining Eqs. 18, 19, and 20a, the 
energy division between pavement and 
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subgrade is given for /3w < 2 and a very 
long pavement slab (fil > 5) by 

3kw 
4 /3 

M(0, 0)'̂  

X 
1 1 ^ 

(22) 

X (23) 

For a very long and very wide pave­
ment {pi and fiw both >5), Eqs. 18, 
19, and 20b yield: 

C 7 3 = g | « ( 0 , 0)2 (24) 

J 7 « = | | M ( 0 , 0 ) 2 ( 2 5 ) 

The division of potential energy in 
the range 2<pw<5 was not investi­
gated because of the lack of a con­
venient approximation for u(x,y). 
It is to be expected, however, that the 
division of potential energy will vary 
smoothly from narrow to wide road 
conditions. 

The division of potential energy 
storage between the subgrade and 
the pavement can be computed from 
Eqs. 2 2 , 2 3 , 24 , and 2 5 for several 
values of the space frequency-road 
width (/3w) parameter. The results: 

(Energy %) 

Road Type Subgrade Pavt. Strain 

Narrow 0 75 25 
Medium 2 (ili 34 
Wide 5 60 -10 

show that the subgrade carries pri­
mary responsibility for potential 
energy storage in a long road, regard­
less of its width. This leads to the 

well-known conclusion that subgrade 
design is at least as important as 
pavement design. It should be noted 
that increases in road width result 
in a smaller percentage of subgrade 
energy storage, indicating that sub-
grade design is more critical for nar­
row roads than for wide ones. Also, 
the only parameter that affects the 
potential energy division is fiw, where 
^ involves only subgrade modulus 
and pavement bending rigidity ( E q . 
10a). No other parameters are in­
volved in the division of input energy 
into subgrade and pavement (N is a 
function of j8w also; (see E q . 2 1 ) . 

I t is possible to compute the static 
load deflection from Eqs . 2 2 , 2 3 , 2 4 
and 2 5 and the knowledge that the 
total potential energy supplied to the 
road by the load is 

UT = hFu{0, 0) (26) 

The total potential energy is the sum 
of the subgrade and pavement ener­
gies ; that is, 

UT = Us + Un (27) 

Combining Eqs. 22, 23, 26, and 27, the 
load deflection for 0:</3w:<2 is com­
puted to be 

u(0, 0) 

Fp 
2k w 13 

3,240 (/3«;)W2 

(28) 

For the case of a very wide road 
iPw>5) Eqs. 24, 25, and 26 combine to 
give 

" ( 0 , 0 ) = ^ ^ (29) 

The~exact solution to the wide road 
case was shown (11) to be 
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E q . 29 is within 7 percent of the cor­
rect theoretical value, confirming the 
validity of E q . 20b for values of 
/ ? a ) > 5 . 

The equations of this section allow 
approximate prediction of the static 
deflection and bending moment at any 
point on a long {j3l>5), jointless, 
paved road in response to a centrally 
located concentrated load. Bending 
moment values can be converted to 
tensile stress in the bottom fibers of 
the pavement by 

'' 21 (30) 

where h/2 is the distance from the 
neutral axis to the bottom of the pave­
ment slab. Subscripts x,y of E q . 30 
indicate either x (longitudinal) or y 
(lateral) stress. 

DYNAMIC ANALYSIS TECHNIQUE 

Difference-Differential Equations 
In direct contrast to the present 

substantial knowledge of the dynamic 
behavior of vehicles, little is known 
about the dynamic behavior of roads. 
Obviously, the situation is complex, 
because a road is a distributed pa­
rameter system and its response is 
governed by several independent vari­
ables. Vehicles have been success­
fully analyzed as lumped parameter 
systems, but roads must be con­
sidered to be distributed. As a di­
rect result of the distributed nature 
of a road, and the necessity of de­
scribing its dynamic response in 
terms of both space and time as in­
dependent variables, it becomes nec­
essary to resort to partial differential 
equations in an analysis of the forces 
and moments acting on any given 
small element of road. Integration 
of these partial differential equations 
in closed mathematical form is pos­
sible only in certain special cases, 
subject to the initial and boundary 

conditions of the problem. In gen­
eral, it is necessary to integrate the 
equations by resorting to numerical 
analysis techniques and electronic 
computing machines. 

The particular partial differential 
equation that must be solved to yield 
the dynamic road response to applied 
loading forces is E q . 3. I n keeping 
with the static analyses of the pre­
vious section, the dynamic response 
of the road to a time-varying, cen­
trally located, concentrated load force 
is solved for. The dynamic load dis­
tribution for this case becomes 

q{x, t)^~8'ix)-m—-c--ku 

Combining this with E q . 3, gives 

The solution of E q . 31 for realistic 
boundary conditions is not possible in 
closed mathematical form. Previous 
researchers {7,H) have obtained the 
frequency response of the road to 
steady-state sinusoidal excitation 
forces, using this equation (with no 
damping), but no solutions have been 
found in the literature that deal with 
the response of the road to a general­
ized time-varying loading force. The 
most practical way of obtaining the 
desired dynamic road response is by 
the application of specialized ap­
proximation techniques, of which 
the difference-differential equation 
method is the most straightforward. 

The difference-differential equation 
technique is fully described elsewhere 
{15, 16, 26). In E q . 31, the terms 
m{d''u/df) and c{du/dt) represent the 
D'Alembert inertial reaction and the 
subgrade viscous - damping - reaction 
pressures that occur when a differential 
pavement element is changing velocity. 
The term D{dHi/dx*) is the variation in 
subgrade pressure due to bending of 
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the pavement, and the term k u repre­
sents the subgrade pressure at any 
given point on the road due to the 
subgrade reaction. 

Combining the difference equation 
approximation of the fourth space 
derivative {16) with the partial dif­
ferential E q . 31 results in 

D Un+2 - 4M„+I +6Un—4:Un-l +U„^2 

{Axy 
, d'^Un , dUn , 7 F i t ) , , , , 

E q . 32 constitutes a system of ordi­
nary simultaneous differential equa­
tions with time as their common inde­
pendent variable. Before E q . 32 can 
be solved, it is necessary to specify 
four boundary conditions on the 
space variable, and two initial condi­
tions on the time variable. The re­
duction of the system to a single in­
dependent variable, time, makes it 
convenient to use analog computing 
equipment to solve the equations, as 
long as the required equation coeffi­
cient accuracy is not too great (see 
16, Section 5D for a discussion of this 
point). Analog computers are lim­
ited to the use of time as an independ­
ent variable and are ideally suited to 
solving simultaneous linear ordinary 
differential equations continuously in 
time. 

Continuous Pavement Dynamics 
The particular road configuration 

selected for analysis is a long narrow 
road with no joints. It has already 
been demonstrated, in the static case, 
that values of fSwy5 satisfy this con­
dition. The difference-differential 
equation technique is normally lim­
ited to systems with finite bounda­
ries; that is, the range of the inde­
pendent variable that has been re­
placed by the difference equations 
cannot be infinite, because the num­
ber of space increments must be 
finite. If , however, the static solu­

tion values decay to zero beyond a 
specific finite distance from the load, 
it is possible to compute the dynamic 
response of an infinitely long road 
for the period of time necessary for 
the road wave to travel to the bound­
ary. No boundary reflections can 
occur, of course, in the actual sys­
tem, because the road perturbations 
can never reach the end of an infinite 
pavement slab to reflect back toward 
the load. With damping in the sub-
grade, an end station can always be 
found a finite distance from the load 
where the damping reduces the am­
plitude of road deflections to very 
small values, so that no reflected wave 
can occur. In this case, the solutions 
obtained in the vicinity of the load 
application point would be valid both 
statically and dynamically. 

Unfortunately, when subgrade 
damping is small the large number of 
computer stations required to allow 
the pavement deflections to become 
negligible places the problem beyond 
the capabilities of most analog com­
puting equipment. Consequently, 
the present analysis compromises the 
number of analog computer stations 
with dynamic solution accuracy for 
the period of time between the first 
reflection from the false boundary 
and the steady-state response. The 
responses are valid from time t=0 
until this reflection occurs and after 
the steady-state is reached, if the 
pavement slab is considered to be in­
finite. I f the pavement slab is con­
sidered to be a long (but finite 
length) slab that is freely hinged at 
the boundaries, the dynamic re­
sponses obtained herein are repre­
sentative of the time history of road 
behavior for all time intervals. 

The boundary conditions chosen to 
approximate the infinite road-length 
solution were established so that the 
actual end of the pavement slab oc­
curs when I3l=12.7. A t this point, 
and beyond, the road deflection and 
slope were forced to be zero. Because 
the load is centrally located, and its 



192 DESIGN 

velocity along the road is zero, sym­
metry of road profile exists around 
the load in the x-z plane. This fact 
can be used to advantage to halve the 
number of computing stations re­
quired for a given detail of solution. 
The following parameters were as­
sumed in the dynamic road analysis 
for a concrete pavement: 

Pavement and subgrade 'properties 

M=0.15 
fc=50 lb/in.3 
£ ; = 3.0X106 psi 
m =0.00294 lb =secVin.5 
c =0.153 lb=sec./in.3 

Pavement slab geometry 

h = 10 in. 
w = 114 in. 
i = 850 in. 

Combination road parameters 

D =2.56X108 in.-lb 
/3 =0.0149 rad/in. 

130 rad/sec 

'2\/lcm =0.20 

X = ^ = 4 2 2 in. 

The value of Poisson's ratio and 
Young's modulus for concrete, as well 
as the subgrade stiffness value, were 
selected as typical values (11) for a 
concrete pavement. The subgrade 
stiffness value is quite arbitrary, and 
not at all critical, because the value 
of /? (which controls static deflection 
profile) depends on the fourth root 
of the subgrade modulus. Changes 
in subgrade modulus will affect the 
road vibrational natural frequency 
more than the static road profile, be­
cause of the road vibration natural 
frequency dependence on the square 
root of subgrade modulus. 

In the foregoing listing of road pa­
rameters, the first two groups are in­
dependent parameters; that is, they 
are primary properties of the system. 
The third group consists of values 
that are computed from numbers con­
tained in the first two groups. The 
natural frequency and damping ratio 
previously computed are the uncou­
pled values that result from the sim­
ple harmonic motion of a small area 
plate uniformly supported on the 
elastic subgrade, with no bending of 
the plate. I n actual practice these 
values are dependent on the size and 
stiffness of the loading area, which 
is an expected result, because the 
larger or less stiff loading plates bend 
as they are depressed into the sub-
grade, thereby reducing the effective 
subgrade stiffness and the natural 
frequency. With larger plates, the 
entire plate may not be in contact 
with the subgrade at all times, espe­
cially when the input force is large. 
This would also tend to decrease the 
fundamental natural frequency of 
pavement vibration. These effects, 
discussed elsewhere (7), result in 
apparent nonlinear subgrade reac­
tion. 

A difference-differential equation 
analog computer program was writ­
ten to solve for the dynamic behavior 
of a concrete paved road with param­
eter values as just noted. Stations 
0 and 1 were defined as adjacent to, 
and on either side of, the point of 
load application, and the analysis was 
performed with nine stations located 
as shown in Figure 6. F o r this case, 
Aa;=50 in. The required four bound­
ary conditions are 

Uo=Ui 
due to symmetry. 

M _ l = W 2 j 

W 9 = M i o = 0 due to decay of pavement 
deflections and slope be­
yond one space wave­
length. 



CLARK: KINETIC BEHAVIOR OP ROADS 193 

STATION NUHIEII 

U.(X) 

E X A C T SOLUTION FOR S T A T I C LOAD D E F L E C T I O N 
R A T I O 

O D I G I T A L COMPUTER 

A ANALOG COMPUTER 

0 1.0 2 . 0 3 . 0 4 . 0 5.0 6.0 

^ _g , L O N G I T U D I N A L D I S T A N C E F R O M L O A D ( N O N - D I M E N S I O N A L ) 

Figure 6. Static longitudinal road deflection profile. 

7.0 

The solid curve in Figure 6 shows the 
rapid decay of the deflection profile 
away from the load. The assumption 
of zero deflection and slope at Station 
9 and beyond is verified in this fig­
ure. Combining the boundary condi­
tions with E q . 32 for all eight stations 
results in a set of eight simultaneous 
linear ordinary differential equations. 
These equations were solved on an 
electronic analog computer for a step-
function input of load force. The 
time history solutions are given in 
Figures 8, 9, 10, and 11. 

The shape of the dynamic deflec­
tion and bending moment profiles is 
completely determined for a given 
driving force ratio F(t) /Fo and num­
ber of stations by the pi product, the 
natural frequency «„, and the damp­
ing ratio ,̂ where: 

D '' -{i-D (33) 

The fact is of interest because it com­
pletely defines the road dynamics as 
a function of certain combinations of 
parameters and does not require the 
explicit knowledge of the magnitude 
of the individual parameters. Thus, 
it should be possible to predict the 
dynamic road response to a time-
varying road load from relatively 
easily measured quantities. 

The initial values of the pavement 
deflections and vertical velocities are 
assumed to be zero in the solution of 
the equations. These values are com­
pletely arbitrary, but must be speci­
fied at each station in the computer 
program. 

Figures 6, 7, 8, 9, 10, and 11 show 
the results given by the analog com­
puter. Figures 6 and 7 give the 
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S T A T I O N NUMIER 

1 

MOMENT 

R A T I O 

E X A C T S O L U T I O N F D H S T A T I C L O A O 
Q DieiTAL C O M P U T E " 

U. » H A L O » C O M P U T E R 

6 1 0 2 . 0 3 .0 4 .0 5 . 0 6 .0 

X, . L O N G I T U D I N A L D I S T A N C E F R O M LOAD C NON - D I M E N S I O N A L ) 

Figure 7. Static longitudinal bending moment. 

exact static pavement deflection and 
bending moment profiles along- with 
the steady-state analog computer so­
lutions. The static profile was also 
obtained by a simultaneous solution 
of E q . 32 with all time-dependent 
terms equated to zero. This solution, 
performed on a digital computer, 
represents the exact difference equa­
tion solution of the problem. Any 
differences that exist between the 
analog and digital computer results 
are due to analog computer errors. 
Differences between the digital com­
puter points and the exact solution 
curve are due to error in the differ­
ence equation technique. 

Figures 10 and 11 show the dy­
namic time-history response of a long 
pavement slab after the sudden ap­
plication of a 7,500-lb loading force. 
It should be noted that the magnitude 

and time history of the road loading 
force is completely arbitrary in this 
analysis. The step function was se­
lected for convenience in the com­
puter mechanization and because it 
would be the least trouble to duplicate 
experimentally. 

It should be noted in Figures 8, 9, 
10, and 11 that the peak deflection 
and bending moments near the load 
both exceed the static values by a sig­
nificant amount and occur somewhat 
later than the time of load applica­
tion. The transient is completely de­
cayed in 0.2 sec, but this decay time 
is dependent on the amount of damp­
ing in the subgrade. The smaller 
the damping, the longer the decay 
time. The amount of time required 
for the peak deflection and bending 
moment to occur is also a function of 
subgrade damping. The value of sub-
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U.(0^ CO) 

DEFLECTION 

R A T I O 

S T A T I O N N U M B E R 

P L O T T E D F O R : 

» I ' . 0 0 2 9 * L B - S E C ' / I N . 

/ C •= . 1 5 3 L B - S E C / I N 

A i a L B / I N 

A- = I 0 I N , 

2 . 5 6 •>• 1 0 I N 

S T E A D Y S T A T E R E S P O N S E 

E L A P S E D T I M E F R O M A P P L I C A T I O N 

OF D R I V I N G F O R C E ( M I L L I - S E C 0 N O S ) 

0 1 0 2 .0 3.0 4 . 0 5 .0 6 .0 7 .0 

/ 3 X , L O N G I T U D I N A L D I S T A N C E FROM L O A D ( N O N - D I M E N S I O N A L ) 

Figure 8. Road deflection dynamic response to a step-function of applied force. 

S T A T I O N N U M B E R 

E L A P S E D T I M E F R O M A P P L I C A T I O N 

O F D R I V I N G F O R C E I M l L L I - S E C O N D S 1 

/*r (O. CO) P L O T T E D F O R 

•n^ . 0 0 2 9 4 L B - S E C / I N 

, c = . 1 5 3 L B - S E C / I N . 
5 0 L B / I N , ' 

h. = 1 0 I N . 

D = 2 . 5 6 X 10 - I N - L B 
MOMENT 
R A T I O n(e.co) -

S T E A D Y S T A T E R E S P O N S E 

1 0 2 0 S.O 4 . 0 5.0 6J0 7.0 

^ X. ' L O N G I T U D I N A L D I S T A N C E FROM LOAD ( N O N - D I M E N S I O N A L ) 

Figure 9. Road bending moment response to a step-function of applied force. 



196 DESIGN 

M V E H E H T DCF lECTION. 

»'50LB/lt«- A'lOm 

t 

STATION ftO. (TTM 

Figure 10. Analog computer solution for centerline pavement displacement step-function 
response. 

grade damping chosen for this solu­
tion was selected arbitrarily, and was 
based on an assumed subgrade damp­
ing ratio (^=0.2) that was selected 
as a reasonable value without experi­
mental verification. 

Figures 8 and 9 represent the lon­
gitudinal pavement deflection and 
bending moment response to a step 
function of applied force with time 

as a parameter. The dynamic re­
sponse for the first 16 milli-seconds 
after the application of the road load­
ing force is shown. After about 20 
milli-seconds reflections occur at the 
boundary and the results are not valid 
for an infinite slab length until the 
vibrations damp out. The steady-
state solution is given by the dashed 
line in Figures 8 and 9. The buildup 

MVEHENT KHDIWC MOMENT, 

OSCILLOOMPM TH»CE DEFLECTION. ST«T>ONS 1 

COMPUTED F0«: 

Figure 11. Analog computer solution for longitudinal centerline pavement bending mo­
ment step-function response. 
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of longitudinal wave motion in the 
solutions should be noted. The phase 
velocity of these waves is not con­
stant, but is approximately 300 fps 
and is independent of subgrade damp­
ing. The velocity of sound in the 
pavement is much higher (5,610 f p s ) . 
Recalling that the load is spatially 
stationary in this model, the question 
arises: What effect does a longitudi­
nally moving load have on the dy­
namic behavior of the road ? Because 
vehicles can traverse the road at 
speeds that are an appreciable per­
centage of the phase velocity, it would 
seem that vehicle speed affects the 
dynamic road behavior because of 
pavement wave mechanics. A n addi­
tional characteristic of a moving load 
is stress relief caused by not allow­
ing the load to dwell at one point long 
enough for the road vibration tran­
sient to reach its peak value. The 
present solution technique does not 
allow the quantitative evaluation of 
the effects of longitudinal load veloc­
ity on dynamic road response, but 
this subject is currently being pur­
sued at the Cornell Aeronautical 
Laboratory. 

DISCUSSION OF RESULTS 

The results of the kinetic road 
analysis program are discussed in 
separate sections dealing with statics 
and dynamics. 

Static Road Response 
In the static analysis, the road 

model is assumed to be a rectangular 
plate of known dimensions. The 
theory developed results in closed-
form mathematical expressions to 
predict the shape and magnitude of 
the deflection profile (F ig . 12) and 
the distribution of internal tensile 
stresses (F ig . 13) caused by a cen­
trally located concentrated load force 
acting on a uniformly supported 
pavement slab with various edge 
boundary conditions. 

It is shown that a single partial 

differential equation ( E q . 1) can be 
used to represent the road model, but 
the solution of the boundary value 
problem results in different road 
characteristics that are dependent on 
the size and form of the loading 
area ( s ) , the location of the loading 
area(s ) relative to the boundaries of 
the pavement slab, and the boundary 
conditions. I t is obvious that no sin­
gle road model solution exists, or can 
be derived, to represent the road re­
sponse to all possible combinations of 
load intensity and boundary condi­
tions. This was also shown to be true 
in the vehicle model synthesis of 
Fabian U ) . 

The difference equation technique 
is a powerful tool in the solution of 
the road equation. It gives accurate 
results with less effort than is gen­
erally necessary to integrate the road 
equation mathematically and apply 
the boundary conditions to eliminate 
integrating constants. The problem 
boundary conditions can be applied 
to the difference equations in an ex­
tremely simple and straightforward 
manner. The major drawback to this 
method is that the complexity of so­
lution increases rapidly as more de­
tail (that is, more computing sta­
tions) is required. Access to a digital 
computer greatly alleviates this prob­
lem, however. I t should be noted that 
the road response will be character­
istically smooth, with no discontinui­
ties in the deflection profile, as long 
as the elastic limit is not exceeded 
in the pavement material. The dif­
ference equation technique is ideally 
suited to problems of this sort. The 
method can also be extended to solve 
the three-dimensional road equation 
at the expense of added solution com­
plexity. 

The shape of the static longitudinal 
pavement deflection and bending mo­
ment profiles can be determined with 
a knowledge of a single road param­
eter, the /3l product. I f /3l is numeri­
cally less than 0.60, the pavement 
bending rigidity is so much greater 
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than the subgrade modulus, and/or 
the eflfective lever arm in the genera­
tion of bending moment is so small, 
that the entire loaded pavement slab 
is impressed into the subgrade with 
no bending. When pi lies between 
0.60 and 5, the deflection profile can 
be obtained by the relatively complex 
method of superposition, as explained 
by Timoshenko {19). Values of pi 
greater than 5 result in a deflection 
profile the same as the solution of an 
infinite length pavement slab. 

The subgrade is the primary poten­
tial energy storage element of the 
road. When the road is narrow, 75 
percent of the potential energy is 
stored in the subgrade, with the re­
mainder stored in the pavement be­
cause of bending strain. As the 
width increases, the percentage of 
total potential energy stored in the 
subgrade decreases, but always re­
mains greater than 50 percent. F r o m 
these results, it is concluded that sub-
grade design is especially important 
for narrow roads, and remains im­
portant even for paved surfaces of 
large expanse in all directions. These 
conclusions are independent of the 
type of pavement material. 

The theory developed in this report 
is a pavement theory, and no infor­
mation regarding the state of stress 
in the subgrade can be obtained from 
it. 

Dynamic Road Response 
Al l of the conclusions relative to 

static road behavior are special cases 
of the dynamic road response; they 
are the steady-state results to be ex­
pected due to application of a single 
concentrated constant load in the 
geometrical center of the pavement. 
I f the load is caused to vary as a 
function of the independent variable 
time, some additional conclusions are 
derived relative to the dynamic road 
response. 

The analytical model for a narrow 
road is represented by E q . 3, which 
can be solved in convenient fashion 

by application of difference-differen­
tial equations. The use of automatic 
computing machinery is almost man­
datory with this method, but pro­
graming is generally straightforward 
for either analog or digital computa­
tion. The road dynamic response 
(transient and steady state) can be 
obtained for any loading time history 
with the results subject to the initial 
and boundary conditions of the prob­
lem. Again, the partial differential 
equation and the boundary conditions 
are necessary to specify a particular 
road model. The results are valid 
for a load applied at a fixed location 
on the road. The model is probably 
not valid for a load in longitudinal 
motion, unless the load velocity is 
much less than the phase velocity 
of the traveling wave that results 
from distributed longitudinal shear 
and bending moment coupling. 

The road longitudinal transient re­
sponse cannot be determined from a 
knowledge of the pi product alone, as 
in the steady-state response. I n ad­
dition to pi, the undamped natural 
frequency and damping ratio of a 
section of pavement that is geometri­
cally small enough to vibrate on the 
subgrade without bending must be 
known. These three parameters are 
necessary and are sufficient to allow 
a dynamic solution that is normalized 
to the static load deflection, or bend­
ing moment, as the case may be. I t 
can be concluded from the foregoing 
that explicit knowledge of the pave­
ment bending rigidity and subgrade 
modulus, as well as the over-all pave­
ment slab dimensions, is not required 
except to determine static load deflec­
tion and bending moment values. 
Furthermore, since pi is assumed to 
be known for the dynamic road re­
sponse, it is necessary to specify only 
any two of the three primary param­
eters k, D, or I, in addition to and 
4 to determine completely a given 
system longitudinal response to any 
given loading time history. 

The coeflScients of E q . 3 will be 
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constant throughout the short-term 
dynamic solution for transient re­
sponse. The resultant road model is 
an "instantaneous model" that yields 
the dynamic behavior of the road at 
a given instant in time. It is recog­
nized that changes do occur in the 
magnitude of the system parameters 
on a time scale that varies anywhere 
from seconds to years. However, the 
road dynamics are represented in 
terms of milli-seconds. Consequently, 
even visco-elastic effects that result 
in time-varying pavement bending 
rigidity over a period of seconds or 
minutes do not affect the road tran­
sient response materially during the 
course of a solution. The instantane­
ous model can be solved many times, 
changing coefficients from one time 
to the next, to determine the net re­
sults on the road transient response. 

The magnitude of the peak dy­
namic pavement deflections and bend­
ing moments can be materially 
greater than the static values. To re­
duce the dynamic stress magnifica­
tion at resonance, the subgrade damp­
ing should be as large as possible. 
Furthermore, the natural frequency 
of the road should be as high as pos­
sible in the initial design in order to 
separate vehicle-suspension resonant 
frequencies from the road resonant 
frequency. The bending rigidity of 
the pavement material will affect the 
frequency of road resonance. A s 
bending stiffness decreases, the effec­
tive subgrade stiffness will lessen 
(that is, the static load deflection will 
increase with a constant load magni­
tude), resulting in lower road vibra­
tion resonant frequencies. The best 
designs will incorporate the largest 
practical values of subgrade modulus 
damping, and bending rigidity, with 
the lowest value of pavement mass 
density. 

The road models developed herein 
can be combined with cumulative 
damage fatigue criteria to predict 
the expected pavement life in re­
sponse to arbitrary time-varying 

loads. The effect of dynamic magni­
fication factors on tensile stress can 
shorten pavement life materially 
from the results to be expected from 
static (or low frequency) fatigue 
testing methods of today. The ulti­
mate use of the road model may be 
in the specification of new design cr i ­
teria to provide longer lasting pave­
ments. 

CONCLUSIONS 

The following conclusions result 
from the kinetic road analysis; all 
relate to the response of an elastic 
road structure to a centrally located 
concentrated load force: 

1. A single partial differential 
equation ( E q . 1) is the basic equation 
of the elastic road model. 

2. Solution of the road equation is 
subject to initial and boundary con­
ditions that change the form of the 
solution to fit the particular road 
characteristics. 

3. The dynamic road model equa­
tion is not easily solved in closed 
mathematical form; the difference-
differential equation technique is a 
powerful tool in solving the road 
equation. 

4. A n approximate analysis tech­
nique has been developed to allow 
prediction of the static deflection pro­
file and bending stresses from closed 
form mathematical expressions. 

5. The static longitudinal and lat­
eral road-deflection profiles, relative 
to the load deflection, can be deter­
mined from a knowledge of the re­
spective pi and I3w products alone, 
where /3 is the space frequency pa­
rameter, I is the slab length, and w 
is the slab width. F o r small values 
of the product (/JZ, /3w<0.60), no 
bending occurs and the pavement is 
depressed into the subgrade as a rigid 
body. F o r medium values (0.60 to 
< 5 ) , the analysis is performed by 
linear superposition, and no particu­
lar simplifying assumptions are evi-
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dent. When the product is large {pi, 
jSwyb, the pavement responds as an 
infinite uniformly supported struc­
ture, and the analysis generated for 
that case is valid. This conclusion 
also relates to pavement bending mo­
ments. 

6. The subgrade is the primary po­
tential energy storage element in the 
road system. F o r a long pavement 
slab, the subgrade stores 75 percent 
of the potential energy; as width in­
creases, the percentage of subgrade 
energy decreases to around 60 per­
cent for a large road width (/3w>3). 
The remaining potential energy is 
stored as pavement strain energy. 
The long pavement slab results de­
pend on the /?w parameter alone. F o r 
shorter length pavement slabs, the 
subgrade stores an even larger per­
centage of input potential energy. 

7. Subgrade design is an impor­
tant as pavement design, especially 
for narrow roads. 

8. The dynamic analysis technique 
is valid for any pavement-subgrade 
combination that does not allow vari­
ation of the road parameters during 
the course of a solution. This in­
cludes almost any road type, includ­
ing those with visco-elastic pave­
ments. Long-term parameter changes 
can be handled readily by the tech­
nique. 

9. Road dynamic response, rela­
tive to the deflection beneath the load, 
is specified completely from a knowl­
edge of pi, pw, natural frequency 
and damping ratio | . The complete 
response to a given loading force, 
(that is, actual magnitudes of deflec­
tion) can be determined from a 
knowledge of these parameters plus 
w and any two of the three primary 
parameters: subgrade modulus k, 
pavement bending rigidity D, or slab 
length I. This conclusion also relates 
to bending moments. 

10. Road design should maximize 
natural frequency and damping in 
order to separate road resonances 
from vehicle-suspension resonances 

and to decrease the peak dynamic 
bending moments and deflections in­
curred in the pavement by a time-
varying load force. 

11. Peak dynamic pavement deflec­
tions and bending moments can be 
larger than the static values by a fac­
tor that depends on internal damp­
ing and can vary over large ranges 
depending on the form and frequency 
of the input force. For example, a 
step function of force applied to a 
long ribbon pavement with small 
damping results in peak deflections 
and bending moments beneath the 
load that are 40 percent greater than 
the steady-state values. 

12. A traveling wave results from 
forcing the road at a fixed point. The 
phase velocity (velocity of propaga­
tion) is not constant and is much 
less than the velocity of sound in the 
pavement material, because of sub-
grade effects. A vehicle moving 
down the highway can attain veloci­
ties that are an appreciable percent­
age of the road phase velocity 
(around 300 fps for the parameters 
selected in this report). 

13. The methods presented in this 
paper lend themselves readily to ex­
pansion to cover more comprehensive 
road models and boundary conditions. 
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