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The distribution of cars on a road is classified as either (1) random,
(2) equally spaced (regular), or (3) intermediate. In the first, the
random arrangement may be represented by either one of two statisti-
cal distributions: (a) the Poisson distribution, which is called the
“counting” distribution for the random case, or (b) the negative ex-
ponential distribution, which is the “gap” distribution for the random
case. In the intermediate case the corresponding gap distribution is
the Pearson Type III (also called gamma, or Erlang) and the corre-
sponding counting distribution, which has been called the generalized
Poisson distribution, is the one discussed.

The generalized Poisson distribution corresponds to Type III gaps.
Tables and monographs are given which will aid in fitting data to the
generalized Poisson formula, and examples of traffic data analysis by

the method are presented.

¢ THERE are two ways to count
vehicles: (a) by means of some ap-
paratus which records the time of
arrival of each vehicle at a fixed
point, and (b) by some device such
as aerial photography which records
at a fixed time the spatial arrange-
ment of the vehicles. In the first
case, the time distribution is obtained
and in the second the space distribu-
tion.

One measurement derived from
the time or space distribution is the
gap between vehicles. In the first
case the gap is the time between the
arrival of consecutive cars. For the
space distribution, it is the space gap,
defined as the linear distance between
corresponding parts of consecutive
cars.

The method of analysis presented
in this paper can be applied equally
to either of these two cases. To avoid

confusion in terminology, the lan-
guage of the time distribution is used
almost exclusively, but application of
this technique to the space distribu-
tion is equally valid.

There are various possible arrange-
ments of dots on a line. The instants
when cars pass a given point may be
considered to be dots on the time
axis. If the dots are placed inde-
pendently of each other, so that any
point of the line is equally likely to
have a dot, the arrangement is called
random.

Randomness is an extreme arrange-
ment, and one which has been thor-
oughly studied. It seems to be real-
istic if the dots correspond to instants
of radioactive decay, or of placing
telephone calls, but, for reasons
which will be explained subsequently,
it does not exactly describe automo-
bile traffic.c The opposite extreme
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from randomness is regularity, in
which the dots are equally spaced.
Regularity is also not observed in
traffie, although it may be approached
during very heavy congestion.

Thus, there are limiting condi-
tions: for extremely light traffic, the
instants of arrival are nearly ran-
dom; for very heavy traffic, the in-
stants of arrival are nearly regular.
The range of possibilities between
randomness and regularity will be
considered.

COUNTING AND GAP DISTRIBUTIONS

When any arrangement of dots is
given, it can be described statistically
in a variety of ways. Two methods
of description, the “gap” and “count-
ing” distributions, are used particu-
larly. In the regular case, each gap
is exactly the same length, and there-
fore, the gap distribution is deter-
ministie,

(0, xs=g
11, r=g

where ¢ is the length of gap. The
gap distribution for the random case
is the well known negative exponen-
tial

f(x) = (1)

flx) =(1/g)e='s, 0<zx<o (2)

where ¢ is the average gap length.
An equally exact way of charac-
terizing an arrangement is by its
counting distribution. In a number
of time intervals of length T, the
number of events in a time interval
may be 0,1, 2, ... In the random
case, the Poisson distribution gives
the probability of » dots in time T':

Pa=e" T (T/g)~/n! (3)

Since an actual counting device
usually leads to this distribution, it
is called the counting distribution.
In the regular case, the counting dis-
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tribution is not so well known. If
the time interval T contains at least
N of the gaps of fixed length ¢, but
does not contain N 4~ 1 of them, then
any time interval, whenever taken,
must contain either N dots, or else N
+ 1 dots, but cannot contain any
other number. The probability of
the latter is (T—Ng) /g, and there-
fore the counting distribution in the
regular case is

(-
L gNg, n=N+1
|

Pn (4)

1_,T—_Ng’
g

| n=N
{

The following points in Eqs. 1-4
should be considered:

1. There is an exact correspond-
ence between Eq. 1 and Eq. 4, in that
they are different methods of describ-
ing the identical situation, which is
called regularity. Similarly Eq. 2
and Eq. 3, although mathematically
different, describe the same physical
situation, randomness.

2. The counting distribution is al-
ways discrete, defined over positive
integers and zero; whereas the gap
distribution is always continuous, de-
fined over the real numbers from
zero to infinity. (Eq. 1 is a degen-
erate form of this, since the whole
probability is concentrated at one
point.)

3. The two situations so far de-
scribed are both extremes, which
might never occur in practice.

4. The relationship between a
given gap distribution and its corre-
sponding counting distribution is not
obvious and requires mathematical
proof. In the random case, the proof
is well known (7). In the regular
case, the proof is based on straight-
forward reasoning consisting essen-
tially of the argument given after
Eq. 3 (2). A general method which
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relates any counting distribution to
its corresponding gap distribution,
and vice versa, is given in Appendix
A.

5. Both the counting and gap dis-
tributions are useful: the counting
is convenient in practical work; the
gap is easy to generalize to arrange-
ments intermediate between regu-
larity and randomness.

THE INTERMEDIATE CASE

Although the Poisson distribution
has been useful in deseribing vehicu-
lar traffic, a careful analysis of the
corresponding gap distribution shows
that it cannot be theoretically correct,
even in the case of very light traffic.
Eq. 2 represents a curve which is
highest at the origin, and declines
gradually as x goes to infinity. This
property does not agree with vehicu-
lar traffic conditions, since cars can-
not arrive too near to the same time
without traveling at very high speeds.
There is a basic gap (the time for a
very fast car to cross) which must
be maintained. Although this gap
may be small for high speed cars, it
is not correct to say that the smaller
the gap, the more likely it is to occur.
On the contrary, very small gaps, al-
though theoretically possible, should
have low probability, and as the
length of the gap approaches zero,
so should the probability. In Eq. 2
this is not the case, since the value
of the function at the origin is 1/g.
Gerlough (3) has suggested a remedy
for this in translating the negative
exponential curve away from the ori-
gin by some small amount. Another
suggestion (4) is based on the model
of a particle counter in which the
mechanism is inoperative for a very
short ‘“dead time” after each regis-
tration. Both of these suggestions
require small gaps to be impossible
rather than merely improbable, and
therefore do not adequately meet the
objection.

To overcome these difficulties, a
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sensible gap distribution for the in-
termediate case should conform to
the following standards: (a) be de-
fined over (0, «), (b) approach
zero as the gap approaches zero, and
(c) contain an extra parameter,
which will measure the extent of
randomness or regularity, and which
will yield Egs. 1 and 2 for extreme
values of the parameter. The dis-
tribution which fulfills these condi-
tions is called the Pearson Type III,
and is formed by multiplying the
function e¢—*/* in Eq. 2 by some ap-
propriate power of z.

)\ke—)\ :‘xk—l

f(x) ZW ()

If k=1, this becomes Eq. 2, with
A=1/g, and corresponds to random
arrangement, or, in terms of vehicles,
to very light traffic. As k approaches
infinity, Eq. 5 approaches Eq. 1, al-
though this faet is not proved. Hence
a very large value of k in the Pearson
Type III distribution of gap will cor-
respond to very heavy traffic. The
mean value of the Type III distribu-
tion is k/h=g. The reciprocal A is
slightly more convenient than g even
in the random case; therefore Eq. 2
is more frequently written

A exp (—Ax)

A formula for the (possible) dis-
tribution of cars in cases between
randomness and regularity is pro-
posed, but it is now necessary to see
how well it corresponds to reality.
It is useful, if not absolutely essen-
tial, to find the counting distribution
which corresponds to the gap dis-
tribution Eq. 5. This function, which
is intermediate between Eqs. 1 and 4,
was apparently discovered by Good-
man (5) and named by him the gen-
eralized Poisson distribution.

k e—)\T()\T) nk+1—1

Pn= =1 (’ﬂk—i‘l—l)! (63)

or
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(nDE1 g AT (\T')
Pn= —],——

I=nk

(6b)

Appendix B gives a proof of this
fact. A more complete treatment of
the generalized Poisson distribution
has been published previously (6).

Eq. 6b has a quite simple interpre-
tation. It says that the probability
of no cars in the time interval T is
the sum of the first k£ terms of some
Poisson series, that the probability
of one car is the sum of the next %
terms of the same Poisson series, etc.
It is clear that the total probability
is one, since it is the sum of a whole
Poisson series. The question re-
mains: which Poisson series to use?
This is a problem in parameter esti-
mation, which is discussed subse-
quently.

A simple example of the general-
ized Poisson distribution may be use-

ful. The Poisson tables of Kitagawa
(7) give the following values for
)\:1/2
n Pn
0 0.6065
1 0.3033
2 0.0756
3 0.0126 Mean value =0.5000
4 0.0016
=5 0.0002

For k =2, this table would yield

n Da
0 0.9098
1 0.08%4 Mean value =0.0920
=2 0.0018

So far the parameter k& has ap-
peared as an integer, and certainly
this is necessary for Eq. 6b to make
sense. However, there is an equiva-
lent form (see Appendix C) for the
generalized Poisson distribution in
which fractional values of k are
meaningful. One other interesting
consequence of the alternative form
is that k may be less than unity. Such
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a value would correspond to a situa-
tion ‘“beyond” Poisson, which might
be called hyper-random. No traffic
situation for which such a value of k
is appropriate has yet been found,
but there seems to be some evidence
that a multi-lane freeway with very
high traffic volume might be hyper-
random.

Considering the fact that k=1 is
equivalent to randomness and k=
to regularity, it seems reasonable to
define

coeflicient of randomness =5 ( =3)

&l =

so that g=1 is for perfect random-
ness and 8=0 for perfect regularity.
Thus 8 measures, on a scale between
zero and one, the degree of random-
ness in the traffic situation. In terms
of this coefficient, hyper-randomness
occurs for values of B exceeding
unity.

ESTIMATION OF PARAMETERS

In applying the generalized Pois-
son to specific data, it is first neces-
sary to determine A and k. Formulas
for the mean and variance in terms
of A and % have been obtained (2, 6),
but so far it has proved impossible to
reverse these expressions. How-
ever, if k£ has been chosen, the ap-
proximate formula for A,

A =mk—|—%(k—1)

where m is the sample mean, has
proved fairly accurate.

The nomograph (Fig. 1) has been
computed with a view to making the
choice of X and k easy. To use it, it
is necessary to compute the sample
mean and variance, locate the corre-
sponding coordinate point on the
nomograph, and read off appropriate
values of A and k& from the double
family of curves. Whether or not
integral values of k are chosen may
depend on whether the added accu-
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Figure 1.

racy is worth the time required to use
tables of the incomplete gamma func-
tion, as explained in Appendix C.

COMPUTER INPUTS FOR THE
INTERMEDIATE CASE

Whenever an attempt to simulate
a real time traffic situation is under-
taken, the important requirement of
providing traffic inputs to the simu-
lator exists. There are two ap-
proaches to the satisfaction of this
requirement: (a) supply empirical
input data directly to the simulation,

Nomograph of A=mk-% (k—1).

(b) generate input within the simu-
lator according to some known dis-
tribution.

The first method is satisfactory in
many cases if the simulator is a rela-
tively slow device; however, when
large masses of input data are re-
quired the storage and handling by
this method become too time consum-
ing and costly. In such cases, par-
ticularly when a general purpose
digital computer is the simulator, the
second method is superior.

Gerlough (38) has shown two meth-
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TABLE 2
OBSERVED AND THEORETICAL VALUES FOR FRACTIONAL &
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Data

Theoretical Curve

Theoretical Curve

(7:00 sample) A =745k =3) A =795k =32
n =0 4 2 2
n =1 19 23 22
n =2 42 41 44
n =3 29 25 25
n >3 6 9 7
Mean 2.14 2.16 2.13
Variance 0.86 0.89 0.81
Chi-square 4.36 3.28

ing value of A by the approximate
formula (Eq. 7).

In one case the trial and error
method was extended to fractional
values of k, with some success as in-
dicated in Table 2

It will be seen (Fig. 1) that the
parameter values used do not depart
substantially from those indicated.
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APPENDIX A
RELATIONSHIP BETWEEN COUNTING AND GAP DISTRIBUTIONS

Let p.(n) =Prob (» events in time
t),n =0,1,2, .- have the cumulative
form
P,(n) =Prob(=n eventsin timet),

n=0,1,2, .-

If the density function for the distribu-
tion of lengths of individual gaps is
f(x), then the density function for the
distribution of lengths of the sum of
n gaps is known as the n-fold convolu-
tion of f(x), and is denoted by f~*(zx).
This distribution is defined and ex-
plained in any standard textbook of
statistics.

Now,
Prob (number of events in time ¢ is <n)

=Prob(sum of n gaps =1¢)
which means

Pun—1) =/°°fn*(x)dx.

This gives the counting distribution in
terms of the gap distribution. To obtain
the reverse, it is only necessary to set
n=1 in the preceding formula and
differentiate with respect to #:

F(@) =~2p.(0)

t=z

APPENDIX B
DERIVATION OF GENERALIZED POISSON DISTRIBUTION

Let the gap distribution be Type II1
with parameters A and k

)\kxk—le—)\:
f(x) =m-

Then it is well known (see, for exam-
ple, Kendall (8, p. 244)) that the =n-
fold convolution is Type III with pa-
rameters x and nk.

pi(n) =P(n) —P(n—1)
- f “frt % () dp — f "k () dar

and since the integral over the whole
range (0, «) is unity,

=[5 @ dz— [ fos0x(z)d.

Writing y =Mz, with the convolution
values put in,

)\lynk—le 1/ -/‘)\ty(n+1)k lg—y
=), G-, taromn
Now integrate by parts the second
integral k times. Poisson terms will arise
from each reduction, finally leaving an
integral which cancels with the first

integral. The remaining terms give
exactly Eq. 6.

APPENDIX C
ALTERNATE FORM OF GENERALIZED POISSON DISTRIBUTION

The incomplete gamma function is
defined by

I'(n, z) = f “e-tgnidy.

Therefore, from Appendix B,

CT[(n+1)k, \]  T(nk, \t)
Pm) ==FEm¥DE] Tk

But the incomplete gamma function is
defined for all values of » whether
integral or not, and therefore, values of
p(n) can be found from tables of this
function.





