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ABSTRACT 

 

 The objective of this project was to determine the longitudinal stress in rails, in 

order to reduce rail buckling due to temperature-induced stresses.  Continuous welded 

rails (CWR) are typically long members which are susceptible to failure caused by 

temperature changes.  Such rail temperature changes can cause considerable disruption to 

the rail network and, in the worst case, cause freight or passenger train derailment.   

An important parameter in analysis of temperature induced stresses is the rail 

neutral temperature (RNT), defined as that rail temperature at which the net longitudinal 

force in the rail is zero. The objective of this project was to determine the longitudinal 

stress in rails using the polarization of Rayleigh surface waves, to reduce buckling and 

fracture.  

This project developed a non-destructive procedure for monitoring the stress-free 

temperature in rails using the acoustoelastic effect of ultrasonic waves. Acoustoelasticity 

is the stress dependency of ultrasonic wave speed or polarization. Analytical models were 

developed to explain the relationship between the polarization of Rayleigh waves and the 

state of stress. Rayleigh waves were detected using a laser Doppler vibrometer (LDV). 

Furthermore, the polarization of Rayleigh waves is considered as a measure to identify 

applied stress. 
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EXECUTIVE SUMMARY 

 

This research determined the rail neutral temperature (RNT) by using a non-

destructive and non-labor intensive measurement technique of the rail stress using the 

polarization of Rayleigh waves. The relationship between the polarization of Rayleigh 

waves and the state of stress can be seen by an analytical model. The numerical 

simulation showed that the change of polarization of Rayleigh wave on residual stress is 

one order of magnitude higher than the change of Rayleigh wave speed. Additionally, a 

sensitivity analysis showed that the polarization of Rayleigh wave is more robust against 

uncertainties in material properties. The results revealed that Rayleigh wave polarization 

is more sensitive to longitudinal stress and more robust than the Rayleigh wave speed. 

 Further tasks as part of this project were done in order to implement this 

technology in the field. A preliminary laboratory experiment was conducted where the 

Rayleigh waves were generated in the rail using a wedge transducer. Then the 

polarization of Rayleigh waves in an unstressed rail was detected using a laser Doppler 

vibrometer (LDV) by measuring the out-of-plane as well as the in-plane component of 

the particle velocity. The results of the numerical simulation were verified with the 

preliminary experimental results. Further measurements were done in a stressed rail and 

the change in polarization of the Rayleigh wave was determined using a wedge 

transducer for generation and a LDV for the detection of ultrasonic waves. After a 

thorough evaluation, the concept was tested at Transportation Technology Center, Inc. 

(TTCI) facilities in Pueblo, CO, to transfer the developed technology to TTCI researches 

and Association of American Railroads (AAR) members.  The results show that the 

polarization of Rayleigh wave changes with longitudinal stress. Knowing the longitudinal 

stress will prevent future buckling of the rail and reduce the number of derailments and 

increase railroad safety. 

In a period of four years, 99 derailments occurred in the U.S resulting in about 

$38 million in damages. In total, there were ten times as many incidents of rail buckling 

due to temperature effects as those that resulted in derailments (Kish and Read).  
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The potential impacts of the application of this proposed technique on railroads 

are reduction of maintenance costs and increased safety. The non-destructive and non-

labor intensive maintenance reduces the time needed to do inspections. The potential for 

cost savings in the U.S. railroad industry is considerable. This practical method gives the 

railroad industry the opportunity to check their rail lines more often and to correct the 

installation of the rails at the RNT, which can reduce buckling of the rail and decrease the 

number of train derailments. 
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Fig. 1 – Buckling of Rails (http://nisee.berkeley.edu) 

 

CHAPTER 1 

Background 

 

Introduction 

 Continuous welded rails (CWR) are rails that are welded together to become long 

continuous members that are fixed at both ends. Using CWR will improve the 

convenience and reduce unneeded abrasion. There are also disadvantages in using CWR. 

Rail steel expands in hot weather and shrinks in cold weather, which could cause 

buckling and fracturing. Due to fixed ends, rails are restrained from expanding and 

shrinking. Hence, rails will experience a compressive stress in hot weather and they will 

undergo a tensile stress in cold conditions. The temperature at which the rails experience 

zero stress is called the rail neutral temperature (RNT). Large difference between the 

RNT and the surrounding temperature can cause the rails to buckle or fracture. Fig. 1 

shows how rails could buckle due to a large difference between RNT and ambient 

temperature.  

 

 

 

 

 

 

 

To prevent this problem, RNT needs to be set up to be in between the buckling 

and fracturing temperature. Kish and Samavedam (2005) identified that the RNT of rail 

steel could change due to several factors such as rail movement through fasteners. 

Moreover, the temperature of the rail can exceed the ambient temperature by around 30
o
F 
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in hot weather, causing the rail steel to reach temperatures of 140
o
F. This results in 

having a greater chance of rail buckling. For example, a CWR is installed at 90
o
F (RNT = 

90
o
F). Consider that rail buckling happens at a temperature difference of 60

o
F. Thus, rail 

will buckle when the temperature reaches to 150
o
F. Due to rail movement through 

fastener, RNT drops to 50
o
F. This change in RNT causes the rail to buckle when the 

temperature reaches 100
o
F. 

The example above shows how important it is to keep inspecting the RNT of 

CWR. Installing CWR at a “safe” region between buckling and fracturing temperatures 

does not guarantee that the rail will not buckle in the future. Hence, in order to prevent 

the rails from buckling or fracturing, RNT needs to be identified on a timely basis. 

The objective of this research is to identify the longitudinal stress by using the 

polarization of Rayleigh waves in a non-destructive and non-labor intensive method. The 

ultrasonic wave will be generated by a transducer, and a laser Doppler vibrometer (LDV) 

is used to measure both the in-plane and out-of-plane velocity components of a Rayleigh 

wave as a function of applied stress (Hurlebaus and Jacobs, 2006). Once the longitudinal 

stress is identified and the ambient temperature is measured, RNT can then be calculated 

by using the relation between stress, ambient temperature, and the material properties 

given by  

n aT T
E




 

   ,        (1.1) 

where nT  is the rail neutral temperature, aT  is the ambient temperature,   is the residual 

stress, E  is Young’s Modulus, and   is the thermal coefficient. The graph of this 

relation can be seen in Fig. 2. Once the RNT is determined, the conditions of the rails can 

be known, and decisions can be made regarding whether re-installing the entire rail is 

necessary to increase safety.  
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Fig. 2 – Rail Neutral Temperature 

Fig. 3 – VERSE equipment (http://www.railway-technology.com) 

 

 

 

Methods of Residual Stress Measurements 

There are several methods that railroad industries have been using to determine 

the longitudinal stress in rails. Each of these techniques has disadvantages. Using 

traditional techniques, stress can be measured by cutting the rail, measuring the gap, 

calculating the RNT, and re-welding the rail. This method is a destructive measurement, 

labor intensive, and costly. 

 The VERSE method, shown in Fig. 3, measures the stress non-destructively. In 

this method, the rail is unclipped and lifted, a set of loads are then applied, the 

displacement is monitored, and the rail is re-clipped. Although this method is a non-

destructive, this technique is labor and measurement intensive; thus, it is time consuming 

and costly. 
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Egle and Bray (1979) use the acoustoelastic effect on longitudinal wave speed 

using contact transducers. The disadvantages of this method are that a very precise 

measurement of propagation distance is needed to determine the longitudinal wave speed, 

and the correlation between longitudinal wave speed and residual stress is low.  

The d’Stresen technique (Read, 2007) identifies that the vibration amplitude of a 

rail is proportional to the longitudinal force in the rail, but only when the rail is under 

tension. Also, this technique is a contact measurement technique; thus, it cannot be 

applied while trains are running. Damljanovic and Weaver (2005) investigated the 

technique of measuring the stress in rails using the principle of sensitivity of bending 

rigidity to stress. This technique measures the bending wave number in the rail for the 

unstressed and stressed case. The drawback of this technique is that it requires a very 

high precision equipment to do the experiment. 

 

Acoustoelastic Effect 

The determination of material properties such as material constants, flaw 

detection, or applied stress can be obtained by various types of ultrasonic waves. Crecraft 

(1962, 1967) found that acoustoelasticity or the acoustoelastic effect is a functional 

technique for determining material properties. Using the correlation of the stress 

dependence of wave velocities in solids, the dependency of ultrasonic waves on stress is 

called the acoustoelastic effect.  

Murnaghan (1951) developed a nonlinear elastic theory for isotropic materials. 

This theory introduces third-order elastic (TOE) constants which help explain the 

acoustoelastic effect with a theoretical model. The theory was applied by Toupin and 

Berstein (1961) to an elastically deformed material to observe the propagation behavior 

of acoustic waves. Pao and Garmer (1985) extended this theory to an orthotropic media. 

The acoustoelastic effect is very small. Special techniques are required to measure 

the stress-induced velocity changes. Crecraft (1967) uses the sing-around technique to 

measure the acoustoelastic effect. This technique uses one or two transducers that are 
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Fig. 4 – Change of Rayleigh wave polarization under applied stress 

coupled to the specimen. The first transducer generates a pulse to be received by the 

second transducer. This pulse is then used to retrigger the sending transducer. The 

frequency of this echoing pulse is related to the travel time of the ultrasonic wave. 

Hughes and Kelly (1953) used the pulse-echo technique to measure stress-induced 

velocity changes. In this technique, the time a pulse travels through a specimen is 

measured.  

Hirao et al. (1981) did research on the acoustoelastic effect on Rayleigh waves in 

a homogeneous isotropic material. It was found that Rayleigh waves are non-dispersive 

and the velocity change is linear under a uniform stress. Duquennoy et al. (1999, 2001) 

used Rayleigh waves to analyze residual stresses. Fig. 4 shows the change of Rayleigh 

wave polarization with applied stress.  

 

 

The proposed method is a non-destructive and non-labor intensive measurement 

technique (Hurlebaus 1996, 2002b). The change in polarization of the Rayleigh wave is 

measured instead of the longitudinal wave speed; therefore, information on the 

propagation distance is not needed (Junge, 2003, Junge et al., 2006). This technique is 

also applicable on rails under tension or compression. 
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CHAPTER 2 

Research Approach 

 

The following investigations were done as part of the current project: 

1: Literature Review 

The research team compiled a literature review to fully document the state of 

practice on estimating the rail stress. The team will continue the literature review 

throughout the duration of the project to identify new information and to identify possible 

issues and areas of improvement.  

2: Analytical Model 

This task developed an analytical model that predicts the relationship between the 

polarization of a Rayleigh wave and the state of stress. This relationship is used to 

measure applied stress. The analytical model is based on the equations of motion for a 

pre-stressed body. 

3: Numerical Simulation 

 The numerical simulation for the problem concerning Rayleigh waves in a pre-

stressed medium was performed. First, an iterative algorithm that solves the relevant 

analytical equations was developed followed by an analysis of the numerical problem. 

Moreover, a sensitivity analysis was performed that investigates the influence of 

uncertainties in the third order elastic constants on the wave speed and the polarization. 

4: Preliminary Experiment 

The purpose of this preliminary experiment was focused on how to generate 

Rayleigh waves in rails using a wedge transducer. Then the polarization of Rayleigh 

waves in an unstressed rail were detected using a laser Doppler vibrometer (LDV) by 

measuring the out-of-plane as well as the in-plane component of the particle velocity. 

5: Model Updating 

Verification of the results of the numerical simulation with the preliminary 

experimental results was done. This provides the opportunity to account for any 

uncertainties in material properties of the rail or for any geometrical uncertainties. 
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6: Experiment 

Measurements were done in TTCI facilities at Pueblo, CO. by using hydraulic 

clamps to do a tension test. The experiment was done by using a wedge transducer for 

Rayleigh wave generation, and the change in polarization of the Rayleigh wave between 

stressed and unstressed rail steel was determined. 
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CHAPTER 3 

Analytical Model of Elastic Waves 

 

This chapter provides descriptions on the subject of wave propagation, Rayleigh 

waves, states of a solid body, and third-order constant (TOE). These subjects help in 

understanding the analytical model discussed in the next chapter.  

 

Wave Propagation 

 The equation of motion of an elastic solid is governed by the Lame-Navier 

equation given by  

      
2

2

mn m
m

n

T u
f

x t
 

 
 

 
 ,          (3.1) 

where   symbolizes the density of the material, mf  are the internal body forces, nx  

denotes the direction in the coordinate system shown in Fig. 5, 
mu  is the displacement in 

the mx  direction, and mnT denotes the stress tensor in the generalized Hooke’s Law given 

as 

p

mn mnpq

q

u
T C

x





  

.        (3.2) 

By substituting Eq. (3.2) to Eq. (3.1) and neglecting the body forces, the equation of 

motion can be written as 

        

2 2

2

p m
mnpq

n q

u u
C

x x t


 


  
  ,       (3.3) 

where mnpqC  is the second order stiffness tensor given by 

       
( )mnpq mn pq mp nq mq nqC           .      (3.4) 
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Notation  and   in Eq. (3.4) denote the Lame’s constants, and   is the Kronecker 

delta. Lame’s constants can be expressed in terms of Young’s Modulus E , and Poisson’s 

ratio   

           
2(1 )

E






,                and              

(1 )(1 2 )

E


 


 
  .             (3.5)  

By plugging Eq. (3.4) into Eq. (3.3), the equation of motion becomes 

           
2

2

2
( ) n m

m

m n

u u
u

x x t
   

  
    

   
,             (3.6) 

where   denotes the nabla operator 
2 2 2

2

2 2 2

1 2 3x x x

  
   

  
.

 

 

  

Fig. 5 – Coordinate system  

To satisfy the equation of motion in Eq. (3.6), the displacement vector can be expressed 

in the form of  

   ( )f ct  u x p d ,              (3.7) 

where c  is the wave speed, p  represents the unit propagation, x  is the location of the 

displacement vector, and d  is the unit displacement vectors.  

Longitudinal waves have polarization vectors parallel to the displacement vector, 

or p d . Conversely, shear waves have polarization vector perpendicular to the 

displacement vector, or 0 p d . By inserting each of these characteristics into Eq. (3.7) 

and then plugging the result into Eq. (3.6), the wave speed can be determined as  
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2 2
lc

 




 ,          (3.8) 

     2

Sc



 ,         (3.9) 

where lc  and Sc  are the longitudinal wave speed and the shear wave speed, respectively. 

 Eq. (3.7) can be uncoupled in terms of longitudinal and shear waves by utilizing 

the Helmholtz decomposition. The displacement in uncoupled terms can be expressed in 

terms of a scalar function   and a vector field ψ  

      u ψ   .          (3.10) 

By substituting Eq. (3.10) back into Eq. (3.6), the uncoupled equations are 

2
2

2 2

1

lc t





 


    and  

2
2

2 2

1

sc t


 



ψ
ψ

  

.    (3.11) 

 

Rayleigh Wave 

 A Rayleigh wave is a non dispersive wave that propagates on the free surface of a 

solid. It was first found by Lord Rayleigh in 1885 (Hurlebaus, 2002a). The particles of a 

Rayleigh wave travel in a counterclockwise direction with an elliptic trajectory along the 

free surface and then change to a clockwise direction as the depth increases. A Rayleigh 

wave’s amplitude decays as a function of depth (coordinate 3x ), and the motion does not 

depend on the coordinate 2x . Fig. 6 shows the trajectory plot of a Rayleigh wave particle. 

In Rayleigh waves, the scalar function and vector field can be assumed to be 

1( )

3( )
ik x ct

F x e 
  

1( )

3( )
ik x ct

G x e


ψ   ,          (3.12) 

where F  and G  are functions of 3x , and k is the wave number given by 2 /k   . 

Plugging Eq. (3.12) into Eq. (3.11) gives the surface wave motion  
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 3 1( )

1

kqx ik x ct
Ae e  

  

3 1( )

1

ksx ik x ct
B e e

 
ψ ,                     (3.13) 

where  1A  and 1B  are arbitrary constants and 

    

2

1 R

l

c
q

c

 
  

 
      

2

1 R

s

c
s

c

 
  

 
 . 

The boundary conditions require that stress is equal to zero at 3 0x  . Substitution of this 

boundary condition into Eq. (3.13) yields the Rayleigh characteristic equation 

2
2 2 2

2 2 2
2 4 1 1 0R R R

s l s

c c c

c c c

     
         

     
 .     (3.14) 

Eq. (3.14) has six roots, whose values depend only on Poisson’s ratio   for a given 

elastic media. Victorov (1966) showed that for arbitrary values of   corresponding to 

real media (0 <   < 0.5), Eq. (3.14) has only one such root. An approximate expression 

for the Rayleigh wave velocity Rc  is given by Graff (1991) 

0.87 1.12

1

R

S

c

c









.      (3.15) 

This propagation velocity is smaller than those of the body waves. As the velocity Rc  is 

independent of the wavelength, the wave propagation is non dispersive. The propagation 

of a Rayleigh wave is depicted in Fig. 6. It can be shown that an arbitrary point will move 

with elliptical motion as the Rayleigh wave passes by. Most of the energy in the Rayleigh 

wave is present in the depth of one wavelength from the surface. Due to this skin effect, 

the Rayleigh wave has great potential for detection of faults at the surface of structures. 

Furthermore, the Rayleigh wave causes the most damage during an earthquake because it 

carries more energy at the surface than either longitudinal or shear waves. 
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Fig. 6 – Trajectory plot for various depths (Junge, 2003) 

 

 

Rose (1999) derived the displacements of the Rayleigh waves that satisfy the 

boundary conditions to be  

    
3 3 1

3 3 1

( )

1

( )

3

( 2 )

( 2 )

R

R

qx sx ik x c t

qx sx ik x c t

u A re sqe e

u iAq re e e

  

  

 

    ,

      (3.16)  

where  
2

2 /R Sr c c    and 1 / 2A kB q . Plotting the displacement of u1 and u3 gives 

the ellipse shape of particle motion. Polarization of a Rayleigh wave can be described as 

the ratio of maximum displacements along the ellipse’s axes given by  

          1

3

u

u
 

 

 .          (3.17) 

Lamb Waves 

Consider a double-bounded medium that has two parallel surfaces in close 

proximity. Disturbances are constrained to move between the two surfaces, and therefore 

the system behaves as a waveguide. Of interest is the case where the top and bottom 

surfaces are traction-free. For this set of boundary conditions, waves known as Lamb 

waves propagate in the plate. Depicted in Fig. 7 are the displacement profiles for the first 

Lamb modes. The essence of the analysis is that standing waves are established in the 

transverse direction, while propagating waves travel in the lengthwise direction. Consider 
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a plane, harmonic Lamb wave propagating along the positive 1x -direction in a plate with 

thickness h. The scalar and vector potentials can be expressed as 

    1( )2 2 2 2

1 3 2 3sin cos
ik x ct

L LC k k x C k k x e     
  

    (3.18) 

    1( )2 2 2 2

1 3 2 3sin cos
ik x ct

S SD k k x D k k x e     
  

,    (3.19) 

where Lk and Sk are the wave numbers of the longitudinal and shear waves, respectively,  

1C , 2C , 1D and 2D  are arbitrary constant. Implementation of the boundary conditions 

33 13 0    at the free surface 3 / 2x h   leads, after some manipulation, to the well-

known Rayleigh-Lamb frequency equations 

2 2
2 2 2 2 2

2 2 2
2 2

tanh
42

(2 )
tanh

2

S
S L

S
L

h
k k

k k k k k

h k k
k k

 
      

 
 

 

    (3.20) 

for the symmetric case and 

2 2

2 2 2

2 2 2 2 2
2 2

tanh
(2 )2

4tanh
2

S

S

S L
L

h
k k

k k

h k k k k kk k

 
     

    
 

    (3.21) 

for the antisymmetric case. For the symmetric mode shapes, the displacement 1u  is 

symmetric about the axis 3 0x  ; and for the antisymmetric mode shapes the 

displacement 1u  is antisymmetric about the axis 3 0x   (Fig. 7). At a spatially-fixed plate 

cross section, the amplitude of a mode shape will oscillate with angular frequency   as 

wavefronts travel through the cross-section with velocity c. Eq. (3.20) and Eq. (3.21) can 

be expressed in terms of   and c using the relationship /k c .  
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Fig. 7 – Symmetric and antisymmetric components of the 1 3,u u  displacements 

(Hurlebaus, 2005) 

Fig. 8 – Theoretical dispersion curves calculated from Rayleigh-Lamb 

frequency equations (Hurlebaus, 2005) 
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For a given frequency, these equations can be solved for the unknown velocity of 

the mode in question. A plot of   vs. c (or   vs. k) for a particular mode is known as a 

dispersion curve. Fig. 8 shows typical dispersion curves in the normalized ( , k) domain 

for Lamb waves together with dispersion curves for the longitudinal and shear wave. The 

symmetric Lamb modes are called 0 1 2, , ,...s s s  and the antisymmetric modes are 

called 0 1 2, , ,...a a a . Lamb waves are – as opposed to Rayleigh waves – dispersive, 

whereby the propagation velocity of a specific Lamb mode depends upon its oscillation 

frequency. For a given ( , k) combination, the mode shape can be computed using Eq. 

(3.11), Eq. (3.18), and Eq. (3.19). Fig. 7 shows the in-plane and out-of-plane 

displacements 1 3,u u  for symmetric as well as for antisymmetric Lamb waves. 

 

States of a Solid Body 

 Natural, initial, and final states are different states that can be found in a solid. A 

solid body is in the natural state when there is no residual stress and strain in the body. In 

practice, such state does not exist in a solid material. Solid materials experience stresses 

from fabrication processes or external loading that leads to deformation. When material 

undergoes such stress, it is said to be in its initial state. The final state takes place when 

the material undergoes additional deformation due to other stress applied on the body 

such as the propagation of ultrasonic wave. Fig. 9 shows the arrangement of the three 

states of a body in the Cartesian coordinate system. 

Pao et al. (1984) refers the position vectors of the natural, initial, and final states 

to be , X , and x  respectively. The relationship of the displacements of these states can 

be expressed as 

                                                             ( )   i
u X            (3.22) 

     ( )   f
u x        (3.23) 

           ( )     f i
u x X u u  ,     (3.24) 

where superscript i  and f  stand for initial and final, respectively. 
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Fig. 9 – Coordinate system of natural, initial, and final states of a body (Junge, 2003) 

 

 

 

  

Third-Order Elastic (TOE) Constant  

 The existence of elastic constants is very important in determining the stress state 

of the material using the ultrasonic wave method. The second order elastic constant can 

be found by using the linear theory of elasticity. When there is an applied stress in the 

material, the second order elastic constants cannot explain the change in ultrasonic wave 

velocities. Thus, a higher order of nonlinear elasticity theory was established. This theory 

introduces the second-order Lame constant and the third-order elastic constant. For 

isotropic materials, the second- and third-order elastic constants can be expressed in the 

forms 

( )C               ,      (3.25) 

and 

1 2

3

[ ( ) ( )

( )] [ ( )

( ) ( )

( )],

C             

         

         

    

              

          

         

    

     

   

   



         (3.26) 

where 1 , 2 , and 3  are the Toupin and Bernstein (1961) notation of TOE. 
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CHAPTER 4 

Findings and Applications 

 

Equation of Motion for a Pre-stressed Body 

 The state of stress at a given point as a function of X  is defined by the Cauchy 

stress tensor, ( )i
t X . While the Piola-Kirchhoff stress tensor, 

i
T (ξ) , describes the state of 

stress at the same given point in the natural configuration. Both of these tensors are 

related by 

           

1

i iJK
JK

XX
t T

 





  

X

ξ
  .                   (4.1) 

The relation of the final state of stress of these two tensors can also be found by using the 

same analogy given by 

     

1 1

j jf f fi i
ij KL

K L

x xx x
t T T

 

 
   

 
     

x x

ξ X
  ,      (4.2) 

and the stress change from the initial to final state is defined by  

f i

JK JK JKT T t   

 
f iT T t    .         (4.3) 

Given these basic explanations, Pao et al. (1984) derives the equation of motion as  

   
2

0

2
ˆ( ) (1 )i i iK

IK JL IJKL NN

J L

uu
t C

X X t
  

  
   

   
,      (4.4) 

where ˆ
IJKLC represents the adapted stress tensor of a pre-stressed body. Both the adapted 

stress tensor and initial strain are respectively given by 

1

2 2

3

ˆ ( ) [( )

( )( )] 2( )( )

2( )( )

IJKL IJ KL IK JL IL JK IJ KL

i i i

IK JL IL JK MM IJ KL KL IJ

i i i i

IK JL IL JK JK IL JL IK

C           

            

         

      

      

   
,

     (4.5) 
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and the initial strain, i

KL , is determined by 

    
1

2 (3 2 ) 2

i i i

KL KL NN KLt t


 
   


 


 .       (4.6) 

 

Rayleigh Waves in Pre-stressed Bodies 

 Assuming that the initial stress is homogeneous, Eq. (4.4) can be simplified into 

      
2

2
ˆ( ) (1 )i iK I

IK JL IJKL NN

J L

u u
t C

X X t
  

 
  

 
 .       (4.7) 

In this chapter, the displacement field is selected to be in the form 

1 3( )Rik X pX c t
e

 
u a ,               (4.8) 

where a represents the displacement vector, and p is the decay parameter. The form of 

this displacement field represents the propagation of a Rayleigh wave where its motion 

decays exponentially with increasing depth. Plugging Eq. (4.8) into Eq. (4.7) yields the 

equation 

2 2

0
ˆ ˆˆ ˆ{ ( ) (1 ) } 0T i

NN Rp p c      S R R Q I a ,  

or  

          { ( , )} 0Rc p D a  ,           (4.9) 

where I is the identity matrix, and Ŝ , R̂ , and Q̂  are given by 

           3 3
ˆ ˆ

IK I KS C                 1 3
ˆˆ

IK I KR C               1 1 11
ˆ ˆ i

IK I K IKQ C t 
 
.    (4.10) 

The displacement vector a can be determined by solving for null space of D  for each ip , 

which can be solved by setting 

      
( , ) 0Rc p D    .      (4.11) 

The decay parameters, ip , solved in Eq. (4.11) consist of three pairs of complex 

conjugate roots for p . Once the displacement vectors ia  are determined, the 
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displacement field can be written as a linear combination of the single solutions using the 

matrix notation 

1( )

3( )
ik X ct

X e


u AG f  ,       (4.12) 

where f  is a vector that consists of factors for the linear combination,  1 2 3, ,A a a a , 

and 

    

1 3

2 3

3 3

3

0 0

( ) 0 0

0 0

ikp X

ikp X

ikp X

e

X e

e

 
 

  
 
 

G  .      (4.13) 

 The boundary condition of the state of stress for Rayleigh waves in a pre-stressed 

body is given by 

         
12 2

ˆ 0K
I KL

L

u
T C

X


 


 , at 3 0X   .     (4.14) 

Plugging Eq. (4.12) into the boundary condition yields 

 ˆˆ( ) 0T  R A SAP f ,       

 or  

       ( , ) 0Rc p B f  ,      (4.15) 

where 

 

1

2

3

0 0

0 0

0 0

p

p

p

 
 


 
  

P  .      (4.16)  

For a non-trivial solution of Eq. (4.15), the matrix B must equal to zero or 

     ( , ) 0Rc p B    ,       (4.17) 

and the vector f  can be found by solving for the null-space of B . 

 The polarization of Rayleigh waves is defined as the ratio of maximum 

displacements in the x1 and x3 directions on the free surface. The polarization of Rayleigh 

wave is given by 
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         1

2

( )

( )
 

Af

Af
 .           (4.18) 

  

Algorithm for Numerical Simulation 

 The numerical simulation to the problem of Rayleigh wave propagation is done 

by using Matlab software. This simulation determines the changes of Rayleigh wave 

speed, Rc , and polarization of the Rayleigh wave,  , due to residual stresses. Junge 

(2003) has arranged the iterative algorithm as follows:  

1. Identify an initial Rayleigh wave speed, 0Rc . This can be done by using Eq. 

(3.14). The longitudinal and shear wave speeds can be determined by using Eq. 

(3.8) and Eq. (3.9). Poisson’s ratio is needed to perform this calculation, and it 

can be found by  

     
2( )




 



        (4.19)  

2. Plug in the wave speed from step 1 into Eq. (4.9) and solve for pi that makes the 

determinant of D  equal to zero. 

3. For each value of ip , solve for the null-space, ia , in Eq. (4.9) and construct the 

matrix A . 

4. Use the values of p  to construct the matrix P  in Eq. (4.16). 

5. Construct matrix B  as stated in Eq. (4.15). 

6. If the determinant of matrix B  is not equal to zero, use another value of 0Rc  and 

start all over again from step 2. 

7. The value of 0Rc  that satisfies the boundary condition is the Rayleigh wave speed, 

Rc , due to the residual stress. 

8. Solve for the null-space, f , in Eq. (4.15) 

9. Compute the polarization vector using Eq. (4.18) 
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Relative Change of Rayleigh Waves on Residual Stress 

The relative change of the wave speed and polarization with stress are very small 

in rail steel. Many publications use the relative change of wave speed instead of the 

absolute value of the wave speed and polarization because of this reason. Moreover, the 

acoustoelastic effect can be clearly visualized by using the relative change. The relative 

change of Rayleigh wave speed is given by 

           0

0

R R
R

R

c c
c

c


     ,           (4.20) 

and the relative change of Rayleigh wave polarization is  

           0

0


 


        .     (4.21) 

The numerical simulation in this chapter uses the properties of rail steel found by Egle 

and Bray (1976) that are shown in Table 1. 

 

ρ  λ  μ  υ1  υ2  υ3  

(kg/m
3
) (GPa) (GPa) (GPa) (GPa) (GPa) 

7799 110.7 82.4 -96 -254 -181 

 

 Rail steel has yield strength of 450 MPa. This simulation runs the analysis ranging 

from a compressive force of -440 MPa to a tensile force of 440 MPa. Fig. 10(a) shows 

the results of the simulation on the change of wave speed due to residual stress. This plot 

shows that there is a linear relation between them and is given by 

     
11

c i

Rc k t       ,      (4.22) 

where ck is a wave speed proportionality factor.  

 

Table 1 – Material properties of rail steel 
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(a) Change of wave speed on residual stress 

(b) Change of Rayleigh wave polarization on residual stress 

Fig. 10 – The change in wave speed (a) and the change in Rayleigh wave polarization (b) 

due to residual stress for rail steel 

 

 

     

 

 

 

Similarly, Fig. 10(b) also shows that there is linear relation between   and 
11

it  

given by 

         
11

p ik t      ,         (4.23) 

where pk  is the polarization proportionality factor. Both the ck  and pk  are used to 

measure the sensitivity of the Rayleigh wave speed and the polarization of the Rayleigh 

wave, respectively. Based on the simulations, the proportionality factors are determined 

to be  

ck  =  -4.3 x 10
-7 

/ MPa      and        pk  = 9.8 x 10
-6 

/ MPa 
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Sensitivity Analysis 

 In the previous section, TOE constants are assumed to remain unchanged in the 

simulation. In reality, the values of TOE constants have some uncertainties. Eagle and 

Bray (1976) identified an estimated error of the TOE constants for rail steel to be about 

3% - 4%. Smith et al. (1966) found the uncertainties of TOE constants for austenitic Steel 

Hecla ATV to be more than 20%. As can be seen for the examples, sensitivity analysis on 

the TOE constants needs to be done to discover the change of wave speed and 

polarization of Rayleigh waves against uncertainties for any case. In contrast, Lame 

constants can be determined precisely and, hence, can be assumed to remain constant. 

 Assuming an uncertainty of 20% in rail steel properties, the scale of relative 

change of Rayleigh wave speed and polarization of Rayleigh wave can be seen in Fig. 11. 

This plot shows that the experimental results may vary within the shaded area since the 

values of TOE constants are not known exactly. 

The proportionality factors are investigated in this sensitivity analysis to have a 

better understanding of the uncertainties in TOE constants. Table 2 shows the percentage 

differences of maximum and minimum proportionality factors to the real value. It is seen 

that the values of pk  are greater than the values of ck  by about one order of magnitude. 

This means that the change of Rayleigh wave polarization on residual stress is higher 

than the change of wave speed, thus, it is easier to be analyzed. In addition, the 

percentage difference against uncertainties of pk  is much smaller than ck , meaning that 

the Rayleigh wave polarization is more robust. These are the two main reasons why 

Rayleigh wave polarization is used instead of the Rayleigh wave speed in this research. 
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(a) Change of wave speed against uncertainties 

(b) Change of polarization of Rayleigh wave against uncertainties 

Fig. 11 – The change in wave speed (a) and the change in Rayleigh wave polarization (b)    

against uncertainties. The changes are within the shaded area. 

Table 2 - Variations of TOE Constants [GPA] and Proportionality Factors 

 

 

 

 

 

 

  

 

  υ1  υ2  υ3  
ck  % diff pk  % diff 

Min -115.2 -304.8 -217.2 -2.69E-06 519.65% 1.34E-05 36.78% 

Avg -96 -254 -181 -4.34E-07 

 

9.76E-06   

Max -76.8 -203.2 -144.8 1.82E-06 -519.64% 6.17E-06 -36.77% 
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Fig. 12 – Trajectory plot of particle motion for unstressed and stressed rail 

steel 

Rayleigh Wave Polarization 

 The values of Rayleigh wave polarization are obtained by dividing the 

displacements in the x1 direction by the displacements in the x3 direction. These values 

can also be plotted against each other to visualize the shape of particle motion. Fig. 12 

shows the change in the shape in particle motion between unstressed and stressed rail 

steel.  

 

 

 

Frequency Range 

Ideally, the Rayleigh wave can only propagate along an elastic half-space. In this 

research, the Rayleigh wave is generated to propagate on the web of rail steel. The web of 

the rail steel itself is a plate like structure. Hence, a frequency range where the Rayleigh 

wave theory can be applied needs to be determined.  

 This propagation of Rayleigh wave itself is a superposition of the first 

antisymmetric and symmetric Lamb modes as explained by Victorov (1966). In a 

previous section of this report, Lamb waves are explained in more detail. 
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Masserey et al. (2008) investigated the propagation of Rayleigh waves in 

aluminum plates. The propagation of Rayleigh waves starts on the surface and gradually 

transfers to the other side of the plate, and then transfers back to the surface from which it 

started. The distance of that one whole cycle is called the beat length, calculated as 

0 0

2

A S

L
k k





 ,      (4.24) 

where 0Ak  and 0Sk  are the wave numbers of 0A  and 0S  modes respectively. Fig. 13 

shows the wave number dispersion curve in a rail steel.  

 

 

If the beat length approaches infinity, the amplitude of the Rayleigh wave is only 

decaying with distance. This could only be achieved when the denominator term 

0 0( )A Sk k  approaches zero. In the dispersion curve chart (Fig. 13), increments in 

frequency-thickness results in decrements in the denominator term.  

Fig. 13 – Rail steel dispersion 

curve 
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To determine the best frequency range, normalized beat length /L h  is plotted 

against frequency-thickness fh  in Fig. 14. We can safely make an assumption that for a 

frequency-thickness greater than 10 MHz mm, the beat length approaches infinity, hence 

the amplitude of the Rayleigh wave is not dependent on distance. For a web thickness h  

of 17 mm (as used in the experiment), a frequency range of greater than 600 kHz is 

appropriate. 

A test was conducted to find out how frequency range affects the attenuation of 

Rayleigh wave propagation. The test consisted of finding the out-of-plane amplitude of 

the rail for 45 different locations starting at Location A (look Fig. 15) and moving in 

increments of 0.4 cm further from transducer to Location B. This test was done with 

excitation frequencies of 200 kHz and 1 MHz. Fig. 16 shows the plots of out-of-plane 

displacement amplitude vs. distance from transducer. With the excitation frequencies of 

200 kHz, the amplitudes attenuated up to a certain distance, and then started to intensify 

again. While with the excitation frequencies of 1 MHz, the amplitudes of the Rayleigh 

Fig. 14 – Normalized beat length /L h  vs. frequency thickness fh  with h  = 17 mm 
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wave decayed with distance and did not intensify for a long distance, which is what we 

would want in this experiment. With these results, the experiment will be done with 

excitation frequency greater than 600 kHz. 

 

 

 

 

 

Fig. 15 – Experimental setup for finding frequency range 
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Fig. 16 – Out-of-plane displacement amplitude vs. distance from transducer 

with 200 kHz excitation (top) and 1 MHz excitation (bottom) 
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Fig. 17 – Wedge transducer 

 

CHAPTER 5 

Experimental Setup and Results 

 

Generation of Rayleigh Waves Using the Wedge Technique 

Wedge technique allows a longitudinal transducer to be mounted on a wedge and 

to be rotated to a certain angle of 
w  to generate Rayleigh waves only. Fig. 17 shows the 

picture of a transducer mounted on a wedge that is used in the experiments. 

 

 

 

 

By looking at Fig. 18, the incident angle w  can be calculated as  

1 1

2 2

sin

sin

( ) ( )

w l l

( ) ( )

R R R

c

c

 

 
        (5.1) 

where the superscript (1) and (2) denotes the 1
st
 material (the wedge, which is a 

plexiglass) and the 2
nd

 material (rail steel), respectively, and R  
is the refracted angle 

with R  = 90
o
, which leads to 
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Fig. 18 – Wedge transducer (Junge,2003) 

             
1

2
sin

( )

l
w ( )

R

c

c
           (5.2) 

Eq. (5.2) proves that this technique only works if the Rayleigh wave speed of the 

specimen, 2( )

Rc , is greater than the longitudinal wave speed of the plexiglass, 1( )

lc .  

 

 

 The Rayleigh wave speed for rail steel is about 3000 m/s, and the longitudinal 

wave speed of the plexiglass wedge is 2720 m/s. By using Eq. (5.2), the incident angle 

w  needed to generate a Rayleigh wave on rail steel is 65
o
.  

 Theoretically, when the incident angle w  is used on the longitudinal transducer to 

generate a Rayleigh wave, shear waves and longitudinal waves will not be transmitted by 

the transducer. This perfectly mode conversion from longitudinal wave to Rayleigh wave 

is one advantage of using a wedge technique. This is true because Rayleigh wave speed is 

always smaller than the shear and longitudinal waves speed. By utilizing the incident 

angle in Eq. (5.2), the angle of the transmitted shear and longitudinal waves would be 

        
2 2

1 2
sin sin 1

( ) ( )

l l
l w ( ) ( )

l R

c c

c c
          (5.3) 

    
2 2

1 2
sin sin 1

( ) ( )

s s
s w ( ) ( )

l R

c c

c c
          (5.4) 

Eq. (5.3) and Eq. (5.4) prove that both shear and longitudinal wave speed would 

not be transmitted since the solutions for both angles do not exist. Another advantage of 

the wedge technique is that it is valid for all frequency ranges without changing the 

incident angle. The perfect mode conversion also applies for its waveforms. For example, 
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Fig. 19 – Experimental setup using transducer  

a longitudinal wave with sinusoidal waveform will stay as a sinusoidal waveform when it 

is mode converted to a Rayleigh wave.  

 

Experimental Setup 

In the preliminary experiment, a wedge transducer is used to generate Rayleigh 

wave on 1 ft rail steel. The setup for this experiment can be seen in Fig. 19. In generating 

the signal, a function generator is used to set up the excitation frequency and number of 

burst cycle. The experiment uses a burst signal of 10-cycle. The excitation frequency 

ranges between 800 kHz to 1 MHz to determine the best measurement frequency of the 

overall setup.  
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The transducer used in this experiment is a Centrascan series C401 from 

Panametrics with a center frequency of 1 MHz. This transducer is attached to an angle 

beam Panametrics wedge ABWX-2001. The transducer is set up at an incident angle w  

of 65
o
 as specified in the previous section.  

The Rayleigh wave detection is done by using a laser Doppler vibrometer (LDV). 

The basic concept of this vibrometer is to detect the frequency shift or phase shift of the 

laser light that is reflected from a vibrating surface. This Doppler frequency (or phase) 

shift is then used to determine the surface velocity of the particles. Kil et al. (1998) 

explained more about LDV system in details. 

A Digital Storage Oscilloscope (DSO) Tektronix TDS 3034B is used to record the 

data captured by the LDV. The signals are averaged five-hundred-twelve times to 

increase the signal-to-noise-ratio (SNR). 

 

Experimental Procedure   

To obtain the in-plane and out-of-plane component, measurements from two 

different angles are necessary. The first measurement is done by setting the LDV 

perpendicular to the rail to measure the out-of-plane velocity. The second measurement is 

done under an angle of   from the axis of the web of the rail. Figure 20 shows the sketch 

of experimental setup for the out-of-plane measurement and the off-angle measurement. 

In order to obtain the in-plane component of the measured signals the relation 

           

sin( ) sin( )1

cos( ) cos( )sin( )

IP b a a

OP b a ba b

V V

V V

 

  

     
    

                            (5.5)

 

is used, where IPV , and OPV  are the in-plane and out-of-plane velocity components, 

respectively, a , and b  are the angles measured from the axis of the web of the rail, and 

aV , and bV  are the velocity components measured under the angle of a  and b , 

respectively. 

The first measurement is done by setting the LDV perpendicular ( a  
from the axis 

of the web) to the rail to measure the out-of-plane velocity. The second measurement is 
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Fig 20 - Sketch of out-of-plane (left) and off-angle (right) measurement  

done by placing two mirrors in the path of the laser with the intention of getting the 

measurement b  
from the axis of the web of the rail. Mirror 1 was fixed on the table, 

while Mirror 2 was fixed on a translation stage. Using the translation stage helps in 

getting reproducible results since Mirror 2 can be placed to a desired location with the 

accuracy of 0.01 mm. 

 

 

 

 

 

Experimental Results in Unstressed Rail Steel 

In this experiment, an excitation frequency of 800 kHz is used, and the sampling 

frequency is set to 250 MHz. The experiment was done by using angles of a  = 90
o
 and 

b  
= 50

o
.  
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The time domain signal of raw data can be seen in Fig. 21. As expected, only the 

Rayleigh wave was identified in the plot due to the wedge technique. After analyzing the 

raw data, the in-plane and out-of-plane displacement components are obtained, and the 

plot can be seen in Fig. 22.  

The in-plane and out-of-plane displacement components are plotted against each 

other and can be seen in Fig. 23. As expected, the shape of the Rayleigh wave 

polarization is in a form of an ellipse. 

Fig. 21 – Raw data in time domain 
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This experiment is performed 10 times, and the results can be seen in Table 3. 

The total average value of Rayleigh wave polarization of these 10 experiments was 

calculated to be 0.7242, with a standard deviation of 0.0134 and coefficient of variation 

of 1.86%. The theoretical Rayleigh wave polarization is 0.6631. Therefore the 

experimental results are in good agreement with the theoretical predictions. 

The length of the rail used in this experiment might be a factor in the difference 

between the experimental result and theoretical value. The specimen used in this 

experiment was a 1-foot rail steel. With this size of rail, end effects could appear, which 

will disturb the Rayleigh wave signal.  

 

Fig. 22 – In-plane and out-of-plane displacements in time domain 



 

39 

 

 

 

 

 

Experiment 
No. 

Polarization 
Value 

Average Standard 
Deviation 

Coefficient of 
Variation 

1 0.7160 0.7242 0.0134 1.86% 

2 0.7061 
  

  

3 0.7560 
  

  

4 0.7271 
  

  

5 0.7269 
  

  

6 0.7313 
  

  

7 0.7205 
  

  

8 0.7139 
  

  

9 0.7184 
  

  

10 0.7253       

 

 

Fig. 23 – Polarization of Rayleigh wave  

Table 3 – Polarization values of 10 experiments with 800 kHz excitation 

frequency and 250 MHz sampling frequency 



 

40 

 

Experimental Results in Stressed Rail Steel 

The stressed test was done at Transportation Technology Center, Inc. (TTCI) 

facilities in Pueblo, CO, and different rail steel was used. The condition of the rail was 

used with a length of 15 ft. The experiment was also set up just like in Fig. 20. The 

transducer was driven by a burst signal of ten cycles with excitation frequency of 800 

kHz and a sampling frequency of 250 MHz. The signal was amplified using an RF 

amplifier to improve the signal-to–noise ratio. For this experiment, angles of a  = 90
o
 

and b  
= 30

o
 were chosen. The specimen is stressed by using a hydraulic rail puller 

attached to the rail. Fig. 24 depicts the experimental setup with the rail puller, the 

ultrasonic transducer, the LDV and the instrumentation. 

 

 

 
 

 

 

 

The rail surface was not appropriate for the measurement because the rust on the 

rail disturbed the reflection of the laser back to LDV. Therefore a reflective tape was used 

Fig. 24 – Experimental setup at TTCI facilities 
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on the rail surface. Once the out-of-plane measurement and 30
o
 angle measurement were 

acquired, the data was processed using MATLAB, and the ratio between in-plane and 

out-of-plane component was calculated to get the Polarization of Rayleigh wave. 

The experiment was done on the rail under different loads. During the 

compression test, some of the rail puller clamps slipped. The rail experienced bending 

and torsional moment during compression, causing the rail to “jump” when the 

compression load exceeded a specific value. This “jump” caused the movement of the 

wedge transducer. Furthermore, due to the slipping of the rail puller the stress in the rail 

was not constant over time. The current setup requires the measurement at two different 

angles. With the restriction of a single LDV, these measurements cannot be done 

simultaneously. Hence, the data of the compression test are excluded in this report. 

For each load case, three sets of repeating measurements were performed, and the 

average of the polarization values was calculated. Fig 25 shows the dependence between 

the normalized polarization of the Rayleigh wave and the normalized load. It can be seen 

that the polarization of Rayleigh waves increases with increasing tension load. These 

results agree with the analytical results.   

 

 

 

Fig. 25 – Normalized polarization Vs. Normalized load (dots) with its trendline 

(solid line) 
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 The experiment at TTCI shows that the Rayleigh wave polarization depends on 

the longitudinal force of the rail. However, further research is recommended in order to 

solve the inverse problem, where the longitudinal force in the rail can be determined from 

the polarization of the Rayleigh wave. Follow on investigations are suggested to study the 

effect of the rail surface quality (polishing, sanding, grinding, blasting etc.) on the 

measured results. It would be useful to further investigate the effect of focusing of the 

laser vibrometer. 

The design, manufacturing and thorough testing of a prototype would be the next 

step. Thereby, potential funding by Transportation Technology Center Inc. (TTCI) and 

Southwest University Transportation Center (SWUTC) is considered. 
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CHAPTER 6 

Conclusions  

 

This research investigated a method of determining the stress in rails by using the 

polarization of Rayleigh waves. The relationship between the polarization of Rayleigh 

waves and the state of stress is developed from the analytical model. The numerical 

simulation showed that the change of polarization of Rayleigh wave on residual stress is 

one order of magnitude higher than the change of Rayleigh wave speed. Additionally, 

sensitivity analysis showed that the polarization of a Rayleigh wave is more robust 

against uncertainties in material properties. These results concluded that Rayleigh wave 

polarization is more sensitive and more robust than the Rayleigh wave speed. These are 

the two main reasons why Rayleigh wave polarization was used instead of Rayleigh wave 

speed. 

 This method is a non-destructive and non-labor intensive measurement 

technique. The measurement of polarization is a point wise measurement, meaning that 

the applied stress on rail can be determined just by measuring the polarization from a 

single point. This method is also a reference-free measurement. No information about the 

propagation distance is needed to perform the measurement. The combination of these 

benefits is the advantage of this method that other methods do not have. 

The results of the numerical simulation were verified with the preliminary 

experimental results. Further measurements were done in a stressed rail and the change in 

polarization of the Rayleigh wave was determined using a wedge transducer for 

generation and a laser Doppler vibrometer for the detection of ultrasonic waves. After a 

thorough evaluation, the concept was tested at Transportation Technology Center, Inc. 

(TTCI) facilities in Pueblo, CO, to transfer the developed technology to TTCI researches 

and Association of American Railroads (AAR) members.  The results showed that the 

polarization of Rayleigh wave changes with longitudinal stress. Knowing the longitudinal 

stress will prevent future buckling of the rail and reduce the number of derailments and 

increase railroad safety. 
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The design, manufacturing and thorough testing of a prototype will be the next 

step. Thereby, potential funding by Transportation Technology Center Inc. (TTCI) and 

Southwest University Transportation Center (SWUTC) is considered. 
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