REPORT OF COMMITTEE ON HIGHWAY TRANSPORTATION ECONOMICS

R L Morrison, Chairman
Professor of Hıghway Engıneerıng and Highway Transport, Universily of Michigan

A GENERAL DISCUSSION OF THE COST OF HIGHWAY TRANSPORTATION AND AN ANALYSIS OF ROAD COST ON TWO MODERATE TRAFFIC STATE HIGHWAYS IN MASSACHUSETTS

By Charles B Breed
Professor of Railway and Highway Transportainon Massachusetls Institute of Technology
SYNOPSIS

Abstract

A report of studies conducted in Massachusetts in extension of the theory of road costs presented in the Ninth Proceedings and Illustrated in the Tenth Proceedings of the Highway Research Board Cost data for two sections of road are presented The report discusses the application of the cost facts and attempts to answer some of the questions which can be answered by the application of the proposed method to a limited section of a given road and also to those questions which can be only answered by a more extended application of the method to include an entire state, or at least to comprise a completed traffic pattern of considerable extent

It is suggested that cost studies of road systems can be facilitated by grouping the roads geographically into traffic patterns Since the characteristics of these patterns will vary in such respects as topography, traffic use, type of improvement, and extent of improvement comparative studies of them should be very illuminating

The report of the Committee on Highway Transportation Costs published in the Ninth Annual Report of the Board laid the groundwork for consideration of the subject. The basic formula was there proposed; explained, and its apphcation item by item indicated

In the Tenth Annual Report the Committee apphed its method to sections of two well-known roads of heavy traffic:-the Boston Post Road in Connecticut and the Des Mones-Ames Road in Iowa The annual traffic on the former was about $6,000,000$ passenger vehucles and 675,000 trucks, and on the latter $1,000,000$ passenger vehicles and few trucks. The Committee stated emphatically that the costs reached in these two analysis should not be used in any general way, that its report was merely an application of the general method and that, within reasonable limits, it showed only the transportation cost on these particular sections of these particular roads for the traffic then existing.

It had been the intention of the Committee to make a slmular analysis of sections of several roads having traffic between 100,000 and $1,000,000$ vehicles per year, and to compare these with the results obtained in the study of the two above-mentioned heavily traveled roads Time has permitted an investigation of only two of the several roads of lighter traffic which it had been the intention to study in the Massachusetts State System The two roads that have been analyzed are a seven-mile section of the Concord-Harvard Road (Route 111) and a three-mile section of the Lowell-Tyngsboro Road (Route 113). The annual vehicular traffic on the former road is 370,000 and on the latter 548,000 .

The General Problem

It is almost certan that all cost data will be used by agencies impelled to find fragments of facts to support preconcelved conclusions. This is almost a certan unfortunate result of the publishment of cost data, but this fact cannot be held to be sufficient reason for failing to publish such data when they are based upon reasonably dependable facts

The Committee divided transportation costs into the two divisionsroad cost and vehicle cost This discussion and the following analyses deal almost wholly with road costs

In road cost data, the individual items are all open to more or less criticism, but a careful study of the most vulnerable cost items will reveal that these uncertanties really amount to little when traced through to their effects upon the final values. Unless constructed as a new route within the past twenty years, it would be hard to find any road on which all the costs to date are fully known. This is one of the discomforting facts that confronts one at the start, for one naturally begins to study the costs chronologically. The uncertan facts, however, usually relate to the cost of right-of-way and to the older parts of the road involving low cost surfaces built of local materials, and therefore do not have a large effect upon the total annual road cost as of today

The older pavements became a part of the stage construction of the existing road and are now contributing to the strength of the structure that produces the present road service. The appraisal of the capital value of the older pavements lying under the present pavement may be a subject for considerable difference of opinion Yet, if maxima and minima amounts be assigned to all of these somewhat uncertan items, the resulting cost figures will not in most instances be far apart This is true when the exasting pavement is now of a high type, because its high cost masks any range in values we may assign to the underlying old pavements. It is also true in the case where the pavement is still of a low cost type, because the maintenance is so large a part of the yearly road cost as to make the effect of any dufference of opinion as to the value of the past road coverings that he under the present pavement of little importance The more recent capital expenditures on all roads
are usually greater in amount than former expenditures and are a matter of dependable records Generally speaking, there is a greater range in the prediction of yearly and periodic maintenance for the coming few years than there is in the interest on the capital value that may be set upon the older parts of the road

The cost data that have already been published in the Committee's reports have been prepared for the purpose of illustrating the method of approach to the problem But these facts, nevertheless, serve to and one's judgment relative to certain limited economic problems pertaining to the particular parts of the roads investigated, and to the problems of other sections of road where the conditions are simular Clearly these few results cannot be apphed to highway economic problems of a general character The danger of doing so was well brought out in the discussions of the Committee's report at the Tenth Annual Meeting of the Board This discussion as well as the report itself was focussed upon the fact that the report referred only to a limited portion of two roads of heavy traffic It was stated in the discussion that such a survey of transportation costs should cover an entire state So extended an investigation would obviously be an expensive undertaking Yet, if it could be performed with the thoroughness that has been exercised in the transportation surveys which have been made in many of the states, it would be of great value in the study of the larger economic questions

It is belheved that the method of analysis suggested by the Committee is as applicable to an entire road system as to a small section of road The more extended such an economic survey is made the more general will be the questions it can answer All of the criticisms of the. Committee's studies have so far been focussed upon the danger of an improper application of the results and upon the fear that the publishing of data relating to a short section of road will be used in answering general economic questions These criticisms indicate what has been clear to the Committee, namely, that the type of question the analysis is to attempt to answer or to and in answering should determine the scope of the investigation An economic survey might include an entire state or group of states, and such an extensive survey should give facts that would and in showing, for example, whether or not the present gasolne tax and registration fees are reasonable in the district surveyed, it would give a valuable comparison of road and vehicle transportation costs, it might give some indication of the appropriate economic field of motor transport as related to ralload transportation within the area studied

In the extended investigations by the Interstate Commerce Commission of motor truck and bus operation which was reported last spring, the Commission indicated that the evidence pertaining to transportation costs on the highways presented by the rallroads was so fragmentary
and incomplete as to give no basis for formulating proposed legislative action The Commission pointed out the desirability, both from the standpoint of the federal and the state governments, of learning the facts of highway transportation costs
A more limited investigation than a full state survey might include a complete traffic pattern which would ald in answering questions of a more regonal character than those just enumerated The limıts of such a traffic pattern would be a line drawn around a large traffic center (such as a large city) connecting the points where the traffic is the lowest on the radiating roads, and assigning the rest of the radiating roads to some other pattern, and thus dividing the state into a number of adjacent patterns, or traffic areas The patterns at the state border would extend into the adjacent states A traffic pattern study of this sort would give an economic picture of many of the present-day problems of extensive road improvements such as high speed trunk highways, circumferential highways, and grade separations Such improvements usually draw traffic from other roads in the same traffic pattern or affect distribution of traffic in adjacent patterns An economic analysis of the patterns affected is obviously required in studying the justifiableness of the improvement Of course the bare transportation cost figures will not show the value of such improvements The value of time saved, freedom from lability of accidents, commercial and industrial values, and many other intangibles must be given proper weight in justifying the expenditures
The transportation costs of several dissimilar patterns may be used as a basis for cutting short the work of investigating larger areas, for some of the patterns that make up the large system may be so sımilar in physical character and in amount of traffic as to be closely comparable from an economic standpoint These same patterns, however, may be wholly dissimilar in their capital expenditure program One group may have experienced great improvement, and had much money expended upon improvements in alignment and on high types of pavements The other group may have been composed mostly of roads of no higher type than penetration macadam with the ordinary gravel road predominating (surface treated every other year with a little oll and sand) The total cost of transportation per vehicle mile in these two patterns, therefore, may be quite different One pattern may be in mountanous country, the other over flat terram, and the vehicle operating cost on these two patterns will then dfffer It may be possible by intelligent selection of patterns of different topographical conditions, traffic densities, or economic history to develop transportation cost facts that can safely be applied to other similar traffic areas without the necessity of a complete economic survey of an entire state

In all these studies of transportation costs, one must make a clear distinction between the cost and the value of transportation

Transportation road cost is the cost to the public of the service provided by the given road or system of roads The value as well as the cost of this same road must be appraised to properly answer the question as to whether or not the public expenditure is justified. Its value may be almost wholly commercial, or it may serve for school transportation and fire protection It may be impossible to express these values in money, yet they may be so obvious as to carry unanimous public approval of a policy involving a road cost well above any saving that can be computed in dollars and cents. The justification, then, of most large highway improvements will not be found wholly in their effect upon transportation cost but rather in their influence on transportation values, of which cost is an element.

Investigation of the cost of vehicle operation on different road conditions needs much extension At present we are obliged to use only general values These costs are rapidly changing year by year, due to many such causes, as commodity prices, more efficient motor vehicles, improvement in riding qualities, and improvement in smoothness of road surface Commodity prices also affect yearly road costs A survey of transportation cost should, therefore, be continued by a yearly program if it is to be of value.

No revision has here been made of vehicle transportation costs used in the Committee's 1930 report merely because of lack of more recent data Obviously the data desired should relate to the particular character of traffic using the particular section of road under investigation and all data should be as of the date of the analysis As the scope of the investigation is broadened geographically, average values for vehicular transportation costs become more nearly applicable

In the four sections of roads investigated by the Committee, the total road cost per vehicle mile ranged from 011 cents for passenger cars on the Boston Post Road (Connecticut) to 050 cents for passenger cars on the Concord-Harvard Road (Massachusetts) It is interesting to note the fact that in Bulletin No 91 of the Iowa State College Engıneerıng Experiment Station, Professor Agg found considerable variation in the cost of operating on low, intermediate, and high type road surfaces In fact, the variation between the types ran as high as a cent per vehicle mile, an amount greater than the total road cost on roads carryng heavy traffic. The effect of evenness and hardness of pavement surface on savings in vehicle operating costs appears to be so great as to indicate that where the traffic is above, say, 300,000 vehicles per year, there is no excuse (from the standpoint of economics) for permitting a pavement to have any other than a unform hard pavement surface. This is an example of one of the questions that even the limited investigation the Committee has already made should assist in answering

Another fact shown by the investigations so far made is that the vehicular cost is so much greater than the road cost on roads carrying
over 300,000 vehicles per year that improvements in vehicle design may in any year develop an annual saving in vehicle transportation costs as great as or greater than the annual road transportation cost
There is little doubt but that economies in vehicular operating cost as great as the annual road costs on any of the four roads so far meestigated have occurred snce 1928 when the Iowa Bulletin No 91 was published It leads one to suspect that the total cost of highway transportation will be reduced much more through perfection of the motor vehicle and its engine than through economies due to improved pavements and mantenance Yet, as vehicle operating costs are lowered, road costs have a greater proportional effect upon the total annual cost These are all added reasons why such cost studies should be carried on from year to year
Transportation costs are needed for the study of intimate problems on limited sections of roads, for the solution of regional problems and for the study of many of the major economic questions of highway transportation and taxation The survey of large geographical scope may be shortened materially by making use of the economic analysis of a traffic pattern which may have been made orginally for the study of problems lying wholly within the pattern These cost data should be extended from year to year Such yearly records should uncover some of the mistakes of the past and develop better vision to gude future action They should present a better insight than we now possess into the relative amounts the vehicle owner pays or should pay toward the total transportation cost
Investigations of transportation costs on typical sections of typical roads are of considerable value as the first step toward a comprehensive study of a traffic pattern or of a state system. These isolated studies develop the method to apply to the larger study, and discussion of them should develop the proper course to pursue in makng the more extended studies. Approximate road cost of transportation for a given type of road, or for a number of dufferent types forming a traffic pattern can be readily estimated without a detalled analysis by using a chart similar to that prepared by Mr Paustian in his paper presented at the Twelfth Annual Meeting of the Highway Research Board ${ }^{1}$ All that needs to be known to use this chart is the type of surface of the road or roads beng investigated and the volume of traffic on them A comparison of the road costs as given by the Paustian chart with those obtaned in the intimate analysis made on the Des Momes, Tyngsboro, and Concord-Harvard roads shows that they differ only 10 to 15 per cent No comparison could be made for the Boston Post Road because the traffic of $6,750,000$ vehicles per year on that road is above the range of the chart Any state may prepare such a chart based upon its own road costs.

[^0]The Computation of the Annual Road Cost of that Portion of Massachusetts State Highway No 111 (Concord to Harvard) Lying Within the Towns of Boxboro and Acton

DESCRIPTION OF ROAD

Route No 111 is a secondary or connecting road linking the towns through which it passes with the principal through route of the district which is Massachusetts Route No 2 The length of road studied is 728 miles It was constructed in nine sections between the years 1897 and 1913 Table I shows the types of surfaces and dates constructed These onginal surfaces are all in use today, although their character has been changed by repeated bituminous surface treatments and the width of surfaced road has been increased to about 16 ft by encroachment on the shoulders

The road has an undulating profile The maximum grade is about 6 per cent and grades of 4 or 5 per cent are common The alignment in general is straight with flat curves

COST INDEX

The two portions of Massachusetts State Highways studied in this report were constructed between 1896 and 1913 The Engineering News-Record Cost Index goes back to 1903 only, and could not, therefore, be used to bring costs prior to 1903 down to date It was, therefore, decided to adopt an average of the U S Department of Labor average curves for "Building Materials" and "U S Hourly Wage Scale" for those years prior to 1903, and to use the Engineering News-Record Index for 1903 and subsequent years (See Figure 1)
The reason for using an average of the two curves was twofold first, an inspection of the curves indicated that for the years 1925 to 1932 (which omit the abnormal price variations of the War period) the Eng1neering News-Record Index lies nearly midway between the two curves, and in the ten years previous to the war it hes sometimes a little above and sometımes a little below these curves, and, second, highway costs are made up of two general items, materials and labor, and both of these should be given prominence in an index to apply to highway costs It is recognized that bulding materials are not highway materials, and also that labor was probably a much larger factor in highway costs in the '90s than it is today These curves, however, do show the general cost trend and in the absence of any index applicable directly to highway costs, an average of the two is probably as reliable for the period prior to 1903 as the use of the Engineering News-Record Index is for the subsequent period

ROAD COSTS

The road costs were computed in the same order and by the same 'general method outlined in the Ninth and llustrated in the Tenth Annual Proceedings of the Highway Research Board

Construction Costs

1 Right-of-Way Cost and Property Damage The right-of-way was acquired by the State when the road became a State Highway The dates of acquisition are given in Table I no property damages were paid The financial history of the road previous to these dates is not considered in this report, a town road of local material existed in about the same location before the state highway was bult

Figure 1. Cost Indices
Building Materials (U S Dept. of Labor)
J. S. Hourly Wage Scale- - -

Engineering News-Record Const Cost Index
The width of the present right-of-way is 60 feet with the exception of 447 feet in Acton which is 50 feet The total area is 5285 acres

The present value of the right-of-way has been estimated at $\$ 100$ per acre, which is a fair valuation of land for agricultural and other purposes

Total cost of right-of-way upon this basis is $\$ 5,285$, or $\$ 726$ per mile
2 Drannage Structures There are no structures which could be classified as major stream crossings, and there are no bridges

The culverts are all of durable types, such as clay pipe, ron pipe, stone box and concrete box The expenditures for drainage structures
TABLE I
Details of Surfaces-State Highway Route No 111-Boxboro and Acton, Mass

Type of surface	Town of Boxboro				Town of Acton				
	Gravel		Water bound macadam		Water bound macadam		Bituminous macadam penetration		
Length of Section, Ft	45295	5754	3200	4000	3800	50285	34015	6000	27168
Width, Ft	15	15	15	15	15	15	15	18	18
Year Constructed	1907	1905	1899	1897	1901	1907	1912	1913	1913
Depth of Bottom Course, Inches Center			4	4	4	4	4	4	4
Side Depth of Top Course, Inches			25	25	3	25	3	2	2
Center			2	2	2	2	2	2	2
Side			15	2	2	15	2	2	2
Total Depth, Inches Center	6	6	6	6	6	6	6	6	6
Side			4	4	5	4	5	4	4
Total Cost, Dollars	394284	567255	449583	627917	879417	935116	755569	15,526 36	549844

by years is given in Table II which was compiled from records of the Highway Division of the Department of Public Works Each of these items was brought to date (October 1932) by the method described under "Cost Index"

Total Cost of Dranage Structures as of October, 1932, is $\$ 14,192$, or $\$ 1,949$ per mile

3 Earthwork and Prior Surfaces Since none of the prior surfaces have become an integral part of the existing wearing surface, no salvage value has been given them

The total cost of earthwork as of October, 1932, was $\$ 35,934$, or $\$ 4,936$ per mıle (See Table II)

4 Road Surface The total cost of road surfaces as of October, 1932, was $\$ 58,728$ or $\$ 8,067$ per mule (See Table II)

TABLE II
Route No 111-Boxboro-Acton
Construction expenditures

Year	Drainage structures	Earthwork	Surface	$\begin{aligned} & \text { Miscellane- } \\ & \text { ous } \end{aligned}$	Engineering, adminnstration and inspection	Total
1897	\$600 00	\$1,608 34	\$3,300 00	\$200 00	\$570 83	\$6,279 17
1899	33200	1,353 22	2,292 50	10940	40871	4,495 83
1901	1,536 80	2,069 50	4,305 40	8300	79947	8,794 17
1905	48281	3,001 75	1,275 30	39700	51569	5,672 55
1907	2,451 70	4,015 10	4,879 75	73890	1,208 55	13,294 00*
1912	1,183 59	1,547 40	4,062 82	7500	68688	7,555 69
1913	86180	5,912 00	11,685 71	65395	1,911 34	21,024 80†
Totals	\$7,448 70	\$19,507 31	\$31,801 48	\$2,257 25	\$6,101 47	\$67,116 21

[^1]5 Miscellaneous Constıuction Costs These include such items as fences, stone bounds, and paving in gutters Bringing the costs in Table II to date gives total cost of miscellaneous expenses as of October, 1932 , as $\$ 4,102$, or $\$ 563$ per mule

6 Engineering and Administration Engineering administration and inspection has been taken as 10 per cent of the cost in eàch year, since this is the amount that had to be added to the actual construction costs to give the total expenditure The costs for Engineering, Administration and Inspection given in Table II were obtained by adding the costs for drainage, earthwork, surface and miscellaneous and taking 10 per cent of the sum

The Engineering and Administration costs thus obtained were brought to date in the same manner as other costs in Table II, giving a total as of October, 1932, of $\$ 11,295$, or $\$ 1,551$ per mile

Summary of Construction Costs as of October, 1932

Item 1.	Right-of-Way	$\mathbf{\$ 5 , 2 8 5}$
2	Dramage Structures	14,192
3	Earthwork	35,934
4	Road Surface	58,728
5	Miscellaneous Construction Costs	4,102
6	Engineering and Administration	11,295
	Total Construction	$\$ 129,536$
	Total Construction per Mile	17,793

Maintenance Costs

Since the maintenance costs of a road of this general type are so great a part of the total road cost, it has seemed advisable to analyze them more in detall than was done in the case of the two roads treated in the Tenth Proceedings

Furthermore, the items making up the total yearly maintenance have been grouped hereunder in a manner somewhat different from the classification used in Figure 1, page 362, of the Ninth Proceedings

TABLE III
Surface Maintenance Costs
Towns of Boxboro and Acton

Year	1927	1928	1929	1830	1931	$\underset{\substack{\text { Average } \\ \text { 1927-183 }}}{ }$	$\begin{array}{\|c\|c\|} \hline \text { Average } \\ \text { cost per } \\ \text { mile } \\ \text { 1927-1831 } \end{array}$
Repairs	\$575 90	\$1888 23	\$2203 35	8114259	\$525 96	\$1267 20	\$174 11
Treatment	179858	193721	189321	330572	223613	223418	30698
Road Bed	105812	99004	19981	32227	43400	60084	8255
Total	\$3432 60	\$4815 48	\$4296 37	\$4770 58	\$3196 09	\$4102 22	\$563 64

Annual maintenance has been divided into three general classes as follows.
(1) surface maintenance
(2) right-of-way maintenance
(3) operation maintenance

Surface and right-of-way maintenance costs are compled annually by the Maintenance Department of the Highway Division Similar records are kept for certain, although not all, of the items that go to make up Operating Maintenance Costs

1 Surface Maintenance has been further subdıvided into three kinds• "repairs," "treatment," and "road bed" (See Table III)
"Repairs" includes cost of repairs to the surface such as patching
"Treatment" includes cost of surface treatments of tar or asphaltic oll and sand
"Road Bed" includes cost of repaurs to foundation or base course.

An average for the five years, 1927-31, has been assumed in this analysis as representing the yearly maintenance cost

Some portion of this section of road is treated every year, so that the surface treatment is an annual rather than a periodic maintenance

2 Right-of-Way Maintenance has likewise been subdivided into "drannage," "rıght-of-way," and "trees" See Table IV
"Drainage" includes repaıring and cleaning drainage structures and cleaning out ditches
"Right-of-way" includes the care of shoulders and roadside structures, such as fences
"Trees" includes cost of clearing out brush and trimming trees within the right-of-way to improve visibility and beauty of roadside Planting trees is included in this item
An average for the five years, $1927-31$, has been used in this analysis

TABLE IV
Right-of-Way Maintenance Cost
Route No 111—Towns of Boxboro and Acton Length 7278 miles

Year	1927	1828	1929	1930	1931	Average 1927-1931	$\begin{gathered} \text { Average } \\ \text { cost per } \\ \text { mul } \\ \text { 1927-1931 } \end{gathered}$
Drainage	832303	\$69 15	\$152 35	\$100 40	\$215 75	\$172 14	\$23 65
Right-of-Way	65384	71504	47829	10456	124365	63908	8781
Trees	9696	125	12344		2295	4892	672
Totals	\$1073 83	\$785 44	\$754 08	\$204 96	\$1482 35	\$860 14	\$118 18

3 Operating Maintenance includes the expenses incurred for such items as, traffic signs, lines, signals, and traffic counts, snow removal, policing, registration cost, and gas tax collection
Expenditures for traffic lines on the Boxboro-Acton road average $\$ 61$ for the years 1927-1931 Cost of traffic engineering, slgns, and traffic counts for the State was $\$ 165,600$ for the year ending November, 1931 Proportioning this cost on the basis of vehicle miles gives $\$ 74$ per year for the section of road analyzed The sum of these two items is $\$ 135$, or $\$ 1850$ per mule

Costs of snow removal were as follows $\$ 528$ in 1929, $\$ 1246$ in 1930, and $\$ 3544 \mathrm{in} 1931$ The snowfall for these years was 448 inches, 299 inches, and 636 inches, respectively Although the snowfall in 1929 was more than in 1930, the actual cost of removal was less This wide ,variation in annual expenditure also occurs in the costs for the entire State in these same three years, and may be explaned by the fact that ploughing was not as generally or thoroughly done in 1929 as in later years. The 1929 cost was therefore disregarded and the average of

1930 and 1931 costs was used aftei being modified to apply to the average snowfall in the distuct (49 inches), as follows

$$
\left(\frac{1246}{299}+\frac{3544}{636}\right) \frac{49}{2}=\$ 2385, \text { or } \$ 328 \text { per mıle }
$$

No actual records were avalable for the cost of policing the section or Route No 111 in Boxboro and Acton The road is patroled, but, as it is a secondary road with light traffic, the patrol is not frequent, probably once or twice a day The policing cost chargeable to this road was obtained by the following method The total cost of policing all Massachusetts State Hıghways in 1931 was $\$ 827,370$ (obtaned from State Police Headquarters, Department of Public Safety) The total vehicle mules traveled on Massachusetts State Hıghways in 1931, estımated from gasoline consumption, was $6,000,000,000$ Prorating this cost on the basis of vehicle miles gives $\$ 370$ per year or $\$ 51$ per mile per year This figure is about $\$ 1$ per day which is not an unreasonable charge for patroling $15 \frac{1}{2}$ miles of road (728 miles once each way)

The total cost of maintaining the Massachusetts Registiy of Motor Vehicles for 1931 was approximately $\$ 1,580,000$ Apportioning this by vehicle mileage as was done for policing costs gives $\$ 710$, or $\$ 9750$ per mile

In Massachusetts the gas tax is collected by the Department of Internal Revenue which is also engaged in many other tax collections The expenses of this Department chargeable to the collecton of the gas tax are not over $\$ 2000$ The amount is so small that it may be neglected in this analysis

Summary of Operating Mainlenance Costs
Traffic Signs, Lınes, and Signals \$135
Snow Removal 2385
Policing 370
Registration Cost $\quad \mathbf{7 1 0}$
Total Operating Maintenance $\$ 3600$
Total Operating Maintenance per Mile 494
Summary of Annual Maintenance Costs

(1) Surface Maıntenance	$\$ 4102$
(2) Rıght-of-Way Maıntenance	860
(3) Operatıng Maıntenance	$\underline{3600}$
Total Maintenance	$\$ 8562$
Total Annual Maintenance per Mıle	1176

Perioduc Maintenance It is probable that the annual maintenance cost computed for Route No 111 will continue to provide a suitable road for the existing traffic for five years hence and that then reconstruction will be required The average age of the 728 mules of pavement at that time (1937) will be about 30 years The cost to resurface
the existing pavement so that it will adequately serve existing traffic is estimated at $\$ 10,000$ per mile, or $\$ 72,800$ for the 728 mıles It is further assumed that, with the same annual maintenance cost as computed for present pavement, this new pavement would have to be replaced every 20 years The interval between replacements is less than the hfe of the present pavement, because the present pavement carried only light traffic during the first part of its life The annual deposit at 4 per cent interest compounded annually that will accumulate $\$ 72,800$ every 20 years is $\$ 2445$ for the entire section, or $\$ 336$ per mile

The charge of $\$ 336$ per mule for perıodic mantenance is assumed to provide in perpetuity a pavement equivalent to the present one and sufficient to serve present traffic When the reconstruction is made in 1937, the pavement probably will not be replaced in kind but a higher type will be constructed and minor changes made in alignment and grades, so that the first reconstruction in 1937 will be a betterment as well as a replacement The present road is narrow, has a high crown and is improperly banked at curves The policy of the Massachusetts Highway Division has been to reconstruct roads similar to the ConcordHarvard Road with either bituminous penetration macadam or bituminous concrete, to widen pavements to a minmum of 20 feet and to reduce crown and curvature to meet the requirements of modern traffic When this better pavement is constructed it will modify the annual ioad costs by increasing the interest on capital and decreasing the mantenance At that time a new estimate of annual road costs must be made

For example, if $\$ 25,000$ pel mile is spent five years hence in reconstructing the road instead of $\$ 10,000$ per mile, the betterment value will be $\$ 15,000$ per mile which should be added to the capital cost of the road Interest at 4 per cent on this amount is $\$ 600$ per year The $\$ 10,000$ is absorbed in periodic maintenance This higher type pavement should last longer, say 25 years, but will cost more for periodic maintenance, say $\$ 15,000$ per mile for resurfacing in kind On this basis the annual charge for periodic mantenance for the higher type pavement will be $\$ 360$ per mile, or $\$ 24$ more than the $\$ 336$ computed above for replacing the old surface in kind The annual saving in maintenance effected by adopting the higher type surface is estimated at $\$ 440$ per mile, based on records of the State Highway Division Combining these costs gives a net increase in annual road cost of $\$ 600+\$ 24-$ $\$ 440=\$ 184 \quad$ This indicates that after the contemplated improvement the annual road cost will be only slightly greater than now, which will justify the proposed improvement

Engineering and Adminıstration on Maintenance The records of the Fourth Maintenance District which includes both the Concord-Harvard and Tyngsboro roads show the following costs for the years 1931 and 1932

		1831	1832
Maintenance including Snow Removal	$\$ 257,576$	$\$ 228,142$	
Supervision Salaries, Expenses, Office	Over-		
\quad head, Auto Charges	23,757	25,515	
Supervision of Maintenance	92%	112%	
Average for Years 1931 and 1932		102%	

Adopting this average percentage as typical, the maintenance items to which it apples are as follows

Surface	$\$ 4102$
Rıght of Way	860
Snow Removal	$\underline{2385}$
	$\mathbf{8 7 3 4 7}$

102 per cent of $\$ 7347$ is $\$ 749$ or $\$ 103$ per mule
TABLE V
Calculation of Annual Cost
State Highway Route No 111, Boxboro and Acton, Massachusetts

Interest on Investment at 4%	$\$ 5,181$
Annual Maıntenance	8,562
Periodic Maintenance	2,445
Engıneering and Admınıstration on Maintenance	749
Total Annual Road Cost	$\$ 16,937$
Annual Road Cost per Mıle	2,327

Annual Road Cost Apply the basic formula for road costs as given on page 341 of the 10th Annual Report

$$
C=r\left(A+\frac{B}{r}+\frac{E}{(1+r)^{n}-1}+\frac{E^{\prime}}{(1+r)^{n^{\prime}}-1} \cdot \quad \text { etc }\right)
$$

wheren
$C=$ Average annual road cost
$A=$ Cost to construct $=\$ 129,536$
$B=$ Annual maintenance cost (every year) $=\$ 8562$
$E=$ Expenditure for periodic reconstruction every $n(=20)$ years $=\$ 72,800$
$r=$ Rate of interest prevaling for current state funds in Massachusetts $=04$
The results are set forth in Table V

TRAFFIC

Latest counts made by the State Highway Division give the annual Traffic as 338,000 passenger cars, 17,000 trucks of 2 -tons capacity and less, and 15,000 trucks of over 2 -ton capacity

These amounts are the averages of observations taken in 1930 at two
different stations, viz, at the junction of Routes 111 and 2, and in the town of Harvard at the junction of Routes 111 and 110 The former is at the east end of the section investigated, the latter is two miles west of the other end of the section but there are no roads joining Route 111 in that two-mile stretch 'The counts were actually taken for one day in August and then expanded for the week, month and year by correlating them to a comparable station on Route 2 where counts were taken for a continuous week in August, then the yearly expansion was made on the basis of gasoline purchased

Motor Vehicle Operating Costs

In the analysis of the sections of Boston Post Road and of the Des Moines-Ames Road, the motor vehicle operating costs were arbitrarly assumed to be 544 cents per mule for passenger automobiles, which was the cost of operating the "average" passenger car of the Iowa Engineering Experiment Station investigation in 1928, for the average commercial vehicle 1515 cents per mile was used, which was obtained from results of an investigation made by General Motors Corporation in 1929 These costs were both for high type pavements For intermediate type pavements like the Concord-Harvard road passenger vehicle operating costs were 643 cents per mile, corresponding truck costs would be about 17 cents per mıle

These costs are higher than prevall today, but present day values are not avalable In the absence of up-to-date costs, the above figures may be used although probably they are too large Investigations are underway which when published will give more current costs which can then be readily substituted for the obsolete ones

Total annual transportation cost per mile is merely the sum of the road and vehicle costs

Contribution to Road Funds

The gas tax and registration and hicense fees comprise this item In Massachusetts a three cent gas tax prevails (exclusive of Federal Tax) In 1931 the gas tax amounted to $\$ 15,306,376$ of which $\$ 12,535,626$ was spent on state highways Assuming the average passenger car travels 14 miles on a gallon of gasoline, that trucks of 2 tons or under capacity travel 9 miles per gallon, and that the truck of over 2 tons capacity travels 6 miles per gallon, the motor vehicles using this Boxboro-Acton section of road contributed per mile through the gas tax $\$ 724$ for passenger cars, $\$ 57$ for light trucks, $\$ 75$ for heavy trucks, or a total of $\$ 856$ of which $\frac{125}{153}=\$ 699$ went to state roads

The registration and license receipts of $\$ 7,000,306$ were all devoted to State highways and administration of the Registry Allocating this amount on the basis of vehicle mules (assuming 6,000,000,000 for the
entire state) gives $\$ 3143$ for the entire section, or a contribution through registration and license fees of $\$ 432$ per mile

The total contribution was then $\$ 1131$ per mile, which is about 49 per cent of the annual road cost

If we apportion the annual road cost on the basis of tons of traffic, assuming passenger vehicles to average $1 \frac{1}{4}$ tons, loaded light trucks 3 tons, and loaded heavy trucks 7 tons, we will assign $\$ 1700$ to passenger cars, $\$ 205$ to light trucks, and $\$ 422$ to heavy trucks These road costs correspond to 050 cents per passenger vehicle mile, and 196 cents per truck mile

Figure 2. Sketch Map-Tyngsboro Bridge
Distribution of bridge traffic:

Crossing bridge from and to Hudson Rd	Per cent
Crossing bridge from and to Sherburne Ave	13
Crossing bridge from and to Route No 113	14
Total vehicles crossing bridge	$\underline{71}$

Computation of the Annual Road Cost of That Portion of Massachusetts State Highway No 113 (Tyngsboro to Lowell) Lying within the Town of Tyngsboro
Route No 113 is a secondary, or connecting, route traversing northeastern Massachusetts The portion of the route studied in this report follows the easterly bank of the Merrimack River in the town of Tyngsboro The section is 294 miles long and extends from the Lowell-Tyngsboro boundary to the bridge over the Merrimack River in

Tyngsboro The section carries only a moderate amount of traffic, as most of the cars coming down the Merrimac Valley from New Hampshire follow U S Route No 3 which parallels this portion of Route No 113 on the westerly side of the river (See Fig 2)

The Tyngsboro Bridge joins U S Route No 3 and State Route No 113 This bridge is a steel through arch of 546 -foot span, erected in 1930-31 The apportionment of the cost of this structure to the roads it serves will be considered in a separate discussion at the end of the analysıs

The section of Route No 113 studied was constructed as a new highway during the years 1895-1897 The type of surface was water-bound macadam, 15 ft wide with 3 ft gravel shoulders The broken stone was laid in two courses with a total depth of 6 in at the center of the road and 5 in at the sides The original surface has never been reconstructed, although it has had repeated bituminous surface treatments

The road is flat in profile and there are few curves

TABLE VI						
Route No 113-Tyngsboro						
From Lowell-Tyngsboro Line to Tygnsboro Bridge $=2942$ miles of State						
Actual construction expenditures						
Year	$\underset{\text { structures }}{\text { Drainage }}$	Earthwork	Surface	Mıscellane- ous	Engineering administrainspection	Total
1895	\$1,562 18	\$5 90932	85,066 63	839309	\$461 94	\$13,393 16
1896	80092	3,020 75	11,924 99	39591	56585	16,708 42
1897		26617	3,696 19	13214	72854	4,823 04
Totals	\$2,363 10	\$9,196 24	\$20,687 81	\$921 14	\$1,756 33	\$34,924 62

COMPUTATION OF ANNUAL ROAD COST

Constructıon Costs

1 Right-of-Way The right-of-way was acqured in 1895 and 1896 It is 60 ft wide and has an area of 214 acres Assuming the present value of the land for agricultural and other purposes at $\$ 100$, if the road were not there, then the present value of the right-of-way is $\$ 2140$, or $\$ 727$ per mile

2 Draınage Structures (a) Ordınary structures The expendıtures for drainage structures by years is given in Table VI These costs were brought to date by the method described under "Cost Index" The total cost of Dranage Structures as of October, 1932, is $\$ 5727$, or $\$ 1947$ per mile
(b) Major Stream Crossings The Tyngsboro Bridge over the Merrımac River hes adjacent to the section of road being studied The
proportioning of the cost of this structure is discussed later in the report

3 Earthwork and Proor Surfaces There were no prior surfaces The expenditures for earthwork are tabulated by years in Table VI The total cost as of October, 1932, is $\$ 22,246$, or $\$ 7561$ per mile

4 Road Surface The expenditures for road surface are tabulated by years in Table VI The total cost as of October, 1932, is $\$ 49,817$, or $\$ 16,933$ per mule

5 Miscellaneous Construction Costs These include fences, cobble gutters and dry rubble masonry The expenditures for these items by years are tabulated in Table VI The total cost as of October, 1932, is $\$ 2217$, or $\$ 754$ per mile

6 Engineering and Administration These costs were also avalable and are tabulated by years in Table VI The total cost as of October, 1932 is $\$ 4153$, or $\$ 1412$ per mule

TABLE VII
Surface Maintenance Costs
Route No 113-Town of Tyngsboro Length 2942 miles

Year	1927	1928	1929	1930	1931	A $\begin{gathered}\text { Average } \\ 1927-1931\end{gathered}$	$\left\lvert\, \begin{gathered} \text { Average } \\ \text { cost per } \\ \text { mpler } \\ 1927-1931 \end{gathered}\right.$
Reparrs	\$427 87	\$352 18	335969	818267	$\$ 11415$	$\$ 28731$	\$97 66
Treatment	37800	46070	85167	106140	112271	77490	26339
Road Bed	12190	23607	45402	29601	27202	27600	9381
Total	\|8927 77	\$1048 95	\$1665	8154008	8150888	133821	845486

Summary of Construction Costs as of October, 1932

Item 1	Right-of-Way	$\$ 2,140$
2	Drainage Structures	5,727
3	Earthwork	22,246
4	Road Surface	49,817
5	Miscellaneous Construction Costs	2,217
6	Engineering and Administration	4,153
	Total Construction Cost	$\$ 86,300$
	Total Construction Cost per Mile	29,334

Marntenance Costs

Annual Maintenance is grouped under the three headings Surface Maintenance, Rıght-of-Way Maintenance, and Operating Maintenance as was done for Boxboro-Acton section of Route 111

1 Surface Maintenance Table VII shows annual surface mantenance costs for the Tyngsboro road for 1927-1931 The average for these five years has been assumed to represent the yearly maintenance cost This average is $\$ 1,338$, or $\$ 455$ per mile

2 Right-of-Way Marntenance Table VIII shows annual right-ofway maintenance costs for 1927-1931 The average of these five years is $\$ 192$, or $\$ 65$ per mile

3 Operaiıng Maintenance This item has been divided into traffic, snow removal, policing, and registration costs

The annual costs of each of these estimated in the same manner as for the Concord-Harvard road are as follows

Traffic Signs, Lınes, and Counts	$\$ 62$
Snow Removal	962
Polıcıng	222
Regıstration Cost	424
Total Operating Maintenance	$\$ 1670$
Total Operating Maintenance per Mile	568
Summary of Annual Maintenance Costs	
(1) Surface Maintenance	
(2) Rıght-ot-Way Mantenance	$\$ 1338$
(3) Operating Maintenance	192
\quad Total Mantenance	$\mathbf{1 6 7 0}$
Total Annual Maintenance per Mıle	$\$ 3200$

TABLE VIII
Right-of-Way Maintenance Costs
Route No 113-Town of Tyngsboro Length 2942 miles

Year	1827	1928	1829	1930	1931	Average 1027-1931	Average cost per $\underset{\text { 1927-1031 }}{\text { mile }}$
Drainage	$\$ 5329$	$\$ 2150$	\$28 00	\$71 27	$\$ 4639$	$\$ 4409$	81499
Right-of-Way	500	31754	300	14515	24810	14375	4885
Trees	840	465			750	411	140
Totals	\$66 69	\$343 69	\$31 00	\$216 42	\$301 99	\$191 95	\$65 24

Periodic Maintenance It is probable that the annual maintenance cost computed above will continue to provide a suitable road for the exasting traffic for 10 years hence and that then reconstruction will be required The cost to replace the surface of the existing pavement so that it will adequately serve existing traffic is estimated at $\$ 10,000$ per mile, or $\$ 29,400$ for the entire section It is further assumed that, with the same annual mantenance cost as computed for present pavement, this new pavement would have to be replaced every 20 years The age of the existing pavement when first resurfaced in 1942 will be about 45 years It can not be assumed, however that after resurfacing the new pavement would last another 45 years, because the present pavement has carried only light traffic during most of its life The present traffic probably represents the maximum that the road has carried Therefore 20 years has been assumed as the life of pavement for the existing traffic,

The annual deposit at 4 per cent interest compounded annually that will accumulate $\$ 29,400$ every 20 years is $\$ 987$ for the entire section, or $\$ 336$ per mile

The charge of $\$ 336$ per mule for periodic maintenance is assumed to provide in perpetuity a pavement equivalent to the present one and sufficient to serve present traffic When the reconstruction is made in 1942, the pavement probably will not be replaced in kind but a higher type will be constructed and minor changes made in alignment and grades, so that the first reconstruction will be a betterment as well as a replacement The present road is too narrow and has too high a crown to be classed as a modern highway The policy of the Massachusetts Highway Division has been to reconstruct simular roads with either bituminous penetration macadam or bituminous concrete, to widen pavements to a minımum of 20 feet to reduce crown and curvature to meet the requirements of modern traffic When this better pavement is constructed it will modify the annual road costs by increasing the interest on capital invested and decreasing the annual maintenance At that time a new estimate of the annual road costs must be made

Engineering and Administration on Maintenance The Engineering and Administration is assumed to be 102 per cent of the total of surface mantenance, right-of-way mantenance, and snow removal costs, by the same reasoning used for the Concord-Harvard road

Surface Maintenance	$\$ 1338$
Right-of-Way	192
Snow Removal	$\mathbf{9 6 2}$
	$\mathbf{\$ 2 4 9 2}$

102 per cent of $\$ 2492$ is $\$ 254$, or $\$ 86$ per mule
Annual Road Costs The above costs are assembled in Table IX

> Table IX
> Calculation of Annoal Cost
> State Highway Route No 113, Tynggboro, Massachusetts

Interest on Investment at 4%	$\$ 3452$
Annual Maıntenance	3200
Perıodıc Maıntenance	987
Engıneerıng and Adminıstration on Maintenance	$\mathbf{2 5 4}$
\quad Total Annual Road Cost	$\$ 7893$
Total Annual Road Cost per Mile	$\$ 2685$

TRAFFIC

Latest counts made by the State Highway Division give the annual traffic as 500,000 passenger cars, 17,500 trucks of 2 tons capacity or less, and 30,500 trucks of over 2 tons capacity

These amounts are based on counts taken on two days in November, 1932, at the easterly end of Tyngsboro Bridge, correlated with more extensive counts taken at other stations in the district,

Contribution to Road Funds

The gas tax and registration and license fees comprise this item In Massachusetts a three cent gas tax prevails (exclusive of Federal Tax) In 1931 the gas tax amounted to $\$ 15,306,376$ of which $\$ 12,535,626$ was spent on state highways Assuming the average passenger car travels 14 miles on a gallon of gasoline, that trucks of 2 tons or under capacity travel 9 miles per gallon, and that trucks over 2 tons capacity travel 6 miles per gallon, the motor vehicles using this Tyngsboro section of road contributed per mile through the gas tax $\$ 1071$ for passenger cars, $\$ 58$ for light trucks, and $\$ 152$ for heavy trucks, or a total of $\$ 1281$ of which ${ }_{1}^{125} 5=\$ 1046$ per mule went to State roads

The registration and license receipts of $\$ 7,000,306$ were all devoted to state highways and administration of the Registry Allocating this amount on the basis of vehicle mules (assuming $6,000,000,000$ for the entire state) gives $\$ 1879$ for entire section, or a contribution of $\$ 639$ per mile

The total contribution was then $\$ 1685$ per mile, which is about 63 per cent of the annual road cost

If we apportion the annual road cost on the basis of tons of traffic, assuming passenger vehicles to average $1 \frac{1}{4}$ tons, loaded light trucks 3 . tons, and loaded heavy trucks 7 tons, we will assign $\$ 1883$ to passenger cars, $\$ 159$ to light trucks, and $\$ 643$ to heavy trucks These road costs correspond to 038 cents per passenger vehicle mile, and 167 cents per truck mile

Tyngsboro Brıdge

An old highway bridge was constructed across the river in 1874 which was abandoned in 1931 when a new structure costing $\$ 322,000$ replaced it The old structure was of no value to the new one it was demolished An arbitrary half of the cost of the bridge is assigned to the highways on on each side of the river This makes $\$ 161,000$ assigned to the roads that approach it on the east side (see Fig 4) Of these roads, Route 113 has 71 per cent of the traffic that crosses the bridge It is $\mathbf{6}$ miles from this bridge downstream to the next bridge at Lowell, the section of road under study is the 3 miles adjacent to the new bridge of the 6 -mile stretch On the 6 -mule stretch between the bridges, there are practically no connecting roads Most of the traffic is bound to or from Lowell or cities along the coast, and, practically all of these vehicles travel the entire 6 miles in making use of the Tyngsboro Bridge Most of these vehicles could have crossed the river at Lowell but used Route No 113 to avold the heavier traffic on U S Route No 3 It seems fair there-
fore to charge against this 3 -mule section $\frac{8}{\pi} \times 071 \times \$ 161,000=$ $\$ 57,155$, or $\$ 19,440$ per mile Interest on this investment at 4 per cent $=\$ 778$ annual cost per mile

The new bridge is a steel arch of 546 ft span, supportıng, a reinforced concrete highway forming the floor system It is the type of bridge which will be able for many years to carry any loads that the highways joining it can carry It is proper in this type of structure to put all mantenance into the form of an average annual amount In the absence of any figures (since the bridge is new) $\$ 1,000$ has been assumed as ample yearly maintenance to keep this bridge in serviceable condition for the next hundred years or more The portion chargeable to the 3mile section of Route No 113 is $8 \times 071 \times \$ 1000 \times \frac{1}{2}=\$ 177$, or $\$ 60$ per mile

TABLE X
Comparison of Annoal Road Costs

Rond	Yearly traffic			Gas tax		Per mile	
	Total vehicles	$\begin{gathered} \text { Passenger } \\ \text { cars } \end{gathered}$	Trucks	Total	$\underset{\text { state }}{\text { To }}$	Annual road cost	$\begin{gathered} \text { Contri- } \\ \text { bution } \\ \text { by } \\ \text { vehicle } \\ \text { owners } \end{gathered}$
Boston Post, Conn	6,750,000	6,075,000	675,000	2 c	$2 ¢$	\$9,445	819,703
Des Moines-Ames, Iowa	1,000,000	,	0	$3 ¢$	178	2,620	2,240
Tyngsboro, Mass	548,000	500,000	48,000	3 F	2 45t	2,685	1,685
Tyngsboro, Mass (including bridge)	548,000	500,000	48,000	3¢	2 45¢	3,523	1,685
Concord-Harvard, Mass	370,000	338,000	32,000	3\&	2 45¢	2,327	1,131

On these assumptions the total annual cost of the Tyngsboro Bridge chargeable to the Tyngsboro road is $\$ 838$ per mile, which is equivalent to about 31 per cent of total of all other road costs

Adding this $\$ 838$ to the other cost $\$ 2685$ gives $\$ 3523$ as the total road cost, which is 50 cent per passenger vehicle mule and 219 cents per truck vehicle mile, allocated to the two classes of vehicles in proportion to their weight

Table X gives a condensed picture of the road costs on the sections of the four roads so far investigated by the Committee It seems to indicate roughly that, provided the State spends two cents of the gas tax upon roads, the vehicle owners are paying the total road costs in gas tax and registration fees only on those roads that carry over $1,000,000$ vehicles per year

In Massachusetts, which has the densest state highway traffic, 61 per cent of the total 1640 mules carry over $1,000,000$ vehicles per year, but in many states the mileage that carries that amount of traffic is negligible or does not exist.

In the four roads given in Table \mathbf{X}, part of the gas tax did not go to the state roads but was used on county or city roads, which of course serve the motor vehicle owner It is therefore equitable in these analyses of state roads to treat as contributions only that portion of the gas tax that was actually expended by the state on roads, but in those states where some of the gas tax recelpts are expended for purposes other than roads the motor vehicle owner should be given credit for his full contribution

A cent or two added to the gas tax (f apphed wholly to state roads) would considerably change the amounts in the last column of the table It is also evident from this table that a gas tax of four to six cents in states having many miles of highways with light traffic may be consistent with a three cent tax in Massachusetts, Connecticut or New York

The Committee gratefully appreciates the assistance given by the officials of the Highway Division of the Department of Public Works of Massachusetts

The figures used in this report have not been verified by the Department of Public Works nor have they had an opportunity to criticize them, and therefore the responsibility for their use hes wholly with the Committee

The correlation and assembly of data and computations of road costs were done by Mr Alexander J Bone, under the general direction of the author

A STUDY OF COSTS ON VARIOUS TYPES OF HIGHWAYS

By Raymond G Paustian
Instructor in Civil Engineering, Iowa State College

SYNOPSIS

A discussion of the various items that go to make up the cost of highway transportation including roadway costs, vehicle operating costs and contributions to road funds through gasoline taxes and license fees On the basis of average values for the different atems a table is presented showing the relations between operating costs, tax contributions, and annual roadway costs for various traffic volumes on the three types of roads Based on the assumptions necessarily made an annual traffic of 675,000 vehicles apparently contributes enough through taxes, on the average to pay the annual cost of a high type road
"A knowledge of all of the factors entering into total cost of transportation is needed to furnish a basis for the equitable taxation of vehicles, for the proper layout of highway improvement programs, and for the economic design of roads In other words, highway transportation cost is a dominant factor in the solution of all highway problems

In planning an improvement program, the type of improvement

[^0]: ${ }^{1}$ See Figure 2, page 57.

[^1]: . * The costs for 1907 include two projects (see Table I) These two projects had different type of surface
 \dagger The costs for 1913 included two projects (see Table I), both of which had same type of surface

