A STUDY OF TRAFFIC CAPACITY

By Bruce D Greenshields
Research Engineer, Traffic Bureau, Ohıo State Highway Department

SYNOPSIS

The report presents the results of a traffic capacity study started in June 1934 by the traffic bureau of the Ohio State Hıghway Department The work has been conducted under the supervision H E Neal, Traffic Engineer in charge of the Traffic Bureau, and J J Darnall, Supt of Traffic Surveys The data were collected by the photographic method described in Vol 13 of the Proceedings of the Highway Research Board After a brief description of the method of collecting and tabulating the information, certain selected data are analyzed to secure a measure of the working capacity of a two-lane roadway and the amount of vehicle time lost under varying degrees of congestion
The study of 1180 groups of 100 vehicles each, including not over 10 per cent trucks, reveals the average free moving speed to be about 43 miles per hour on ether a two or three lane road When the number of vehicles exceeds 400 to 600 per hour, the average speed decreases and the effect of a few slow moving vehicles is more pronounced The mean speed of 859 light trucks was 410 miles per hour, and of 225 heavy trucks, 324 mıles per hour For 18 buses, the average was 416 miles per hour

This report presents the results of a study of traffic capacity undertaken to determine the approximate hourly traffic density on a roadway of given width at which congestion or the slowing of traffic begins, and the amounts by which traffic congestion is increased

The point at which congestion begins marks the limit of the "working capacity" of a roadway according to Dean A. N. Johnson, of the Unıversity of Maryland, who makes the following statement: ${ }^{1}$

[^0]This loss of speed may be taken to be a measure of the congestion or loading of the roadway beyond its free carrying capacity. That congestion is caused by slow moving cars in the traffic stream has been shown by the fact that the average minimum spacing between vehicles has been ascertained to be such that if all vehicles moved at the same speed, the density or the number of vehicles that could pass over a section of highway in a given time would increase directly with the speed. ${ }^{2}$ For short periods of time both the density and the speed have been observed to increase, but for any considerable length of time, such as

Figure 1. Camera in Operation
an hour or more, there are enough slow moving vehicles to retard traffic if the density is sufficient. The density or number of vehicles passing in a given time such as one hour will not, however, increase beyond a certain limit, for as the speed tends to decrease to zero, the density per hour also approaches zero. (See Fig. 6.)

[^1]
METHOD OF COLLECTING AND TABULATING DATA

The data for this study, consisting of the speeds, of practically 100 per cent of all vehicles passing the points of observation, were obtained from pictures of moving traffic taken at short definite intervals of time by noting the distance each vehicle traveled during one of these time intervals.

Figure 2. Section of Film. Pictures taken at rate of 88 per minute, superimposed upon a scale to show the distance travelled. Note bulletin board included in each picture.

A $16 \mathrm{~m} . \mathrm{m}$. Simplex movie camera, capable of taking single frames of pictures, was set up about 350 feet from the roadway so that each vehicle would appear in at least two successive pictures or frames. Figure 1 shows the equipment in operation. Figure 2 shows three frames of pictures taken at a point on US 23, one mile north of Delaware, Ohio, superimposed upon a scale to show the distance traveled. The camera was "snapped" by a solenoid, the time interval between "snaps" being controlled by an electrical contact made by the pendulum on a metronome at the end of its swing. Nearly all of the pictures were taken at the rate of 88 per minute, since with this time interval between frames,
the distance traveled in feet equals miles per hour The method of scaling the distance traveled can be understood by referring to figure 2 , where the rear car in Frame 1 at the top has advanced 34 feet in Frame 2

Figure 2 also shows part of a bulletin board included in each picture, giving the location, day, date, hour, type and width of pavement, the interval between exposures, weather conditions, and a clock, showing minutes and seconds of time Markers were placed on each side of the road to provide a definite scale for each picture

A detaled description of the photographic method is found in "The Photographic Method of Studying Traffic Behavior," by Dr. Greenshields, The Proceedings, Hıghway Research Board, Vol 13, p. 382

Profilometer readings, showing the profile changes in excess of onequarter inch in ten feet, were made on each of the sections of roadway investigated, and recorded according to the variations occurring per mıle

The form used in transcribing data from the films is shown in Table I This table shows the instant to the closest second that each vehicle passes a definite point Although spacings between cars are not discussed in the present report, in case a restudy should be made, a place has been provided on the form for expressing the tume interval between frames in seconds or frames in which successive cars appear, to faclitate the calculation of the spacing between cars

The data were transferred from Table I to Table II in groups of ten vehicles each The time interval required for each group to pass is shown The data from Table II were, in turn, transferred to Table IIl in groups of one hundred vehicles each, together with the time interval for each group to pass In taking the groups of one hundred vehicles each, the vehicles in each group starting with the first are: $1-100$, 11-110, 21-120, 31-130, 41-140,-and so on The averages obtaned from these groups constitute a "moving average" for the traffic stream The jump of ten vehicles at a time has been chosen arbitrarily A change of one vehicle would constitute a different group, but the characteristics of the group would not be significantly different from the previous ones The change of ten vehicles gives a greater difference and it permits the additions to be easly checked Every group of one hundred vehicles that passed within the same time interval, to the closest minute, was transferred to Table IV The time interval for these groups is the average of the time intervals for the separate 100 -vehicle groups making up the total Each of the larger groups, of course, is in even hundreds

Distribution of Automotive Vehrcle Speeds

Since the percentage of vehicles traveling at low speeds is perhaps the most important factor in determining highway capacity, and in order to obtain more significant averages, the percentage of vehicles traveling

TABLE I
Typical Data Sheet
Day Saturday Date 9/1/34 County Lorain
Location 20 miles West of Oberlın-U S No 20
Weather Clear Scale Markers 50' Time Interval 1/88'
Analysis by Ganschow , Walters
Hours of Observation 1030 A M -12 02 P M
Remarks 20^{\prime} Asphalt Pavement with $6^{\prime \prime}$ concrete edges

Time		$\begin{gathered} \text { Car } \\ \text { Posi- } \\ \text { tion 1n } \\ \text { Feet } \end{gathered}$	Spacing to Car Ahead			Speed Vehicle Travels in Miles per Hour					
HMS	Frame		Sec	Fr	Ft	Weat			East		
						P	LT	HT	P	LT	HT
$\left.\begin{array}{\|c} 10 \\ 31-0 \\ -10 \\ -16 \\ \\ -12 \end{array} \right\rvert\,$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 170 \\ & 180 \\ & 185 \\ & 150 \\ & 175 \end{aligned}$				40 38 58 40			30		
$\begin{array}{r} 32-29 \\ -35 \\ -40 \end{array}$	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 180 \\ & 160 \\ & 230 \\ & 230 \\ & 230 \end{aligned}$			10	$\begin{aligned} & 40 \\ & 45 \end{aligned}$			40 48 52		
$\begin{array}{r} 33-6 \\ -16 \\ -20 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 4 \end{aligned}$	$\begin{aligned} & 176 \\ & 135 \\ & 215 \\ & 235 \\ & 155 \end{aligned}$			42	$\begin{aligned} & 39 \\ & 45 \\ & \\ & 52 \\ & 49 \end{aligned}$					42
-32 -40 -41	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 170 \\ 255 \\ 210 \\ 95 \\ 125 \end{array}$			60	50 47 40			$\begin{aligned} & 60 \\ & 60 \end{aligned}$		
$\begin{array}{r} 34-0 \\ -4 \\ 34-20 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 180 \\ & 240 \\ & 195 \\ & 142 \\ & 162 \end{aligned}$			$\begin{array}{r} 100 \\ 20 \end{array}$	43 28 38			$\begin{aligned} & 57 \\ & 60 \end{aligned}$		
$\begin{array}{r} -51 \\ 35-13 \\ -31 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 130 \\ & 180 \\ & 212 \\ & 176 \\ & 210 \end{aligned}$			12 36	$\begin{aligned} & 38 \\ & \\ & 57 \\ & 62 \\ & 46 \end{aligned}$			30		
$\begin{array}{r} -46 \\ 36-12 \\ -19 \\ -27 \end{array}$	1 1 1 1 1	$\begin{aligned} & 220 \\ & 167 \\ & 100 \\ & 210 \\ & 176 \end{aligned}$			67	$\begin{aligned} & 56 \\ & 50 \\ & 20 \end{aligned}$	47			47	

TABLE II

Note Bottom of table omitted

TABLE III

Note Bottom of table omıtted

TABLE IV

Note \cdot Bottom of table omitted
at or less than various speeds was plotted in Figure 3 on the arithmetic probability paper devised by Hazen, Whipple and Fuller ${ }^{3}$

The use of this type of paper is advantageous as it is possible to represent the observed data by a straight line In such a case, the speed given by the intersection of the straight line with the 50 per cent ordinate is the most frequent and average speed, as well as the median The usual definitions become, for the present problem.

Average Speed-arithmetical mean of all speeds
Median Speed-speed such that 50 per cent of the speeds are greater, and 50 per cent less

Figure 3 Distribution of Vehicle Speeds Normal Probability Curve Average of seven groups of 100 vehicles each Average density 625 vehicles per hour Lane distribution 45-55 per cent. Trucks 44 per cent

Modal Speed-the most frequently occurring speed

The data utilized are the numbers of cars with speeds equal to or less than a given series of equally spaced values A typical set of figures for 100 vehicles, at speed intervals of five miles per hour is included in'Table V the speeds for each mile per hour interval being omitted for the sake of clearness The fourth column will be explaned later
If the percentage of cars traveling slower than a given speed or equal to it is plotted against speed, the points will fall in an irregular line This is to be expected, particularly when the number of cars represented

[^2]in one diagram is only 100 If counts are made a number of times under precisely the same conditions of traffic, the percentage traveling faster than, say 40 miles per hour, will never be exactly the same, except by chance There will be a certain dispersion around the average value for several groups of 100 cars This may be expressed by saying that the number of cars traveling slower than any given speed in one group of 100 has what is known as a "natural uncertainty" or "probable error" It is a fundamental statistical principle that in plotting and drawing a curve such as the type here considered, the data should be "smoothed" to eliminate the accidental irregularities as far as possible, before being utalized This means drawng the smoothest curve possible through the plotted points The points listed in Table V are plotted in Figure 4 It will be seen that they fall in rather irregular fashion, and that at first glance, the position of the 635 mile per hour point appears to preclude the possibility of drawing a satisfactory straight line

TABLE V

Speed in Mules Per Hours	Tabulated Frequency (N)	Percent Equal to or Slower	Natural Uncertainty
205	0	0	00
255	5	5	218
305	12	12	324
355	31	31	462
405	54	54	497
455	67	67	470
505	82	82	384
555	94	94	237
605	99	99	099
635	100	100	00
655	100	100	00

First, however, it is important to consider the probable amounts of the "natural uncertainty" This is given for each frequency in the table by the following relation,

$$
\mathrm{Z}=\text { Natural Uncertainty }=\sqrt{\mathrm{N}(1-\mathrm{N} / \mathrm{P})}
$$

where N is the tabulated frequency or the number of vehicles travelling at or less than a given speed ${ }^{4}$ These values of Z are tabulated in the fourth column of the table $P=$ Total number of vehicles observed It is an accepted fact that it is fair to assume in drawing the curve, that the frequency hes somewhere between N and $\pm \mathrm{Z}$ the natural uncertainty Thus, at each plotted point, a horizontal line is drawn representing the allowed range in the value of \mathbf{N} It is then permissible to draw a smoothed curve in such a way that it pàsses through all the

[^3]horizontal lines, attempting to draw it so that the sum of the deviations from the actually counted values shall be equal

In the present case, a straight line satisfies all but the 635 mule-perhour point In the preceding formula, \mathbf{N} should really be the mean number of cars with velocity equal to or less than the given amount, found from a great number of sets of 100 cars under the same traffic conditions In such case, it is fair to suppose that an occasional car travelling faster than 635 mules per hour would be found Then the actual percentage slower than 55 would be shghtly less than 100 If, for example, it were 995 , the natural uncertanty would then be ± 07,

Figure 4 Graph Showing Percentage of Vehicles Travelling Above and Below Various Speeds and the Probable Amounts of the "Natural Uncertainty" of the Plotted Points.
and the point and the dotted line would give the result In this case, it is evident that the straight line can be passed through all the horizontal lines This means principally, that the points given by the higher speeds are too erratic and sensitive to accidental fluctuations to be given much weight in the drawing of the curve Probably all points for percentages less than two and greater than 98 should be ignored in drawing the curve

It may be assumed then, that a straight line will generally satisfy the data, and that the "smoothed" values read from the curve are the best ones to use in further analysis

TRAFFIC CAPACITY OF A TWO LANE ROADWAY

The information needed from the tabulated data to determine the traffic capacity of a two lane roadway consists of，first，the average free speeds on the various types of roadways studied，and second，the amounts by which this free speed is lessened by increased densities of traffic

TRAFFIC WITHOUT CONGESTION

The average data for the following described uncongested roads are given in Table VI

TABLE VI
Average Data for Uncongested Roads

Route					
U S 6， 49 Miles East of Vermilion					
Friday，Aug 17， 1934	379	68	424	75	544
Sunday，Sept 2， 1934	654	99	388	08	568
Wednesday，Aug 29， 1934	267	69	453	77	644
U S 20,20 Mıles West of Oberlin	277	30	433	69	415
U S 20， 14 Miles West of Monroeville	593	109	442	37	504
U S 20， 15 Miles West of Bellevue	336	59	428	75	560
U S 20， 025 Miles West of Oberin	382	27	371	68	385
U S 20， 18 Miles East of Perrysburg	134	72	370	67	398
U S 20， 24 Mıles East of Oberlın	360	13	429	22	498

Traffic on US 6－49 miles east of Vermilion，Ohio
This section of highway is of newly constructed concrete，thirty feet wide The profilometer readings showed 12 variations in excess of one－ quarter inch in ten feet，per mule．The pavement is straight and the view is unobstructed for a long distance，providing an ideal place for high speed traffic It is thought that the traffic on this highway shows the normal speed tendencies or what the average driver does on a smooth roadway free from interference of other vehicles At no time did the road carry sufficient traffic to cause congestion

The average＂smoothed＂speed for week day traffic for all observa－ tions at this station was 439 mıles per hour，and the percentage of trucks was 76 If the Sunday traffic is assumed double the average week day traffic and weighted accordingly，the average traffic speed was 426 ， and the percentage of trucks 59 A total of 3900 vehicles was observed．

The light trucks of which there were 106 averaged 341 mules per hour, while 84 heavy trucks averaged 328 miles per hour

To secure the percentage of vehicles travelling at or less than certan speeds, data from one film taken on Friday, August 17, 1934, which, on analysis, gave 24 groups of 100 vehicles each falling in eight different time intervals, was plotted on arithmetic probability paper and the results given in Table VII were read from this composite curve

The curves plotted for each of the eight different time intervals showed a maximum deviation from the composite curve of 16 per cent between the limits of 02 and 998 percent

TABLE VII
Composite Data-U S 6-4 9 Miles East of Vermilion
Percentage of Vehicles Traveling at or Less than a Given Speed in Miles Per Hour

Speed in Miles per Hour	Percentage of Vehicles Traveling at Equal or Less Speed
10	001
15	01
20	06
25	25
30	80
35	200
40	380
45	590
50	790
55	910
60	970
65	992
70	998

Average Smoothed Speed 430 miles per hour
Percent of Trucks 60
The 1934 average and maxımum dally traffic at this location derived from a traffic survey taken by the Traffic Bureau was:

Passenger Cars	3491
Trucks	398
Total Vehicles	3889
Maxımum Darly Total Vehıcles	8167
Percent of Foreign Vehicles	178

Traffic on U S 20-2 0 Miles West of Oberlın, Ohio
This is another location showing free speeds The section is of asphalt macadam twenty feet wide, with six-inch concrete edges The traffic at this location on Saturday, September 1, 1934, was not heavy enough to present any feature of highway congestion

The percentage of vehicles travelling at equal or slower speeds taken
from the 30 groups observed is shown in Table VIII and is given for comparison with the similar tabulation in Table VII The largest variation from the average for any one of the curves was 42 percent

The 1934 average danly density of traffic was.

Passenger Cars	$\mathbf{1 4 7 0}$
Trucks	265
Total Vehicles	1735
Maxımum Daıly Total Vehicles	3609
Percent of Forergn Vehicles	301

Traffic on US 20-14Miles West of Monroeville, Ohio
A third location showing free speeds was on Route US 20, 14 miles west of Monroeville This section of roadway is of concrete, 20 feet

TABLE VIII
Composite Data U S 20-2 0 Miles West of Oberlin

Speed in Mıles per Hour	Percentage ofVehicles Travelıng at Equal or Less Speed
10	001
15	002
20	07
25	27
30	80
35	180
40	350
45	550
50	740
55	880
60	956
65	986
70	997

wide, with a very wide shoulder on the north side and an ordmary shoulder on the south At this location it perhaps might be inferred that there was a slight drop in the traffic speed corresponding to the change in density from 500 to 700 vehicles per hour The profilometer readings showed 492 bumps per mile The roughness apparently had little effect on the speeds

The 1934 average dally density of traffic was:

Passenger Cars	3526
Trucks	436
Vehicles	3962
Maxımum Daıly Total Vehicles	$\mathbf{8 2 4 1}$
Percent of Foreıgn Vehicles	347

Traffic on US 20-15 Meles West of Bellevue, Ohıo

The section of roadway 15 miles west of Bellevue, Ohio, on Route U.S 20, is of brick, 22 feet wide with an elght-foot level shoulder on the north side and a very narrow shoulder on the south side. The profilometer readings on this section showed 368 variations in excess of onequarter inch in ten feet per mile Since the heaviest observed traffic was 465 vehicles per hour, little congestion may be sand to have existed at any time There appears to be a slight drop in the average speed at about 375 vehicles per hour

The 1934 average dąly density of traffic was.

Passenger Cars	2932
Trucks	405
Total Vehıcles	3337
Maxımum Daıly Total Vehıcles	6941
Percent of Foreıgn Vehicles	283

Traffic on US 20-0 25 Mile West of Oberlın, Ohio

This section of highway is of brick, sixteen feet in width, with ten inches of concrete on each side The profilometer readings for this section showed 126 bumps per mile This location is quite close to a filling station and to a cross road. The interference of these physical obstructions with traffic is reflected in the speeds observed Little or no congestion was found The average speed was 371 mules per hour Observations were made on Sunday September 2, 1934

The 1934 average daily density of traffic was.

Passenger Cars	1470
Trucks	265
Total Vehıcles	$\mathbf{1 7 3 5}$
Maxımum Daıly Total Vehıcles	3609
Percent of Foreıgn Vehıcles	301

Traffic on US 20-1 8 Miles East of Perrysburg, Ohio

This is another location showing the effects of physical features upon speeds The section is of asphalt macadam, 18 feet wide, with a deep ditch on each side The profilometer readings show 123 variations in excess of $\frac{1}{4}$ inch in ten feet to the mile The rather high crown and the deep ditches on both sides evidently slowed traffic to some extent, due to the extra hazard in driving The pavement was wet during some of the observations but this seemed to have little effect on the average speed The highest density of 200 vehicles per hour was not sufficient to approach congestion

The 1934 average dally density of traffic was:

Passenger Cars	1747
Trucks	155
Total Vehıcles	$\mathbf{1 9 0 2}$
Maxımum Daıly Total Vehicles Percent of Foreıgn Vehicles	3994

Traffic on S R 10-U S 20-2 4 Miles East of Oberlın

Route US 20, 24 miles east of Oberlm is surfaced with 9 ft of brick plus 45 ft . of asphalt macadam on each side The macadam has feather edges. The profilometer readings showed 370 variations in excess of $\frac{1}{4}$ inch in ten feet to the mule

TABLE IX
Average Free Speed 434 Groups of 100 Cars Each

Type of Pavement	${ }_{\text {Wret }}^{\text {Width }}$	Compara-Roughness	Groups Observed	Av Density in Vehicles per Hour	$\begin{gathered} \text { Mean } \\ \text { "Smoothed" } \\ \text { Speed } \end{gathered}$	Trucks, percent
3 Lane Concrete	30	12	236	462	426	59
2 Lane						
Concrete	20	492	109	593	442	37
Brick	22	368	59	336	428.	75
Asphalt	20		30	$\underline{277}$	433	69
2 Lane			Sum 198	Av 469	Av 436	Av 53
Total-2 Lane and 3 Lane			Sum 434	Av 465	Av 431	Av 56

Average Free Speed

The average free speed taken from the locations showing no congestion and no special physical features to retard traffic are given in Table IX.

The average speed for the two lane sections is 436 mles per hour for an average density of 469 vehicles per hour 435 miles per hour is taken as the average free speed.

TRAFFIC WITH CONGESTION

Traffic on US 20-2 4 Miles West of Norwalk
This section is of concrete, 20 feet wide, with a curb on the south side to prevent traffic from encroaching onto an interurban ralway line The north side has a farrly good shoulder The highest observed speed at this location shows the influence of the pavement condition upon the free speed of traffic There were 285 variations in excess of one-quarter
inch in ten feet observed per mile on this roadway The speeds on this section show increasing congestion

Table X shows traffic conditions observed on Labor Day, September 3, 1934 and average week-day traffic On labor day there was a small percentage of trucks and it may be added that there was a large percentage of out-of-state traffic No light traffic was observed and no free moving speeds are indicated There is shown a consistant drop in average speeds for the higher densities

On week days the percentage of trucks is higher while the average free speed is lower Here again it may be noted that there is a slight drop in speed for the higher densities The working capacity of the roadway seems to be about 400 vehicles per hour

TABLE X
Traffic on U S 20-2 4 Miles West of Norwalk

Range of Density in Vehicles per Hour	A verage Density in Vehicles per Hour	Number of 100-Vebicle Groups Observed	$\begin{aligned} & \text { A verage } \\ & \text { Mean } \\ & \text { Smoothed } \\ & \text { Speed } \end{aligned}$	Average Percentage of Trucks	Average Percentage Traveling in One Direction
Labor Day Traffic					
700-899	782	18	399	36	516
900-1099	993	104	387	11	462
1100-1299	1176	39	359	08	434
1300-1499	1324	13	356	16	461
1500-1699	1617	7	329	143	417
Week Day Traffic					
100-199	178	3	373	107	557
200-299	262	98	384	90	503
300-399	322	26	364	101	481
400-499	405	1	354	110	

The 1934 average daily density of traffic was•

Passenger Cars	3185
Trucks	462
	3647
Maxımum Daıly Total Vehıcles	7586
Percent of Foreıgn Vehıcles	297

Traffic on US 23-1 0 Mile North of Delaware

Another location showing traffic congestion was found on US 23, one mile north of Delaware This location showed a very small percentage of trucks for the higher densities

The section of pavement on which observations were taken is 18 feet
wide, and of brick covered with asphalt No profilometer readings were taken The surface is rather wavy

At the time the data were taken, the Government had established during the summer of 1934 , a cattle ranch about one-quarter mile to

TABLE XI
Traffic on U S 23-1 0 Mile North of Delaware

Density in Vehicles per Hour	Number of 100-Vehicle Groups Observed	Mean "Smoothed" Speed	$\begin{aligned} & \text { Percentage } \\ & \text { Trucks } \end{aligned}$	Percentage Traveling in One Direction
166	1	325	110	520
169	2	325	115	515
177	2	324	115	495
184	3	323	120	530
193	2	307	95	450
279	6	318	136	515
294	3	322	140	477
266	5	323	135	525
305	3	323	135	547
322	1	326	130	670
Av 247	Sum 28	Av 321	Av 127	517
930	7	107	110	607
992	8	112	07	656
1100	26	108	10	660
1260	14	115	11	626
Av 1103	Sum 55	Av 110	Av 23	644

Traffic Observed on North Bound Lane Only

Density in Vehicles per Hour (Twice One Lane)	Number of 100 -Vehicle Groups Observed	Mean "Smoothed ' Speed	Per Cent Trucks
1130	2	175	05
1168	2	75	00
1260	8	172	05
1278	7	82	00
1390	1	175	00
1480	8	73	00
1556	3	137	00
1648	15	75	00
1678	2	80	00
1722	1	80	00
1840	2	83	00
Av 1471	Sum 51	Av 1010	Av 01

the north of the point observed The speeds show an unusual traffic condition to have existed Apparently most of the drivers were more interested m looking at the cattle than they were in reaching their destinations Table XI shows the densities and the corresponding average speeds

Table XI also shows the traffic on one lane only for heavier densities Since there was no passing, it may be assumed that the traffic at this density may be doubled to represent both lanes as is shown in the first column of that part of the table

It may be observed that at the higher densities there was considerable fluctuation in the density-speed relationship This was to be expected, since any slow moving vehicle or other cause of delay would affect the entıre traffic stream

The 1934 average dally density of traffic was.

Passenger Cars	2561
Trucks	338
Total Vehicles	2899
Maxımum Darly Total Vehecles	6030
Percent of Foreıgn Vehicles	93

The average before the cattle ranch was established-3 counts, one per month was.
Passenger Cars $\quad 1936$

Trucks 261
Total Vehıcles 2197
Maxımum Daily Total Vehicles 4570
Percent of Foreign Vehicles 110
During the existence of the cattle ranch 3 monthly counts gave traffic as follows:

Passenger Cars	3187
Trucks	415
Total Vehicles	3602
Maximum Danly Total Vehicles	7492
Percent of Foreign Vehicles	98

Traffic on US 25-2 0 Miles South of Dayton, Ohio

This location showed varying amounts of congestion and a larger percentage of trucks than was found west of Norwalk. The road is of brick with two feet of concrete on one edge, making a total width of 18 feet. The condensed data are given in Table XII

Since, for the high densities, a large percentage of traffic was on one lane, it is tabulated below, the first column representing twice the density for one lane, or the possible density for two lanes

One Lane Traffic

Density in Vehicles Per Hour	Number of 100-Vehicle Groups Observed	$\begin{gathered} \text { Mean } \\ \text { "Smoothed" } \\ \text { Speod } \end{gathered}$	Per Cent Trucks	Per cent Traveling in One Direction
1434	1	315	10	1000
1582	4	325	15	1000
1874	5	317	28	1000
2082	2	302	30	1000
Av 1775	Sum 12	317	23	1000

These data are shown as curve C in Figure 7, and perhaps represent a common traffic composition

TABLE XII
Traffic on U S 25-20 Miles South of Dayton

Vehicles per Hour		GroupsObserved	$\begin{gathered} \text { Mean } \\ \text { "Smoothed" } \\ \text { Speed } \end{gathered}$	Per Cent Trucks	Density in Vehicles per Mile of Pavement
Mean	Range				
325	200-400	83	404	122	80
454	400-500	39	382	70	119
548	500-600	24	375	65	146
664	600-700	15	340	37	195
792	700-800	10	348	39	228
0	800-900	0			
937	900-1000	4	339	30	276
1125	1125	8	315	43	357
1267	1267	4	309	40	410

The mean speeds and the arithmetical average speeds for the traffic by hours observed at this location on July 6, 1934, may be of interest

Mean Speed in Mıles per	Hours								
	10-11	11-12	12-1	1-2	2-3	3-4	4-5	5-6	6-7
Hour	412	406	400	357	323	362	368	383	382
Average Speed in Miles per Hour	4035	55	41	3639	3338	3755	3845		3968
Density (Total Vehicles Both Lanes)	334	338	312	317	703	499	466	450	387

The 1934 average dally density of traffic was:

Passenger Cars	7768
Trucks	405
Vehıcles	8173
Maxımum Daıly Total Vehıcles	1

DERIVATION OF EQUATION FOR EXPRESSION OF RELATION OF SPEED AND DENSITY

In plotting speeds and corresponding densities, it will be found convenient if the densities are expressed in vehicles per mule of pavement This density, D^{\prime} is found from D , the density in vehicles per hour by dividing D by the average speed in miles per hour

The plotted points shown in Figure 5, seem to represent a straight line relationship between speed and density per mile The data for the points for the upper part of this curve are found in Table X, and "One Lane Traffic" page 465 The data for the " 51 point" are taken from one lane traffic observed at a point one mule north of Delaware on U S 23, (Table XI) The upper part of the curve beyond free speed (F)

Figure 5. Speed in Miles Per Hour Corresponding to a Given Average Density in Vehicles per Mile of Pavement
evidently cannot be used since no speed drop has been found to occur much before the density reaches 400 vehicles per hour

Referring to Figure 5 again it will be noted that since the curve is a straight line it is only necessary to determine accurately two points to fix its direction Practically, these points should be the free speed or a point in that region and a point near the maximum density, since a point at each end of the line gives it the most accurately It thus becomes necessary to have observations showing only these two traffic conditions to determine the effect of congestion for all different densities At greater densities there is less consistency owing to the fact that a few slow moving vehicles retard the whole traffic stream This means that the data for the higher density must be ample

Let F^{\prime} represent the speed (438 for this particular curve) where the
curve cuts the zero ordinate in Figure 5, then the speeds for any given density

$$
\begin{equation*}
\mathrm{S}=\mathbf{F}^{\prime}-\mathrm{mD}^{\prime} \tag{1}
\end{equation*}
$$

where D^{\prime} equals the density in vehicles per mile and m, the slope of the curve (0221 for this case) Since D^{\prime} equals D / S, the equation may be written

$$
\mathrm{S}=\mathrm{F}^{\prime}-\mathrm{mD} / \mathrm{S}
$$

or

$$
\mathrm{S}^{2}-\mathrm{SF}^{\prime}+\mathrm{mD}=0
$$

or

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{F}^{\prime} \pm \sqrt{\mathrm{F}^{\prime 2}-4 \mathrm{mD}}}{2} \tag{2}
\end{equation*}
$$

The curve showing the relationship of S to D may be plotted as shown in Figure 6

Referring to Figure 5, the equation for expressing the total time lost for any density, D, may now be written $F-S$ equals the speed lost per vehicle per mile, where F equals the free speed The time lost in minutes per vehicle per mile is:

$$
\begin{equation*}
T^{\prime}=60 / S-60 / F \tag{3}
\end{equation*}
$$

where $60 / \mathrm{F}$ equals the time (in minutes) required to travel one mile at the speed F, and $60 / \mathrm{S}$ equals the time required to travel one mile at the speed S for the given density D

The total time lost (T) in hours for all vehicles per mile is.

$$
\begin{equation*}
\mathrm{T}=\mathrm{D}(1 / \mathrm{S}-1 / \mathrm{F}) \tag{4}
\end{equation*}
$$

Substituting the value of S given in equation (2), there results.

$$
\begin{equation*}
\mathrm{T}=\mathrm{D}\left(\frac{2}{\mathrm{~F}^{\prime} \pm \sqrt{\mathrm{F}^{\prime 2}-4 \mathrm{mD}}}-1 / F\right) \tag{5}
\end{equation*}
$$

F^{\prime} may be found from F by multiplying the value of $D^{\prime}(95$ from curve approx) corresponding to F, by the slope m of line (tangent of angle between line and horizontal axis) and adding this to the value of F.

$$
\begin{equation*}
\mathrm{F}^{\prime}=95 \mathrm{~m}+\mathrm{F}(\text { approx }) \tag{6}
\end{equation*}
$$

It should be noted that the total time cannot be estimated from D , the density in vehicles per hour, because there are two speeds at which the same density may occur as shown in Figure 6 If the roadway becomes loaded beyond its maximum carrying capacity of about 2200 vehicles per hour, the vehicles become so crowded that the number passing per hour becomes less It is necessary to know the approximate spacing between vehicles or whether the road is loaded beyond its maximum carrying capacity before it is possible to know which part of the curve to use in estimating the time loss

Using the value of m from figure 5 , which equals 0221 , a graph showing the time lost for different densities may be plotted as shown in Figure 8

Figure 7 gives two estimates of the value of m for traffic with different percentages of trucks The value from curve A, 1% to 5% trucks, equals 0232 (slope of curve) and the value from $\mathrm{B}, 2 \%$ to 12% trucks, equals 0272 The value of F in each case is taken to be 435 , the average free speed in miles per hour secured from observations of traffic on the open highway The points where the two curves cut the 0 speed line, 197 and 167 are based respectively upon the curve in Figure 5, and curve c plotted from data given in Table XII.

Figure 6 Speed in Miles per Hour Corresponding to a Given Density in Vehicles per Hour on a Two-lane Highway.

Using the value of $m, 0232$, a density of 1000 vehicles per hour, gives a time loss of 22 hours or 1480 hours depending upon whether the traffic has exceeded the maximum carrying capacity of the roadway or not Using the value of m taken from curve B, 0272 , a density of 1000 vehicles per hour, gives time losses of 25 hours or 122.0 hours

Curve C shows an extensive extrapolation owing to the lack of data for higher densities Two assumptions are made, first, that the data may be represented by a straight line, and, second, that the larger percentage of trucks causes the slope to be different from that of curve A

Greater densities of traffic occurred at the hours when the Frigidaire Plant, located South of Dayton, changed shifts At these hours the traffic was composed almost entirely of passenger vehicles and largely of drivers intent on reaching either their homes or the factory It is
believed that the speeds observed for the higher densities were greater than may usually be expected and that this accounts for the fact that

Figure 7. Speed Corresponding to a Given Average Density A Estimated curve for traffic with percentage of trucks ranging from about five per cent at lower densities to one per cent at the maximum B Trucks ranging from about 12 per cent at lower densities to two per cent at the maximum C. Data taken two miles south of Dayton on U S 25, figures show the number of 100 -vehicle groups observed for each point (Table XII)

Figure 8. Vehicle Time Loss Due to Congestion on a Two-lane Highway.
curve C, according to the limited amount of data shown, would curve upward.

It has been assumed in drawing curves A and B that a roadway on which the free speed is less than on an open highway due to physical surroundings, will not show a loss in speed due to congestion as greatly as the open road This may be explaned in the following manner \cdot a density of 1550 vehicles an hour reduces the average speed on an open highway from 435 to 335 miles an hour, but on another roadway with a free speed of only 35 mules an hour, a density of 1775 vehicles an hour is required to reduce the average speed to 25 miles an hour

ESTIMATING CONGESTION

Having arrived at the ratios of the increase of congestion to increasing densities, it is possible to estimate the congestion or time loss for any given location provided the average traffic density is known

For example, the average dally traffic on U S 20,24 miles west of Norwalk is given as 3647 vehicles Let it be required to estimate the time loss for the hour 3 to 4 P M, on a Sunday in August

Correlation of hourly, dally and seasonal variations of traffic expressed in factors used by the Traffic Bureau, proves that for this hour there. would be about 800 vehicles passing The total vehicle time loss for this density is about 1 hour

CONCLUSION

It may be concluded from the study of 1180 groups of 100 vehicles each, taken from over 22,000 vehicles observed, that the average free moving speed of vehicles on a first class roadway in dry weather with the percentage of trucks varying from zero to ten is very nearly constant and equal to approximately 43 miles per hour This speed holds for either a two or three lane highway The bumps per mile on one location were twelve and on another 492, showing that a certain amount of roughness has little effect on the speed Passenger speeds of over 80 mules per hour and truck speeds of 60 miles per hour were recorded

The average free speed of 18 buses observed was 416 miles per hour
The mean "smoothed" speed of 859 light trucks (net rate capacity of $2 \frac{1}{2}$ tons or less) was 410 miles per hour and of 225 heavy trucks (net rate capacity of 3 tons or more), 324 miles per hour. The speed range of the light trucks taken from a normal probability curve was as follows:

Speed Range ofLight Trucks Percentage of Light Trucks Traveling at or less than Given apeeds	
Speed in Miles Per Hour	36
20	200
30	550
40	860
50	980

The speed range of 225 heavy trucks was as follows
$\left.\begin{array}{cc}\text { Speed Range of Heavi Trucks } \\ \text { Percentage of Heavy Trucks } \\ \text { Traveling at or less than } \\ \text { Given Speeds }\end{array}\right\}$

The speeds recorded show that as congestion moreases there is less consistency in the speed-density ratio As the space between vehicles becomes less, the effect of a few slow moving vehicles becomes pronounced, which means that with the same average speed, the density may vary considerably

TABLE XIII
Traffic on Ohio 2, U S 6-20-Edgewater Park-Cleveland

Density in Vehicles Per Hour	Number of 100-Vehicle Groups Observed	Mean Smoothed' Speed	Percent Vehicles on Each Lane			
			West			East
			1	2	3	4
1343	12	359	18	38	34	10
1666	10	354	17	37	32	14
2278	30	351	14	37	36	13
3636	8	350	13	37	41	9
Av 2170	Sum 60	Av 353	Av 151	Av 372	Av 356	Av 120

Mean "Smoothed" Speed for Lane 1-33 0 Miles Per Hour
Mean "Smoothed" Speed for Lane 2-36 7 Miles Per Hour
Mean "Smoothed"' Speed for Lane 3-38 4 Miles Per Hour
Mean "Smoothed" Speed for Lane 4-32 5 Miles Per Hour

TRAFFIC ON A FOUR LANE ROAD

Traffic data taken on routes Ohı 2-US 6-20 at Edgewater Park in Cleveland, gave some undication of the traffic capacity of a four lane highway Since no trucks are allowed on this boulevard, the results cannot be applied to mixed traffic The speed range was observed to be relatively unform, ranging between 20 and 50 miles per hour The drop of 09 mules per hour is not sufficient to show the beginning of congestion The data are shown in Table XIII

SPEED RANGE FOR DIFFERENT DENSITIES

The data for different densities taken 24 mules west of Norwalk on US 20 (Table XIV) show that as the density increases the speed range decreases There was a larger percentage of trucks for the lower densi-
ties which probably accounts for the comparatively large percent of vehicles traveling at low speeds for the lower densities

The data avarlable on the films, it is belneved, will, when properly analyzed, give the answer to other traffic problems For instance, the distance required for one car to pass another, together with the clearance on the opposite lane, is evidently contained in the data at hand

Other phases of traffic behavior, such as the effect of curves upon speeds, immediately present themselves and without doubt further investigation is not only desirable but necessary if the knowledge of traffic is to keep abreast of the problems arising from the fact that driving on umproved highways with speedier and more powerful vehicles is still subject to the physical limitations and mental perceptions of the driver

TABLE XIV
Speed Range for Different Densities
U S 20-2 4 Miles West of Norwalk

Average Density in Vehicles per Hour	Percentage of Vehicles Traveling at or less than Given Milea per Hour				
	Miles per Hour				
	20	30	40	50	60
	Percent				
275	12	150	560	920	995
762	- 05	100	500	890	994
927	03	100	540	920	995
1097	05	140	620	955	999
1295	12	220	760	986	
1617	32	340	850	994	

DISCUSSION—TRAFFIC CAPACITY

Mr J Rowland Bibbins. I would like to inquire if any of you have used the sumple method of getting over-all speeds over a stretch of highway by recording the tag number of the vehicle entering the stretch and checking the same tag number on leaving I used this method to advantage in Chicago on the Lake Front Hıghway and found plenty of vehicles that were reaching the Jackson Park exit at speeds of 50 mph and upwards Even during rush hours the speeds would average pretty close to 47 and as a matter of fact they had to roll along pretty near 50 or get pushed out of line It seemed much easier to jog along with the crowd at 50 miles This method was challenged in court and I had some difficulty in substantiating the accuracy of the test because it was not a 100 per cent count We noted the tag numbers every 5 or 10 second intervals at Grant Park and caught them at the end Of course some error might occur in the run with those vehicles caught at the
begmning of the interval at one end and at the end at destination The opposing lauyer clamed that this was so maccurate that it "meant nothing" But the method secmed to me very reasonable We were also able to locate observers and find the specds to and from intermediate points on the Lake Front Highway run By this method we discovered the astounding fact that rush-hour traffic-way speeds were higher than even counter-traffic rush or mid-day speeds on these express highways, but just the reverse on normal city strects

Mr W S Canning, Keystone Automobrle Club I have made some speed runs by placing my own vehicle in a group of vehicles running on a particular street The mstructions to the driver were to keep in position in the group If a vehıcle at normal specd passed our car, we would pass one vehicle Two watches were used, one a stop watch The time of crossing certain intersections was noted by standard watch for a distance of $1 \mathrm{mle}, 2$ miles, 5 miles, checking each third or fourth intersection If stops were made, the stop watch came into play and the length of time the vehicle was actually at a standstill-the time until it began to move again-was noted, together with the reason for that stop In that way a chart was developed which would show the reasonable average runnmg speed between the two extreme pomts and at any points in between and also the delays and the reasons for those delays I don't know whether that method, crude as it may be, would apply to the case of which Mr Bibbins speaks, but it has worked for me

Mr H Hershey Miller, Pennsylvanza Depaıtment of Heghways

 It is rather difficult to determine the traffic capacities of two, three or four lane roads from observation stations without a rather elaborate set-up This is demonstrated in Professor Gieensheld's paper. But when you are driving a car you know when traffic is delaying your progressHeavy traffic on main highways will probably be confined to areas adjacent to large centers of population at certain peak load periods If four traffic lanes are provided each lane could accommodate one thousand (1000) vehicles per hour without serious traffic impediment except where cross tiaffic is of sufficient magnitude to require stop-go traffic control, or traffic police When this condition prevalls scrious delays will result that will cause traffic congestion
At less frequented sideroads the main traffic arteries will prove a serious barrier to crossing or turning traffic

Where the volume of traffic at any point approaches the theoretical maximum road capacity, it might be advisable to provide grade separation for intersecting roads

The determining feature is an economic one and must be based on a
traffic analysis that will include not only the traffic flow in each direction but also the average delays that will be occasioned during these peak periods to each vehicle involved

Another factor in traffic flow that requires study is belt line construction to divert through traffic from city streets Here again studies must be made to determine the time saved, the cost involved and the savings effected in vehicle operating costs

The widening of through routes as they approach thickly populated centers to accommodate local traffic requires the same analysis
These problems may be analyzed by means of traffic counts and the progress of an automobile in traffic The record of the progress may be

Figure 1 Trip from Maclay St Harrisburg to Clark's Ferry Bridge, Sunday November 2, 1930, 129 Miles
secured by means of an instrument attached to the automobile which marks a graduated ribbon indicating the speed of the vehicle and the time lost due to cross traffic, stop lights, slow moving traffic, congestion, road conditions, etc

In Pennsylvania we have equipped a number of touring cars with Recordographs that indicate the speed of a car graphically on a ribbon Observers in the car record the reason when speed is reduced or when delays are encountered By plotting this information on a special form a graphic picture of traffic conditions is presented

By correlating this information with ground stations it is possible to obtain accurately the traffic capacity of roads of varous widths

As a result of recordograph studies it is apparent that with traffic not
exceeding 600 vehicles per hour the two-lane road provides ample capacity to carry the traffic except when slow moving traffic is encountered With this volume of traffic it is very hazardous to attempt to pass due to the volume of oncoming traffic which is at the rate of about one car every twelve seconds

On the three and four lane roads traffic movement was singularly free from signs of congestion with traffic up to 1900 vehicles per hour and from observations and counts made at five mmute intervals with traffic at the rate of 3,000 vehicles per hour no congestion was noted

The three lane road presents a certain traffic hazard due to cars in opposite directions trying to pass at the same time, but with careful driving and due regards to the rights of other operators this hazard is reduced to a minimum There will of course always be the hazard of the irresponsible speed addict who uses the center lane as a speedway. This type operator must be elımınated by revoking the driving privilege.

The recordograph traffic analysis is an accurate method of determining the traffic capacity of highways and a valuable aid in determining traffic conditions

Figure 1 indicates how the material is assembled for analysis
The trip shown represents Sunday traffic on Route 11, Harrisburg to Clarks Ferry Bridge The distance was 129 miles, theoretical time 203 minutes, actual time 25 minutes The return trip was made in 26

minutes

With traffic exceeding 700 vehicles per hour a noticeable impedıment to free movement was apparent on the two lane road, the three and four lane roads were not congested

[^0]: "We can visualize a road carrying but a few vehicles and agree that there is no congestion But as the number of vehicles increases, there will be a point reached at which some vehicles will be delayed because they are immediately unable to pass other slower moving vehicles Such a point indicates the beginning of congestion or what may be called 'working capacity' or 'free moving capacity' of the highway "

 The present investigation has shown, in general, that as the density on a two lane roadway mereases beyond 400 to 600 vehicles per hour, the average speed of all vehicles decreases
 ${ }^{1}$ Traffic Capacıty, By A N Johnson, Proc Hıghway Research Board, Vol 10, p 218

[^1]: 2 "The Photographic Method of Studying Traffic Behavior." By Dr. B. D. Greenshields, Proc. Highway Research Board Vol. 13, p. 382.

[^2]: ${ }^{3}$ Transactions American Society of Civil Engineers, Vol 77, p 1539 (1914)

[^3]: 4 This formula and its use in checking the feasibility of using arithmetic probability paper was suggested by Dr Freeman Miller, Head of the Astronomy Department, at Demison University

