REPORT OF DEPARTMENT OF HIGHWAY TRANSPORTATION ECONOMICS

R L Morrison, Charrman

RURAL MAIL CARRIER MOTOR VEHICLE OPERATING COSTS ON VARIOUS TYPES OF ROAD SURFACES

By R A Moyer
Assoczate Professor of Hzghway Engineering, Iowa State College

SYNOPSIS

Operating cost records for 293 cars operated by rural mail carriers in Iowa and Indiana have been assembled, summarized, and analyzed for the purpose of determining the operating cost differentials for various types of road surfaces This report concludes a study of car cost records, supplementing the report for 159 cars presented at the 1937 meeting of the Highway Research Board Unit operating costs were determined for each type of road surface from the detailed dally record of these cars covering every phase of operation

The total travel for the 293 cars amounted to $3,094,546$ miles which was very nearly equally divided between the four seasons of the year and three surface types,-pavement, untreated gravel, and earth

From the graphical analysis the average cost of operation for the year-round condition was found to be about 78 cents per mile for earth, 45 cents per mile for gravel, and 38 cents per mile for pavement The unit cost of transportation by replacement of cars with horses, etc, when the roads were impassable to cars, averaged about 11 cents per mile as compared to an average of less than 5 cents per mile with the cars The average rate of travel, including stops, was 140 mph on gravel and pavement and about 70 mph on earth

From the statistical analysis by the method of least squares, the average cost of gasoline, oll, tires and maintenance for the year was 314 cents per vehicle mile on earth, 254 on gravel, and 155 on pavement The unit cost of gasoline was 005 and 018 cent higher on gravel than on earth and pavement respectively Also, the tire cost was 004 and 012 cent higher on gravel than on earth and pavement respectively The total unit costs of operating an "average" car for 8,000 miles annually based on the results of this study amounted to 622 cents per mile on earth, 562 on gravel, and 463 on pavement The multiple correlation coefficients obtained by the least squares method was 089 for the total unit costs, 098 for gasoline costs, 095 for tire costs, 078 for oll costs, and 060 for maintenance costs

Applying these data to determine the traffic volume necessary to justify an investment of $\$ 1000$ per mile and an extra maintenance cost of $\$ 40$ per year in improving a county trunk earth road with a gravel surface, it was found that 35 vehicles a day are required if operating costs only are considered, and 7 vehicles a day if the factors of mileage, age, extra help, and travel time are evaluated Also, an annual expenditure of more than $\$ 500$ per mile of road per 1,000 vehicles of traffic per day for snow and ice removal is justified based on the savings in operating costs, time, and reduction in accidents, resulting from complete snow and ice removal

With unit operating costs ranging from 2 cents per mile to 12 cents per mile for passenger cars, an average saving of 1 cent per vehicle mile, providing an annual saving of two-and-a half billions of dollars for the country, as a whole, is a goal worthy of the organized efforts of all engineers and car owners who control the vast expenditures for highway transportation

At the 1937 meeting of the Highway Research Board, a report was presented ${ }^{1}$

[^0]covering a study of the cost records for 159 cars operated by rural mall carrers in Iowa and Indiana Unit operating costs were determined for each type of
road surface from the detailed daily record of these cars coverng every phase of operation, such as, miles of travel on each surface type, rate of travel, weather, number of stops, load, gasoline and onl consumption, tire expense, maintenance costs, garage rental, license fees, taxes, insurance, depreciation, interest, and extra help Durng the past year, the records for 134 additional cars have been assembled, summarized, and analyzed The close agreement in the results for the 159 cars originally studued and the 293 cars which comprised the final total, indicated the relability of results when using what might seem to be a relatively small number of cars as a sample. The wide spread in unit operating costs on unumproved roads, especially when companng the costs for the winter and summer seasons, again indicated clearly the marked advantage which can be gained by operating on umproved stabilized or hard surfaced roads As was mentioned in last year's report, the average motor vehicle tax which is used to pay for the construction and maintenance of highways rarely exceeds one half cent per vehicle mile, whereas the "mud tax" when driving on unimproved roads may easily be 5 to 10 times as great

While few people advocate maintaining an unimproved road system, the majority of car owners do not fully realize the price they have to pay to operate on mud roads To combat the mud in many instances the expedient of placing loose gravel, sand, crushed rock or similar granular material on the road has been followed While this method can be carried out at low cost, it is not generally reahzed that certam items of operating cost are not greatly improved, in fact, the average year round unit costs for these items may be greater than for earth roads That is, the loose gravel or rock frequently increases average fuel, tire, and maintenance costs and creates a dust and accident hazard which
may be greater and more serious than on the natural earth roads

With $30,000,000$ motor vehicles using our streets and highways, the importance of economical operation cannot be overemphasized A reduction in the average cost of operation of one cent per vehicle mile would represent a saving of more than two-and-a-half bilhon dollars a year, an amount considerably greater than that spent for all construction and maintenance on this nation's streets and highways While the attainment of such a reduction in operating cost may appear to be highly improbable, a careful study of car cost records covering a wide var1ety of operating conditions, provides convincing evidence that of an organized effort were made to reduce car costs, an average reduction of one cent per vehicle mile would not only be possible, but could be accomplished in a relatively short time

The results of this and previous studies, indicate that the differences in unit operating costs for passenger cars which may be attributed to variations in road surface type or condition may easily be as much as two cents per mile, and if the value of time is considered, this difference may be doubled or tripled Furthermore, if the effect of variations in age and annual mileage are included, the total unit operating costs may vary from $2 \frac{1}{2}$ cents per mile to 12 cents per mile The public should be informed concerning the needs in highway construction to eliminate waste created by operating on uneconomical road surfaces and on congested and hazardous highways, and also concerning those phases in the operation of a car which contribute to the tremendous waste and extravagance which a poorly informed and poorly organized driving public alone will countenance

In this report data are presented which will indicate the significance of various items of operating costs and also will
indicate how these costs may be reduced Special emphasis is given to the data which show how the highway engineer can contribute toward such a reduction by the improvement of road surfaces and by suitable road maintenance operations Whale the report covers an analysis of car costs in only one type of car operation, that of cars operated on rural mail routes, the records are complete and provide a detailed account of every important element in car operation known to effect car costs and thus provide a fairly definite measure of possible reductions in car costs for all types of operation

Among the more important cost factors which the highway engineer should consider are the savings due to the type of road surface, the type of road maintenance, and the extent of snow removal As was mentioned in last year's report, in the case of man highways where the traffic volume is large, it is easy to show that the savings in operating cost justify the expenditures for a first class pavement However, there are many streets and highways in need of improvement where the traffic is much lighter than on main state highways and for which a more careful analysis of all of the cost factors is necessary if a wise selection of the type of surface improvement, maintenance, and extent of snow removal is to be made Whule a gravel surface is usually selected under low traffic conditions to provide a passable all-weather surface, the data in this study indicate that an investment of $\$ 1000$ per mule for gravel surfacing may be justified with as few as seven vehicles per day In like manner, many other economic decisions can be made if complete cost data are available simular to that to be presented in this report

In the 1937 report detanled information was given concerning the methods and forms used in obtaining the route and car descriptions, the dally record of
operation for each car, and the methods used in analyzing and reducing the data on the monthly, quarterly, and annual summary sheet All of the later work was conducted using the same methods and will, therefore, not be covered again in this report

ANALYSIS OF COST RECORDS AND DISCUSSION OF RESULTS

Description of cars The car commonly used by mall carrers as reported by the owners is the light, low-priced type There were a number of heavy, medrumpriced cars and also cars with special construction to operate through mud and snow, such as by the use of rased fenders, large radius wheels, and special attachments to the wheels The cars as a whole may be considered as representative of those which generally use the secondary or farm-to-market roads

Ages of the cars At the middle of each reported period these varied from one month to $10 \frac{1}{2}$ years; the average was 2 years 9 months Most of the cars were under 2 years old, but there were also several which were 7 or 8 years old used almost exclusively on mud roads and which brought the average up to the above value Of the 293 cars investigated dunng the 12 months period from November 1, 1935 to October 31, 1936, 202 or 689 percent were later than 1933 models

Descriptzon of road surfaces The types of road surfaces were divided into four separate groups-(1) rigid pavements, (2) semi-rigid treated types, (3) surfaced but untreated, and (4) natural earth With very little muleage of the semingid treated type in Iowa, it was hoped that records could be obtained from rural mall carners in Indiana where this surface is more common. However, not enough of these reports were obtamed to justify an analysis of this surface type separately, and, therefore, these were combined with the rigid types which con-
sisted largely of portland cement concrete The rigid and semi-rigid treated types are referred to herenafter as pavement, surfaced but untreated types as gravel, and natural earth as earth A summary of the mileage traveled on the various surfaces for the four seasons of the year is given in Table 1
It is interesting to note that of the total mileage of $3,094,546$ miles traveled by the 293 cars, 318 percent was on
used by the mall carrers in this study These data again indicate that the muleage is farly evenly divided on each surface for these selected groups of cars
Analysts of records The same graphical and statistical methods were used in analyzing the data for the 293 cars as were used for the first 159 cars covered in last year's report In the graphical method, the data were plotted in terms of percentages of miles traveled on a given

TABLE 1
Summary of Mileage Traveled by 293 Cars on Each Surface Type for the Year 1935-36

Perod	Total mileage	\%	Mileage on each surface type		
			Pavement	Gravel	Earth
Winter	644,042	208	166,231	250,966	226,845
Spring	780,931	252	235,897	288,854	256,180
Summer	899,141	291	346,036	289,959	263,146
Fall	770,432	249	232,822	283,513	254,097
Year	3,094,546	1000	980,986	1,113,292	1,000,268
Percent of total	1000		318	356	326

TABLE 2
Summary of Mileage Traveled by Cars A, B, and C on Each Surface Type for the Year 1935-36, Using Car Models Later than 1933 Models

Type of car	Total mileage for each car type			No of Cars	Mileage per car			
	Paving	Gravel	Earth		Paving	Gravel	Earth	Total
A	269,005	281,157	304,634	72	3,736	3,905	4,231	11,872
B	302,479	320,504	226,397	65	4,654	4,931	3,483	13,068
C	154,184	182,178	109,698	35	4,405	5,205	3,134	12,744
All cars	725,668	783,839	640,729	172	4,219	4,557	3,725	12,501

pavement, 356 percent on gravel, and 326 percent on earth Also, of the total mileage 208 percent was traveled durng the winter 252 percent during the spring, 291 percent during summer, and 24.9 percent durng the fall season It can be seen that the mileage was farrly evenly divided between both the three surface types and the four seasons of the year 1935-36
In Table 2 the average mileage on each surface type is given for the three popular makes of car most commonly
surface as compared with total mileage traveled on any two surfaces or on all surfaces Since it was desirable to compare the cost of operation on three different surface types, this method was not entrely satisfactory because only two, or at the best three, variables could be used The statistical method of least squares was used to obtain average values of operating costs on the three different surface types and proved to be highly satisfactory The graphical method makes it possible to visualize the data
while the statistical method permits more exact solution of specific cost items
Comparsson of untt costs In Figure 1 the average unit cost of operation for the 293 cars is shown for varying percentages of total mileage traveled on earth roads as compared to the mleage on pavement and gravel Since the distribution of the individual cars is practically the same as in the 1937 report it is not repeated here The average total unit operating cost (excluding extra help) varied from 38 cents per
unit costs of more than 200 cars with annual mileages above 5,000 and for year models later than 1933 were examined. The average unt costs for this group of cars (Flg^{1} 1) were about the same as for all 293 cars but the spread in costs particularly for the cars operating largely on earth was reduce by about 2 cents per mule
The average unit cost including extra help is also shown in Figure 1 The unit cost of extra help averaged about 02 cent per mile on paving and 1.0 cent

Figure 1. Unit Cost of Operation for Varying Percentages of Total Mileage Traveled on Earth Roads as Compared to Mileage on Other Surface Types for 293 Cars Operated during 1935-36.
vehicle mile for cars operating exclusively on gravel and paving to 78 cents per vehicle mile on earth The minimum cost on gravel and pavement was about $2 \frac{1}{2}$ cents per mile as compared to 5 cents per mile on earth and the maximum is about 6 cents per mile on gravel and paving as compared to about 12 cents per mile on earth One reason for this wide spread in costs between minımum and maximum values is due to the wide var1ation in annual mileage and in the annual depreciation charges agamst the car To determine the extent of this effect, the
per mile on earth This does not mean that the unit price of extra help was higher on earth roads than on pavement, but rather that considerably more extra help was necessary on earth roads than on paving
The unit transportation replacement cost corresponds to extra help "without car" and averages approximately double the average cost with the car (See Figure 8, 1937 report) These costs vary widely and for obvious reasons bear no definte relation to the type of surface replaced

The extreme seasonal effect on operating cost is shown in Figure 2 The unit costs shown include only the cost of gas, oul, and maintenance The average on paving is 07 cent per mile higher in winter than in summer and 12 cents per mile higher on earth in winter than in summer It should be noted that the effects of age and muleage are negligible, and the spread in unit costs (See Fig. 9,1937 report) is due largely to the type of surface and the season of the year
help amounts to about 06 cent per mile on paving and 24 cents per mule on earth This shows the effect of snow, ice, and rain to be much greater on earth roads than on other types

Comparison of unat costs on earth, gravel, and paved roads graphically Since it seemed desirable to determined the differences in operating costs for each of the three types of surfaces, the cars were divided into three groups thereby making it possible to compare costs on earth and

Figure 2. Unit Cost of Gas, Oil and Maintenance for Varying Percentages of Total Mileage Traveled on Earth Roads as Compared to Mileage on Other Surface Types for Seasons of 1935-36, (a) With Extra Help, and (b) Without Extra Help

The points are grouped quite closely to the average line for the summer season which is a good argument in favor of snow and ice removal and in so doing mantanning summer driving conditions on winter roads

In Figure 2 the average cost of extra help is also included with gas, onl, and maintenance These curves indicate that the cost of extra help in summer is very small, averaging only 01 cent per vehicle mile on paving and 04 cent per vehicle mile on earth During the winter extra
gravel, on earth and pavement, and on gravel and pavement Each group was composed of cars which were operated for at least 90 percent of their total mileages on the two surfaces being compared The total cars in each group did not provide a large enough sample to assure conclusive results, but the trends are farrly well defined (Fig 3) The greatest difference was obtamed when comparing the costs on gravel or paving with the costs on earth which amounted to about 3 to 4 cents per mile; the least
difference being obtained when companing costs on gravel and on concrete which amounted to less than 1 cent per mule

In Figure 4 the unit costs are shown for the four seasons, and this agan shows that the seasonal effect is greatest on earth roads and least on gravel and paving

Figure 3. Unit Cost of Operation (Excluding Extra Help) on (a) Earth as Compared to Gravel, (b) Earth as Compared to Pavement, and (c) Gravel as Compared to Pavement.

Annual mıleage In the 1937 report it was shown that wide variations in annual muleage had a marked effect on unit operating costs According to the data in Figure 5, the cars operated largely on paving by rural mall carriers averaged about 20,000 miles per year whereas cars operated on earth averaged only about 4,000 miles per year In a number
of cases the same carrier operated two cars, one when the roads were good, the other when the roads were muddy or otherwise in poor condition This is a partial explanation why the annual muleage of cars operated on earth roads was so low At the same time, it is significant that the total unit costs on

Figure 4. A Comparison of the Unit Cost of Gas, Oll and Maintenance for the Four Seasons on (a) Earth vs. Gravel, (b) Earth vs. Pavement, and (c) Gravel vs. Pavement
earth were notably higher than on pavement and part of this difference is definitely due to the low annual muleages of cars operated on earth It is questionable whether the operation of a "mud" car for such low annual mileages is economically justifiable, because there is little to indicate that the unit gas, onl and tire costs would be lower for the two
cars than if only one were used Only the savings in mantenance and in the need for less frequent car washings would justify the added cost in the fixed charges for the "mud" car
summer and winter are given and the curves show that the average rate on paving is 14 miles per hour or about double the average rate on earth where it is 7 miles per hour The rate during

Flgure 5 Annual Mileages of 293 Cars for Varying Percentages of Total Mileage Traveled on Earth Roads as Compared to Mileage on Other Surface Types

Figure 6. Average Miles of Route Covered per Hour, Including Stops for Varying Percentages of Total Mileage Traveled on Earth Roads as Compared to Mileage on Other Surface Types for Winter, Summer and the Whole Year.

Rates of travel The rate of travel is defined as the total miles traveled divided by the number of hours spent on the route In Figure 6 the average rates of travel for the entire year and for
the summer is approximately 25 percent higher than during the winter During the fall it is slightly higher than in the spring

The most significant fact respecting the
differences in rate of travel on earth.and on paving is the large time saving effected by travel on pavement There can be little doubt that cutting the time on the route by 25 to 50 percent provides a real time saving factor which has money value and that this alone may justify the construction of hard all-weather roads
Relation of unit operating cost to total mileage of cars The unit cost of gas, oll, and mantenance as related to the total muleage traveled durng the life of the car is shown in Figure 7 While the
muleage in unit costs is the effect of the age of cars on unit costs Figure 8 ind1cates a farrly definte trend upward in cost until an age of five or six years is reached The unit cost remains farly constant beyond this point The sharp upward trend durng the first year $1 s$ accounted for by the fact that maintenance is practically nul when the car is new, but that it increases with age until it becomes more or less constant A portion of the increase in unit cost with age is due to improvements in the more

Figure 7. Unit Cost of Gas, Oll and Maintenance at Various Mileages Traveled during Life of Cars up to the Middle of Reported Period
sample is not as large as it should be, especially for cars operated over large total mileages, a definte trend upward in the unit costs as the mileage of the car increases is clearly evident This increase is largely due to an morease in . mantenance costs because the unit cost of oll and gas should not change very much if the car is kept in good repar The curve was not intended to indicate the average cost at each mileage but merely to indicate the approximate trend

Relation of unit cost to age of car Closely related to the effect of total
recent model cars which have raised efficiency and lengthened useful service lives Incidentally, the low cost trend shown during the early life of the car provides a basis for the practice followed by certain car owners and fleet operators of trading in at the end of the first or second year These costs are not the total unit costs but include only gas, oll, and mantenance, the items of which average owners are usually most conscious If the unit costs due to fixed charges such as insurance, license fee, interest and deprectation were included the trend would be quite different. With
low annual mileages, it would be completely reversed, but with annual mileages of 20,000 or more, the two cents per mile difference in unit cost due to age might be no more or might even be less than the unit costs due to the fixed charges which are highest when the car is new.. It should be evident that the effects of age, annual mileage, depreciation, and maintenance are highly significant to the individual owner who desires to operate at the lowest unit cost, but

The costs were computed only for gas, oil, tires, and maintenance because these items are directly affected by the type of surface. The recorded costs were used and only in computing the total unit operating cost were the uniform adjusted costs for such items as depreciation, garage rental, insurance, interest, and taxes used.

Comparison of unit costs for first 159. cars, for the last 134 cars, and for all 293 cars. A summary of the unit costs

Figure 8. Unit Cost of Gas, Oil and Maintenance at Various Ages of Cars at Middle of Period Covered by Report
it is in these items that he is least informed and most likely to have the greatest spread in unit costs.

STATISTICAL ANALYSIS BY METHOD OF LEAST SQUARES

Since it was not possible to determine the exact average unit operating costs for the three types of surfaces by graphical solution because four variables had to be considered in the solution instead of the usual two or three, statistical analysis by the method of least squares was used to compute the average unit cost on each surface for the 293 cars.
for two groups of cars and for all 293 cars is given in Table 3. The relative unit costs shown in the table were determined by assigning a value of 100 for the total unit cost for the 293 cars on pavement as a base.

The comparative costs of gasoline, oil, tires, and maintenance for the 293 cars for the entire year were found to be 3.14 cents per mile on earth, 2.54 cents per mile on gravel, and 1.55 cents per mile on pavement. The cost of operation on earth for these items was, therefore, more than double the cost on pavement with a difference of 1.59 cents per mile.

The difference between the unit costs on gravel and on pavement for these same cost items amounted to 099 cents per mile A significant fact brought out in this summary is that the unit costs for gas and tires were higher on gravel than on earth A possible explanation for this difference is that in dry weather the untreated gravel roads are frequently loose and corrugated while the earth roads are hard and smooth In wet weather both the gravel and the earth
mileage per quart of oll was 113 on earth, 159 on gravel, and 264 on pavement

The greatest difference in cost items between surface types was for maintenance The maintenance cost on earth was 124 cents per mile, 061 cent per mile on gravel, and -002 cent per mile on pavement. This large difference was partially due to the greater ages of cars operated almost exclusively on earth, also, the cars operating largely on pavement were generally less than two years

TABLE 3
Comparison of Results of the Least Squares Solution for Operating Costs of the First 159 Cars as Given in Last Year's Report, of the Last 134 Cars Analyzed This Year, and of the Entire Group of 293 Cars Studied in This Investigation

Cost Item	Pavement		Gravel		Earth	
	Cost, cents per mile	Relative cost ${ }^{*}$	Cost, cents per mile	Relative cost ${ }^{*}$	Cost, cents per mile	Relative
Gas, oll, maintenance and tires for first 159 cars	173	112	246	159	317	205
Gas, oll, maintenance, and tires for last 134 cars	137	88	260	168	317 310	205 200
Gas, oll, maintenance, and tires for entire group of 293 cars	155	100	254	164	310 314	200 203
Gas, onl, and maintenance	129	83	216	139	280	181
Gas	122	79	140	90	135	87
Oll	009	6	015	10	021	14
Maintenance	-0 02	-1	061	39	124	80
Total tire cost	026	17	038	25	034	22
Tire replacement cost	024	15	036	23	032	21
Tire repair cost	002	1	002	1	0 02	1

[^1]roads may be soft, with the earth roads usually much softer than the gravel roads The data on rate of travel also indicate that the speeds on gravel are defintely higher than on earth which means that fuel and tire wear costs should be higher than at the slower speeds at which cars are operated on earth.

When the unit cost of gas is converted into miles per gallon, it is found that the average fuel consumption was 1352 miles per gallon on earth, 1304 on gravel, and 1502 on pavement The average
old and required little reparr work Of course, the negative result indicated for maintenance on pavement is not a real value but is the result obtained using the stranght line relationship in the least square method That is, in setting up the least squares equations it was assumed that the costs for gas, oll, tires, and maintenance varied uniformly with the mileage on each surface type That this was a reasonable assumption is shown in Table 4 where a multiple correlation coefficient of 098 is given as
having been computed for gas and 095 for tires The correlation coefficients for oil and maintenance are not as high， with values of 078 for oll and 050 for maintenance
In view of the negative value for the maintenance cost on pavement，a least
for both oil and mantenance it re－ sulted in only a slight improvement in the correlation coefficient for oll，chang－ ing it from 078 to 079 ，but gave a marked improvement for the coefficient for mantenance，rassing it from 050 to 060 The negative value for man－

TABLE 4
Comparison of Least Squares Solution Using Straight Line Relationship and Cur－ vilinear Relationship for Variable Operating Cost Items When Operating on Vari－ ous Surface Types，Also the Correlation Coefficient and Standard Deviation for Each Cost Item

Cost item	Type of solution	Cost on concrete，cents per mule	Cost on gravel，cents per mile	Cost on earth，cents per mile	Multıple correlation coefficient	Standard deviation， dollars per year
Gasoline	Straight line	119	135	128	098	2296
Oll	Straight line	009	014	021	078	764
	Curvilinear	011	015	021	079	751
	Straight line	－0 15	043	097	050	5584
Mantenance $\{$	Curvilinear	010	056	101	060	5161
Tires	Straight line	027	039	034	095	742
Total	Straight line	140	231	280	089	7291
Total	＊Curvilinear	167	245	284		

[^2]TABLE 5
Results of the Least Squares Solution for Unit Operating Costs for Various Items for the Seasons of 1935－36

Cost 1 Item	Costs in cents per vehicle mile											
	Winter			Spring			Summer			Fall		
	蓸	J	堅	宮	馬	$\begin{aligned} & \text { 련 } \\ & \text { 品 } \end{aligned}$	莣	－	先	若	J d ¢	丐
Gas，onl，and maintenance	189	247	350	128	228	307	136	177	196	139	174	269
Gas	150	154	158	115	145	145	121	124	113	121	132	127
Oll	011	016	022	010	014	021	010	015	020	012	011	020
Maintenance	028	077	170	003	069	141	005	038	063	006	031	122

squares solution was worked out using a curvilinear relationship mstead of the straight line relationship for both oll and maintenance for 263 cars for which com－ plete total life mileage data were aval－ able The results of these computations are shown in Table 2 and indicate that the curvilinear relationshp is more accurate than the straight line method
tenance on pavement was changed to a positive value of 010 cent per mile which is not unreasonable in view of the large annual mileage and the relatively low ages of the cars operating largely on pavement Some objection may be raised to attributing unit cost differen－ tials to the surface which are in part due to mileage or age Actually it is to be
expected that the muleage on pavement should be greater than on earth because during certain seasons of the year travel on earth is so slow that it is impossible to maintain the high speeds and muleage obtained on pavement

Unit costs for the seasons The costs of gas，oll，and maintenance for the seasons in Table 5 show very little dif－ ference in unit cost on pavement during spring，summer，and fall，but in winter it was from 05 to 06 cent per mile higher than during the other seasons The unit cost on gravel was about the same
and the relative amount of travel on each type of surface as indicated in Table 2 were about the same The results of this analysis are shown in Table 6

The unit costs for cars＂A＂and＂B＂ agree quite well but the results for car ＂ C ＂are not consistent when compared with＂A＂and＂B＂or with the unit costs for all the ${ }^{\circ} 293$ cars It is possible that the sample for car＂C＂was too small to obtain accurate results with only 35 cars being used as compared to double that number for cars＂A＂and＂B．＂

TABLE 6
Cost of Operation in Cents per Vehicle Mile for Triee Low Priced Car Makes on Various Types of Surfaces

Cost Item	Car＂A＂			Car＂B＂			Car＂C＇			$\begin{aligned} & \text { Cars "AA:" ""B," } \\ & \text { and }{ }^{\prime \prime} \text { "' } \end{aligned}$		
		W	先		$\begin{aligned} & \text { D. } \\ & \text { E } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { 島 } \end{aligned}$	宮	$\begin{aligned} & \vec{D} \\ & \text { 范 } \end{aligned}$	鸷	莒	安	䍃
Gas，onl，tires and mann－ tenance	147	264	286	142	246	282	254	214	208	168	247	270
Gas	114	144	142	115	139	123	143	127	112	120	138	130
Oll	006	011	023	010	015	015	014	012	023	010	013	019
Tires	028	041	026	027	038	036	027	037	036	028	040	031
Maintenance	－0 01	068	095	-010	054	108	070	038	037	010	056	090
Ave annual mileage per car on each surface	3736	3905	4231	4654	4931	3483	4405	5205	3134	4219	4557	3725

during the summer and fall，but was 05 cent per mile higher during spring and 07 cent higher during winter than during summer or fall The greatest difference between unit costs for the seasons occurred on earth roads，the cost in cents per mile increasing from 196 during summer to 296 during fall， 307 during spring，and 350 during winter

Unat costs for different car makes Three makes of cars were selected for which the largest number of records were available All of the cars in the three groups were later than 1933 models and their average route speeds，average ages，

Average total unit operating cost data for the＂composite＂car and for the＂aver－ age＂car In determining the average total unit operating cost for the 293 cars on earth，gravel，and pavement，the re－ sults of the least squares solution were used for the cost of gas，oll，tires，and maintenance and the cost for the re－ maining items such as depreciation， garage rental，taxes，etc were computed for a＂composite＂car and for the＂aver－ age＂car For the＂composite＂car，the average age and the delivered price of one of the most commonly used low priced cars was used together with the depreciation，insurance，garage rent，in－
terest, and license fee for this make of car For the "average" car the recorded costs were used to determine the average unit costs The greatest differences between the unit costs for the "composite" and the "average" car are due to the variable rate of depreciation at various ages of the car That is, the depreciation is not the same for each

Figure 9. Total Unit Operating Cost for the "Composite" and "Average" Car on Various Surface Types as Related to the Annual Mileage.
year over the life of the car but is considerably higher during the first two years than at later periods The average age of the 293 cars at the beginning of the reported period was 2 years and 5 months and using a delivered cost of $\$ 700$ the annual depreciation for this age would be $\$ 6370$ as compared with the actual
average depreciation of $\$ 14951$ obtained from the depreciation values computed for each of the 293 cars
The total unt costs per mule were thus computed for the "composite" car and for the "average" car for annual mileages varying from 1,000 to. 50,000 The curves in Flgure 9 indicate clearly the marked effect annual mileage has on unit costs especially for annual mileages less than 15,000 At 14,560 miles, which was the average annual muleage of the 293 cars, the total unit costs of operation of the "composite" car was found to be 419 cents per mile on earth, 359 on gravel and 260 on pavement If the annual mileage is reduced to 8,000 which is a farrly typical average for cars in this country, the costs for the "composite" car will be 5.03 cents per mile on earth, 442 on gravel, and 341 on pavement

In Table 7 the varous cost items and the total operating cost for the "average" car when operating on pavement, gravel, and earth are given. The operating cost of the "average" car at an average annual mileage of 14,560 is 483 cents per mile on earth, 423 on gravel, and 324 on pavement For an annual mileage of 8,000 the costs for the "average" car will be 622 cents per mile on earth, 562 on gravel and 463 on pavement

APPLICATION OF UNIT OPERATING COST
data to a study of economic comparisons of earti and gravel road surfaces and the economic JUStifiCATION OF SNOW REMOVAL
In the 1937 report the unit operating cost data for the first 159 cars were used in making an economic comparison of earth and gravel for a local country road for traffic ranging from 0 to 50 vehicles per day. The conditions and limitations under which these data were used were explaned and will not be repeated here However, the application of the unt cost data obtained from the 293 cars in an economic companson of
earth and gravel for a county trunk road with traffic ranging from 0 to 100 vehicles per day is given in Figure 10

The total annual transportation cost was computed by the formula.

Annual transportation cost $=$ annual maintenance cost + annual depreciation + annual interest + annual vehicle operating cost

In making the economic comparisons shown in Figure 10, three different values of unit operating cost were used In (A) the unit operating costs on both
crease being the 29 cents per mule time factor which is the value of time saved by traveling on gravel instead of earth assuming the driver's time to be worth 40 cents per hour

The curves in Figure 10 (A) indicate that a traffic volume of 35 cars per day will provide sufficient savings in gas, oil, tires, and maintenance to justify the $\$ 1,000$ investment and the $\$ 40$ per year extra maintenance required for the construction and maintenance of the gravel road For the unit cost values used in

TABLE 7
Operation Costs of the "Average" Automobile on Various Surface Types*

Cost 1 tem	Pavement		Gravel		Earth	
	Annual cast, dollars per car	Cost, cents per mile	Annual cost, dollars per car	Cost, cents per mile	Annual cost, dollars per car	Cost, cents per mile
Gasolıne	17763	122	20384	140	19656	135
Onl	1310	009	2184	015	3058	021
Maintenance	-2 91	-0 02	8882	061	18054	124
Tires	3786	026	5532	038	4950	034
Garage	3000	021	3000	021	3000	021
License fee and taxes	1357	009	1357	009	1357	009
Depreciation	14951	103	14951	103	14951	103
Interest at 6\%	2433	017	2433	017	2433	017
Insurance	2785	019	2785	019	2785	019
Total (Annual Miles 14,560)	47094	324	61508	423	70244	483
Total (Annual Miles 8,000)	36926	463	44846	562	49646	622

* Costs for items 1 n main body of table are computed for an average annual mileage of 14,560 miles
gravel and earth were computed using the same average annual mileage and age, resulting in a unit cost of 483 cents per mule on earth and 423 cents per mule on gravel, the dafference being due to the increased gasoline, oll, tire, and maintenance costs on earth as compared to gravel. In (B) the unit cost on earth was raised to 883 cents per mule which represents an adjusted cost based on the lower annual muleage, the greater average age and the greater cost for extra help on earth than on gravel In (C) the cost on earth was further increased to 1173 cents per mile, the additional in-
(B) which include the cost of extra help, a traffic volume of 7 vehicles a day justify the change from earth to gravel And if the value of time saving is added, 4 vehicles per day will justify the change
In the computations for the annual transportation cost for Figure 10, no allowance was made for amortizing the $\$ 1,000$ per mile construction cost of the gravel surface. While a properly maintained gravel road with adequate gravel replacement may be considered to have no definite service life but may be assumed to be perpetually maintained in a condition as good as new, it is evident
that the surface must be pard for either out of current income or on borrowed money In Figure 11 an economic comparison between gravel and earth is

Figure 10. Economic Comparison of Cost of Transportation on Earth and Untreated Gravel for Varlous Traffic Volumes when Operating Cost Is Based on Various Factors for County Trunk Roads. (Construction cost of gravel $=$ $\$ 1,000$ per mile and maintenance cost $\$ 40$ higher for gravel roads than for earth)
(a) Annual cost based on the unit costs on each surface type computed for the same annual milleage and age as the average mileage and age of the entire group of 293 cars
(b) Annual cost based on unit cost on each surface type computed for the average annual mileage and age of cars operating exclusively on each surface type.
(c) Annual cost based on unit cost on each surface type as computed for the cars operating exclusively on each surface type but including also a time factor for slower rates of travel on earth.
made for the same county trunk road as in Figure 10, except that an additional charge for amortizing the investment over a period of 10 years with interest at 4 percent is included. This will add an
extra annual cost of $\$ 8329$ to the county trunk road and according to the data in Figure 11 (A) will require 72 vehicles per day to justify the change from earth to

Figure 11 Economic Comparison of Cost of Transportation, Including Amortization Cost, on Earth and Untreated Gravel for Various Traffic Volumes when Operating Cost Is Based on Various Factors for County Trunk Roads
(a) Annual cost based on the unit costs on each surface type computed for the same annual mileage and age as the average mileage and age of the entire group of 293 cars.
(b) Annual cost based on unit cost on each surface type computed for the average annual mileage and age of cars operating exclusively on each surface type
(c) Annual cost based on unit cost on each surface type as computed for the cars operating exclusively on each surface type but including also a time factor for slower rates of travel on earth.
gravel based on a 06 cent per mile saving in operating cost According to the data in (B) a traffic volume of 12 vehicles per day will be required and (C) indicates that a traffic volume of 7 vehicles per day will be required

In view of these data there seems to be little question but that surfacing of earth roads is justifiable with traffic of 20 or more vehicles per day based on savings in operating costs alone. Nor should the improvement of earth and loose dusty gravel roads be considered a minor problem because in Iowa alone there are still about 60,000 miles of earth roads and more than 30,000 miles of gravel roads in need of improvement At the same time it should be realized that the construction of an all-weather road brings with it many other advantages which cannot be definitely evaluated, such as better fire protection, health protection, and many social, educational, and marketing advantages which accompany the improvement of rural roads.

Economic justrfication of snow removal Not so many years ago, winter driving in certain sections of the country was attempted only by a few In those days highway departments were in no great hurry to clear the roads of snow and ice Now, with all the improvements in cars which make winter driving comfortable, traffic is almost as heavy in certain sections during the winter as during the summer Snow removal has become a major problem for highway maintenance departments While all departments are attempting to keep the roads open during heavy snows, there are no specific data avalable to indicate the extent to which expenditure of funds for complete snow removal are justafied After giving the inatter serious thought, maintenance engineers will readuly realize that the costs of operation on snow bear a close relation to the costs of operation on earth roads It is frequently as easy to be stalled in soft snow as it is to be "stuck in the mud" Bucking snow drfts and driving in soft snow consumes extra gas and requires extra time The data in Table 5 of mall carrier car costs on pavement indicate that the cost of gas, oul, and maintenance was 05 cent higher dur-
ing the winter than during the fall Now it is quite possible that a portion of this extra cost was due to the higher cost of operation at low temperatures, nevertheless, during the winter of 1936 for which these records were kept, there was ice and snow to contend with for at least two out of three months Furthermore, if the Iowa Highway Commission had not been farrly prompt in removing snow from its pavements, there would no doubt have been a further increase in operating costs

Figure 12 Expense Justified for Snow Removal per Mile of Road Due to Saving in Operating Cost and Time for Various Traffic Volumes during the Winter Season.

Therefore, it seems reasonable to assume that the extra cost of operating on snow and ice during the winter months is 05 cent per mile, and that this is the amount which can be saved if the snow and ice is completely removed and the road maintained in a summer driving condition

In Figure 12 the expense justified for snow removal per mile of road due to the above savings in operating cost over a given season is given for traffic volumes ranging from 0 to 2,500 vehicles per day If the saving in operating cost of 05 cent per mile is used, an amount equal to
$\$ 225$ per year for traffic volume of 500 vehicles per day would be justified for snow removal If the saving in cost due to the saving in time, placed at 068 cent per mule in this study, is added to the saving in operating cost, an amount equal to about $\$ 500$ per mule would be justified for the 500 vehucles per day

In arriving at the justifiable expense for complete snow and ice removal, the advantages in reduced accident hazards and savings due to a reduction in accidents have not been evaluated, but an analysis of accident records indicates that a very real saving is possible from this source

It seems appropriate to point out that this study of the economic problems related to operating costs has revealed many ways in which the highway engineer can reduce operating costs if funds are provided to make these savings possible There is no question but that unit operating costs have been reduced But at the same time, in view of the tremendous volume of traffic on our streets and highways and the many opportunities to cut costs, substantial addıtional reductions are possible

However, this implies that at least some transfer of funds from the car owner to the highway department is necessary That this need really exists is generally not apparent to the indivadual car owners. Hence, if the highway and traffic engineers are to accept the responsibility of furnishing highway transportation at the lowest cost, it will be part of their job to inform and educate the public along these lines In this way it will be possible not only to reduce unt operating costs but it will greatly enhance the utility of the car itself

SUMMARY
 General Descriptıon

1. Daily records of 293 cars operated by rural mail carriers on various types of road surfaces in Iowa and Indiana dur-
ing the year 1935-36 were assembled and analyzed.

2 The road surfaces were divided into three general groups referred to in this study as pavement, gravel, and earth

3 The cars used were largely of the light low priced type and were considered fairly representative of cars used on farm-to-market roads

4 The total travel for the 293 cars amounted to $3,094,546$ mules which was very nearly equally dıvided between the three surface types and the four seasons of the year

The average annual mileage for all the cars was 14,560 miles of which approxamately 12,550 mules were on roads on the carriers' routes and 2,010 miles on roads off the routes The average length of route per carner was 43 miles

Graphical Analysus

1 From the graphical analysis, the average operating cost for cars traveling almost exclusively on gravel and pavement was 38 cents per vehicle mıle and 78 cents per mule for cars traveling almost exclusively on earth

2 The average cost of extra help was 02 cent per vehicle mule on gravel and paving and 10 cent per mile on earth

3 The unit cost of transportation by replacement of cars with horses, etc, when the roads were impassable to cars, averaged approximately 11 cents per mule as compared to an average cost of less than 5 cents per mile with the cars
4. The trend of the curves in the graphical solution indicated an average annual muleage of 4,000 mules for cars operated 100 percent of their muleage on earth and 20,000 miles for cars operated 100 percent on gravel and pavement

5 The average rate of travel on the route during the year (including stops) was about 140 mph on gravel and pavement and about 70 mph on earth During the summer the average rate on gravel and pavement was $154 \mathrm{~m} . \mathrm{ph}$
and on earth 100 mph as compared to 122 mph and 68 mph respectively for the winter
6 The unit cost of gas, oll and mantenance increased from an average of about $1 \frac{1}{2}$ cents per mile for cars with life mileages under 10,000 miles to $2 \frac{1}{2}$ cents per mile for cars with mileages above 40,000 miles. A sumilar trend was indicated for these costs when related to the age of the car with the curve leveling off for cars 5 years old or older.

Least Squares Analysis

1 From the least squares solution, the average cost of gas, oil, tires, and maintenance for the year was 314 cents per vehicle mule on earth, 254 on gravel, and 155 on pavement

2 The average unit cost of gasoline was 135 cents per mule on earth, 140 on gravel, and 122 on pavement
3 The average unt cost of oil was 021 cent per mile on earth, 015 on gravel, and 009 on pavement
4. The average unit cost of mantenance was 124 cent per mile on earth, 061 on gravel, and -002 on pavement using the straight line solution After correcting these costs for a curvilinear relationship the average unit cost of mamtenance was 128 cent per mile on earth, 074 on gravel and 023 on pavement.

5 The average cost of tires was 034 cent per mule on earth, 038 on gravel, and 026 on pavement Tire reparr costs averaged 002 cent per mile and were the same on all three surface types.
6 The average gasoline mileage obtaned on earth was 1352 miles per gallon, 1304 on gravel, and 1502 on pavement
7. The ol used averaged 113 mules per quart on earth, 159 on gravel, and 264 on pavement
8 Durng the winter season the cost of gasoline averaged 158 cents per mile on earth, 154 on gravel and 150 on
pavement, while during the summer these unt costs were 113 cents on earth, 124 on gravel, and 121 on pavement

9 During the winter season the cost of maintenance averaged 1.70 cents per mile on earth, 077 on gravel, and 028 on pavement while during the summer season these unit costs were 063 cent on earth, 038 on gravel, and 006 on pavement

10 When three separate makes of cars less than 2 years old were considered, the cost of gas, oll, tires, and maintenance for these cars averaged 270 cents per mule on earth, 247 on gravel, and 1.68 on pavement

11 The total annual cost of operating the "average" car in this study (annual mileage $=14,560$) was $\$ 70244$ on earth, $\$ 61506$ on gravel, and $\$ 47094$ on pavement, or 483 cents per mile on earth, 423 on gravel, and 324 on pavement

12 The total annual cost of operating an "average" car based on the above costs, but using a mileage of 8,000 mules per year as a fair average for all cars in the country amounted to $\$ 49646$ on earth, $\$ 44846$ on gravel, and $\$ 36926$ on pavement, or 622 cents per mile on earth, 562 on gravel, and 463 on pavement
13 The multiple correlation coefficient obtained in the least squares solution was 089 for the total unt costs, 098 for gasolne costs, 0.95 for tire costs, 078 for oll costs, and 050 for mantenance costs using a stranght line relationship and 060 for maintenance costs using a curvilnear relationship

Practical Applications

1 A traffic volume of 35 vehicles per day will justify an investment of $\$ 1,000$ per mile and an extra mantenance expenditure of $\$ 40$ per year in improving a county trunk earth road with a gravel surface based on the 06 cent per mule difference in operating cost If an addıtonal charge is made to amortize this
investment over a period of 10 years, a traffic volume of 73 vehicles per day will justufy the change
2 A traffic volume of 7 vehicles per day will justrify the improvement from earth to gravel if the factors of mileage, age, extra help, and travel time are evaluated as for the cars in this study and If the extra charge for amortization of the investment is included
3. An expenditure of 050 cent per vehicle mile is justified for snow and ice removal during the winter months when the difference in operating cost alone is considered and 118 cents per mile when the tume factor valued at 40 cents per hour is included

- CONCLUSIONS

1 The unit costs for gasoline, oll, tures, and maintenance for cars operating on pavement, gravel, and earth as determined in this study are accurate average values for cars operating under the same conditions as those in this study
2 Accurate cost differentials on the various surface types for such items as oll, maintenance, and depreciation can best be determined by a combined study of the results of long time road tests and hife time cost records of cars for which the miles traveled on each surface are known
3 The time factor is an mportant tem related to cost which may easily be determined by means of speed surveys and delay studies of cars on each surface for each season durng the year
4 A considerable increase in revenue for secondary roads is justrifed to ellmınate mud roads and loose, dusty, washboarded gravel and macadam roads on which operating costs are from 1 cent
to 8 cents per mile higher than on pavement or on stabiluzed roads

5 Highway departments in the northern states are justrified in an annual expenditure for snow and ice removal at the rate of more than $\$ 500$ per mile of road per 1,000 vehicles of traffic per day in view of savings in operating cost, time, and the reduction of accidents resulting from complete snow and ice removal
6 With unit operating costs ranging from 2 cents per mile to 12 cents per mile for passenger cars, an average saving of 1 cent per vehicle mile or a total annual saving of 50 million dollars in the state of Iowa and two-and-a-balf billions of dollars for the country as a whole, is a goal worthy of the organized and well directed efforts of all engineers and car owners who control the vast expenditures for highway transportation

ACKNOWLEDGMENTS

The preliminary work on this project was carried on largely under the direction of Robley Winfrey, Research Engineer, for the Iowa Engineering Experiment Station By the time the project was actually under way and cost records were being sent $1 \mathrm{n}, \mathrm{Mr}$ Winfrey was on leave with the Bureau of Public Roads, and the supervision of the project was turned over to the writer

Much of the detarled work in connection with the assembling and summarizing of the cost data has been done under the supervision of Edwin R Davis, Lous W Herchenroeder, and Clarence W Rice, research assistants of the Experiment Station Special credit is due Mr Rice for his assistance in bringing the data into their present form and in the preparation of this report A large portion of the detailed office work was done by a staff of N Y A student workers

Special thanks are due the rural mail carriers who cooperated in every way possible to provide us with the information and cost data which have made this report possible

[^0]: ${ }^{1}$ Proceedings, Hıghway Research Board, Vol 17, p 53

[^1]: * Relative cost assume the cost of gas, oll, maintenance, and tires for entire group of 293 cars when operating on pavement to be 100

[^2]: ＊Includes straight line solution for gasoline and tires and curvilinear solution for maintenance and oll

