OVERTAKING AND PASSING REQUIREMENTS AS DETERMINED FROM A MOVING VEHICLE

By T M Matson and T W Forbes, ${ }^{1}$ Research Assocrates, Yale Unvversity Bureau for Street Traffic Research

Abstract

SYNOPSIS By photographic methods observers in a moving car were able to measure the times required by cars overtaking them to pass under various conditions It was found that drivers varied widely in the speeds, distances, and times which they needed to overtake and pass another vehicle Distance needed increased with speed At 30 miles per hour 650 ft were required and at 50 miles per hour $1,050 \mathrm{ft}$ were required by the average driver (median values) In order to take in 80 per cent of the drivers approximately $1,200 \mathrm{ft}$ would be required at 50 miles per hour for an accelerative type of pass

The total time required to overtake and pass also nereased somewhat as speed increased Thus, at 30 miles per hour the average driver took $8 \frac{1}{2} \mathrm{sec}$ and at 50 miles per hour $9 \frac{1}{2} \mathrm{sec}$ to complete an accelerative type of pass (median values) The time varied from a minimum of 6 sec to a maximum of 20 sec in individual cases at speeds from 30 to 50 miles per hour

From the safety point of view it is of interest to see what clearances were allowed by the passing drivers both to the rear and to the front of the vehicle being passed The clearance to the rear showed a median value of 45 ft at 50 miles per hour in the accelerative type of pass, and the clearance to the front showed a median value of about 60 ft However, some drivers approached as close as 10 ft to the rear and cut in as close as 30 ft in front of the overtaken vehicle at 50 miles per hour The clearance distances were found to be shorter in the New England area, where crooked and hilly roads are the rule, than they were in the open country of the west and midwest, where farly long clear distances predominate The drivers in the first area were apparently induced to pass under conditions which were considered hazardous by the drivers in the areas where longer clear distances were frequently available Thus the importance of providing sufficient clear sight distance on highways is demonstrated

Those who are charged with the responsibulity of designing new highways or redesigning for the improvement of alignment on exasting highways are especially concerned with the requirements of overtaking and passing manoeuvers since such measurements furnish a measure of adequate sight distance. Since the great bulk of traffic operation is carned out on 2-lane highways, the problem of adequate passing sight distance becomes especially important in the design of the alıgnment features of these roads.

PREVIOUS STUDIES

Perhaps the first definite steps taken in recognition of the hazards attendant to
${ }^{1}$ Bryant R Burkhard assisted with the photography
overtaking and passing were the drafting and adoption of regulations by various state legislatures which prohibited motorists from overtaking and passing unless certain clear paths were available at the time and place when such manoeuvers were carried out Unquestionably, factual data concerning the requirements for such manoeuvers were lacking for the preparation of such regulations This is manfest by a review of vehicle laws in the various states which show a range of prohibition varying from 150 ft in Arizona to as much as 1000 ft . in Wisconsin

Other investugators became interested in this problem as early as 1934 and made estimates of the time and distance requurements for overtaking and passing
(1) (2) (3). ${ }^{2}$ The results arrived at by these previous investigations did not accurately reflect the actual performance of the public and their vehicles under the usual circumstances of operation upon the public ways In some, certain assumptions were made on driver and vehicle performance, in others, only a relatively few vehicles and drivers acting under specific instructions were involved, while in yet others the complete manoeuver was deduced from a large number of actual cases wherein only a small proportion of the entire manoeuver was recorded, while still others arrived at their conclusions on a completely a priori or computed basis
vehicle under observation Distances to the rear and front of the overtaken vehicle at the beginning and end of the manoeuver were obtamed by - photographic adaptation of stadia methods (See Fig 1) A rapid, serial, snapshot camera was used for recording the distances projected by the tread dimensions of the overtaking vehicle Because of the approximate unformity of tread dimensions, errors which arose were neghgible insofar as the total distance required for overtaking and passing was concerned. The distance through which the overtaken vehicle moved during the manoeuver was obtamed by calibrated speedometer and stop watch Other pertinent

Figure 1. Technique for Measuring Overtaking and Passing Distances

BASIS OF PRESENT INVESTIGATIONS

It was felt that the best way in which overtaking and passing requirements could be determined was by the measurement of the actual performance of drivers found operating on the highway since, admittedly, there is a wide variation among drivers and vehicles

A new method of investigation was developed, therefore, which could be apphed on the open highway under normal druving conditions This has been described in detal previously (4) Observations were made from a moving vehicle which was overtaken by the

[^0]data were recorded by observations entered on a prepared form Approximately 800 observations were made of as many different drivers and vehicles on highways throughout the New England, mid west, and far west areas

ANALYSIS INTO TYPES OF PABSES

There are two major types of overtaking and passing manoeuvers which may be derived naturally from conditions under which the passes were made. In the first class, will be found the "flying" type of manoeuver, wherem the overtaking vehicle proceeds at constant or nearly constant speed so as to complete the entire pass without slowing down In the second class, will be found the
type of manoeuver which may be defined as the "accelerative" type, wherein the overtaking vehicle is following behind the overtaken vehicle and by acceleration increases its speed so as to complete the pass.

In both the flying and accelerative types of manoeuver a further classification arises from the manner in which the overtaking vehicle returns to the

Figure 2. Flying Pass with Forced Return. Top-Start of Pass, View to Rear from Observation Vehicle. Bottom-Completion of Pass, View to Front Showing Forced Return Due to Counter Traffic.
right half of the roadway. Due to oncoming traffic or short visibility distance the return may be hurried or "forced." Accordingly, both the flying and accelerative types have been further subdivided into forced return and voluntary return.

The general method which was followed in the analysis of the data classified all passes into these four types; 1, flyingforced (Fig. 2); 2, flying-voluntary; 3, accelerative-forced; 4, accelerative-voluntary (Fig. 3).

Analysis of the data showed that the speed of the overtaken vehicle was a controlling element in practically all values of time and distance. Hence, it became necessary to distribute the observations by speed classes ranging by ten mile intervals from 10 to 50 miles per hour. These were the speeds of the overtaken vehicle and should not be

Figure 3. Accelerative Pass With Voluntary Return. Top-Start of Pass (View to rear of observation vehicle, showing overtaking vehicle beginning to accelerate after waiting for counter traffic). Bottom-Completion of Pass. (View to front showing free return.)
confused with the speed of the overtaking vehicle.

It further developed that in each speed range for each type of pass there is a rather wide distribution of values. Accordingly, the data are shown in the form of frequency distributions in order to interpret better the values which were obtained. (See Fig. 4.)

Because of the wide range of values and because of the assymetry and lack of
continuity found in the distributions, the median was selected for comparative purposes rather than the arthmetic mean It is generally recognized that the medran is preferable where such characterstics prevail

BPEED DISTRIBUTIONS

A total of 795 completed passes were observed The speed distribution of these observations, as a whole, was
investigation This summary is shown in Figures 4 and 5 It will be noted that the median values of overtaking and passing distances fall approximately on a straght line The values for 30 and 50 miles per hour are given in Table 1 Thus, it is seen that there is only a slight difference between the distances required for the accelerative and flying passes of the voluntary return type Contrary to expectation, the flying type requres

Figure 4 Distance Required to Overtake and Pass, Flying Types, All Areas, All Drivers
comparable to the usual curve of speed distribution on state highways The modal value was 40 miles per hour, and the percentage of observations falling at other speeds was nearly congruous with the distribution of speed values shown for a single state in a recent study (5) of speeds on Connecticut highways

GENERAL SUMMATION OF OVERALL DISTANCES

All passes of passenger vehicles were distributed into the four basic types which included both male and female drivers in the three geographic areas of
slightly longer distance A similar situation holds for the forced passes, but the difference decreases at higher speeds
Attention is further called to the fact that the 80 percentile value of the voluntary type of manoeuver will provide for the large majority of forced passes in both the accelerative and flying types The use of the 80 percentle values arose from an analysis of clearance times allowed by drivers (6). In this analysis it was found that if a clearance between a vehicle completing the pass and an oncoming vehicle was placed as low as 1 sec. as a common sense minımum safe
clearance, approxumately 20 per cent of the drivers who attempted a pass in the face of oncoming traffic operated with less than this time clearance value In fact, 10 per cent or half of these operated with no measurable time clearance or in other words actually forced the oncoming driver to give way on his half of the roadway. This left only 10 per cent who operated with a clearance of 1 sec or less, and the 80 per cent who operated within apparently reasonable judgment
distance required by 80 per cent of drivers at any given speed Inasmuch as these 80 percentile values practically enveloped the large majority of forced passes in both categories, the practicability of 80 percentile distances is demonstrated

OVERALL DISTANCES-MALE DRIVERS

Further analysis of distances and time values seemed desirable and in order to eliminate as many variables as possible,

Figure 5. Distance Required to Overtake and Pass, Accelerative Type, All Areas, All Drivers
showed a time clearance value of more than 1 sec

In parallel fashion it seemed in order to determine the overtaking and passing

TABLE 1
Comparison of Overall Distances* (All Drıvers-All Areas-Passenger Vehicles)

Speed in M P H	Flying Passes		4ccelerative Passes	
	Forced	Voluntary	Forced	Voluntary
	$f t$.	$f t$	$f t$	$f t$
30	550	650	450	600
50	750	1050	750	1000

[^1]the following analyses have to deal with male drıvers and passenger vehicles only The distance required to overtake and pass for all areas has been graphically set forth in Figures 6 and 7 according to categones herembefore described. Values for both types of passes for 30 and 50 miles per hour are given in Table 2

It is shown that the medıan value of the flying-voluntary type was greater than that of the forced return type by about 175 to 400 ft at the speeds compared It is seen also that in the accelerative type of pass the voluntary return type required from 100 to 200 ft more dis-
tance than the forced return type on the average
tendency, however, for the median values to merease slightly when female drivers

Figure 6. Distance Required to Overtake and Pass, Flying Type, Males, All Areas

Figure 7. Distance Required to Overtake and Pass, Accelerative Type, Males, All Areas

Comparison of these results with those for all drivers shows that practically the same values were obtained. There is a
are included Hence, it is reasonable to deduce from these differences that the female drivers as a group required slightly
more distance for overtaking and passing than the males

INFLUENCE OF GEOGRAPHICAL AREA

It was noted in flat terrain where greater sight distances preval that the natural driving habits of motorists resulted in greater distances for overtaking and passing Accordingly, all data for male drivers were tabulated into two categories so as to compare the observations made in the hilly terrain of New England with those obtained in the flatter sections of the middle and far western states These are set forth in Table 3.

It will be noted that the flying-voluntary type of manoeuver observed in the middle and far western areas showed

TABLE 2
Comparison of Overall Distances*
(Male Drıvers Only-All Areas-Passenger
Vehicles)

Speed in M P.H	Flying Passes		Accelerative Passes	
	Forced	Voluntary	Forced	Voluntary
	$f t$	f	$f t$	f f.
30	500	675	450	550
50	700	1100	750	950

* Medıan Values
from 100 to 425 ft greater distance than those for New England The accelera-tive-voluntary classification showed a range of 200 to 250 ft greater distance in the middle and far western areas than were found in New England areas Since the number of cases for the flyingforced type when separated by areas was too small to be highly signuficant, it was omitted from the table For the accel-erative-forced type, median distances showed a relationship simular to the voluntary types

Thus, it is seen that when there is prevailing limited sight distances and drivers realize that more adequate sight distances do not occur frequently, they will execute passes under strain in face of
possible hazard, which would ordmarily be refused where longer sight distances are generally to be found This interpretation is borne out by reference to the accelerative passes under forced return conditions and also by clearance times previously reported for the two areas (Op cit (6)) If this interpretation is correct, the 80 percentrle value from the voluntary conditions should indicate the sight distance which is adequate to include the forced passes under conditions which are generally comfortable (Note the foregoing discussion of 80 percentile values and forced passes) Thus, while

TABLE 3
Distances Required to Overtake and Pass* (Males-Passenger Cars Only)

$\begin{aligned} & \text { Speed in } \\ & \text { MPH } \end{aligned}$	Flyng-Voluntary		AccelerativeVoluntary	
	New Eng Areas	$\begin{gathered} \text { Mid } \& \text { Far } \\ \text { West } \end{gathered}$	New Eng Areas	$\underset{\text { West }}{\text { Mid } \& \text { Far }}$
	$f t$	$f t$	$f t$	ft
30	650	750	500	700
40	750	850	650	800
50	825	1250	800	1050
	Flying-Forced		Accelerative-Forced	
30			450	500
40			650	675
50			675	775

[^2]passes are safely completed under shorter sight distances, the hazards attendant thereto are unquestionably higher

CLEARANCE DISTANCES-REAR

In analyzing the component parts of the total distance required to overtake and pass, it is not without interest to note the range of clearance distances allowed by the driving public both to the rear and the front of the overtaken vehicle A general summary of all disstances which were obtamed is set forth graphically in Figure 8 Analysis of the data showed that the clearance distance
to the rear of the overtaken vehicle was not influenced by the type of return In the accelerative type regardless of the type of return the median values of distances to the rear of the overtaken vehcle ranged from 25 ft at 10 miles per hour to 45 ft at 50 miles per hour In the flying type of manoeuver the distances to the rear of the overtaken vehicle were exceptionally constant for all speed classes, being approximately 75 ft It should be noted that these are median values and that considerable
type of pass varied linearly with speed from 75 ft at 30 miles per hour to 65 ft at 50 miles per hour Note in this instance that the clearance distance decreased with increase of speed This decrease was probably due to lack of accuracy in judgment at higher speeds where oncoming traffic was present and higher relative velocities at lower speeds of overtaking For the flyng-voluntary type the clearance distance to the front showed a practically constant median value from 100 to 120 ft at all ranges of

Figure 8. Clearance Distance-Feet
deviation from them occurred Thus, in the accelerative type the clearance distance to the rear of the overtaken vehicle ranged from as low as 10 ft to as much as 90 ft Simular values in the flying type of manoeuver ranged from 20 ft to 150 ft

CLEARANCE DISTANCES-FORWARD

The clearance distances allowed in front of the overtaken vehicle show a wide range of distribution Median values of clearance to the front of the overtaken vehicle for the flying-forced
speed, thus paralleling the constant rear clearance mentioned above
Special significance accrues to the clearance distances allowed in front of the overtaken vehicle under accelerativeforced conditions Clearance values obtamed for this type of manoeuver have been set forth graphically in Figure 9 It will be noted therefrom that the median value of forced return was farrly constant at all speeds at about 60 ft Isolated values, however, range from 30 to 150 ft For purposes of comparison the 80 percentile values of the voluntary
type of return are also set forth This shows a fairly constant value of about 110 ft . As was the case for the total distance, the 80 percentile value is sufficient to include nearly all of the forced return type Here again, it is to be noted that 80 per cent of the motornsts voluntarily performed in such a manner as to include practically 100 per cent under forced conditions
pass is distributed from 5 to 14 sec Even under the most exacting condition, (the accelerative-forced type of manoeuver) individual time values were distributed from 6 sec to as much as 16 sec , whereas in the voluntary return type the time required ranged from 6 to 19 sec Median values are given in Table 4

Thus, the median times for forced passes vary from 80 to 105 sec at the

Figure 9. Clearance Distances in Front of Overtaken Vehicles, Accelerative Type
total time required to overtake AND PASS
While the total distance required to overtake and pass is probably more signuficant, the total time required to complete a pass is of particular interest This holds especially on two lane roadways inasmuch as the entire time spent by the overtaking vehicle in the left hand lane is a time during which extreme hazards are manufest

Accordingly, the times required to overtake and pass have been analyzed and shown graphically in Figures 10 and 11 In the flying-forced type of manoeuver the time required to overtake and
speeds compared, and those for the flying are slightly longer than for the accelerative Again, attention is called to the use of 80 percentile values for desıgn purposes due to the wide range of individual values found

TIME REQUIRED TO OVERTAKE

Further analysis was made of the time required for the overtake alone, that is, the time spent by the overtaking driver from the instant he began his manoeuver until the foremost part of his vehicle was opposite the mid point of the overtaken vehicle Figure 12 shows that for the flying pass both forced and voluntary

Figure 10. Time Required to Overtake and Pass, Flying Type

Figure 11. Time Required to Overtake and Pass, Accelerative Type
return types required sumilar time values The medran time to overtake was approximately $4 \frac{1}{2}$ sec

Similarly, for the accelerative pass the
forced and voluntary type of return required equivalent tume to overtake However, the median values of time increased linearly wnth speed so that at

TABLE 4
Comparison of Total Times*
(Male Drivers Only-All Areas-Passenger Vehicles)

Speed in M P H	Flying Passes		Accelerative Passes	
	Forced	Voluntary	Forced	Voluntary
	f	f	$f t$	f.
30	80	105	80	100
50	105	120	95	115

* Medıan Values
sampling all types of drivers and vehicles It is felt that this method reflects with sufficient accuracy the variations in driver and vehicle performance, and as has been noted in all of the results, there is a considerable range of individual performance with regard to both time and distance values at any observed speed of operation

Our previous theoretical calculations based on a reasonable theory of over-

Figure 12. Time Required to Overtake, Forced and Voluntary Returns Together

30 miles per hour approximately $3 \frac{1}{2}$ sec were required and at 50 miles per hour approximately $4 \frac{1}{2} \mathrm{sec}$ were required

DISCUSSION OF RESULTS

General Consuderatzons The results which have been obtaned lead nevitably to a general conclusion that there is a wide difference in the operation of automobiles insofar as overtaking and passing distances and times are concerned It must be remembered that the results which have been obtaned are based on a new method of measuring overtaking and passing distances by
taking and passing and common sense estimates showed that the flying type of pass of executed in the shortest distance allowed by physical limitations and driving comfort would be shorter than passes of the accelerative type It is significant to note, however, in actual operation that this was not the case and that generally speaking the accelerative type of manoeuver required slightly less distance and time It is to be concluded, therefore, that the average driver does not approach the minimum values which are possible of achievement in the flying pass This is accounted for largely by
the greater clearance distances to the front and rear in the flymg types of pass, although they tended to be executed at a higher average speed

The total distance required to overtake and pass was considerably affected by the type of return. Both in the accelerative and flying type of manoeuver the voluntary return utilized more distance, the dufference of medıan values amounting to 250 ft at 50 miles per hour for the accelerative types and 300 ft for the flying types

Design Speed Without exception all results for all types of passes show that the overtaking and passing distance becomes greater for higher speeds. Thus, it is readily seen that the overtaking and passing distance which is chosen in designing for modern traffic speeds is intimately bound up with the design speed of the roadway In connection therewith, it is signuficant to note that the 80 percentile distance found in the accelerative-voluntary type included practically all passes of the forced types, moluding the flying-forced type It is felt that this is especially important from the design point of view for it is beheved that whenever there is any doubt in a motorist's mind as to whether he can successfully complete a pass or not, he will reduce speed to a point comparable to that of the vehicle ahead and therefore establish any pass which he makes thereafter as the accelerative type Moreover, it seems from the design point of view that the fact that the accelerative type proves shorter makes it desirable to use values obtamed from that type of manoeuver when discussing or considening overtaking and passing requirements In view of the fact that the 80 percentile provides for the large majority of forced passes, it seems especially significant in considering design values. Based on the data which have been gathered, the overtaking and passing distance, which includes 80 per cent
of all accelerative-voluntary passes, amounts to approximately 1150 ft at 50 mules per hour, 950 ft at 40 mules per hour, and 750 ft at 30 mules per hour

Areas. The results obtaned for New England and the more open areas of the middle and far western sections show that under prevailing limited sight distances motornsts will pass under conditions which would be considered hazardous by motorists travelling under conditions of prevalingly greater sight distance

Clearances Consideration of the median clearance distances allowed in the flying types of pass showed that the average motorist allowed himself approxmately 70 ft headway before starting a manoeuver In the accelerative types the motorist allowed himself from 25 ft at 10 mules per hour to 45 ft at 50 mules per hour These latter values seem absurdly low from the safety viewpoint and reflect the questignable amount of caution which is exercised under the conditions attendant to the accelerativeforced type of pass

On the other hand, the average motorist when forced to return to the right half of the roadway in front of the overtaken vehicle allowed an average clearance distance of about 60 ft This clearance value was increased to an average of 110 ft under voluntary return conditions The differences in drivers under varying conditions is especially indicated in these clearance values nasmuch as isolated cases showed a range of distribution from as low as 10 ft to the rear to a minmum of 30 ft to the front of the overtaken vehıcle

Times For purposes of computing sight distances the amount of time required for overtaking and passing seems especially pertinent The results show that the total time required to overtake and pass increased with speed For the lower speed of 30 miles per hour the
accelerative-forced type required $8 \frac{1}{2} \mathrm{sec}$ to complete a pass In the accelerativevoluntary type the median value of the time requred at 50 miles per hour amounts to $11 \frac{1}{2} \mathrm{sec}$ To this value of the time required to overtake and pass must be added some additional time clearance - values for the computation of sight distance In a previous paper (Op cit (6)) it was shown that 80 per cent of the drivers allowed a clearance of 1 sec . or more when passing in the face of oncoming traffic It is beyond the scope of this paper to discuss the various other factors involved in the computation of a safe passing sight distance

SUMMARY

1 Actual distances and times required to overtake and pass by the driving puble were measured A total of 795 observations were obtained in New England, mid western and far western states

2 A photographic method was developed for use from a moving vehicle

3 Four types of passes were developed for the purpose of analysis

4 Distances and times increased linearly with speed At 50 miles per hour drivers executing a "following" pass required a median distance of 1000 feet and 80 per cent of them passed in less than 1150 ft

5 The corresponding median time value was 115 sec

6 The 80 percentile values provide adequate distance for practically all
observed passes under pressure It is, therefore, suggested for design purposes
7 Conditions of terrain apparently influenced driver behavior Clearances to rear and to front have been analyzed, together with corresponding time values
8 The results emphasize the fact that traffic studies of this sort involve the inherent variability of the human factor as represented by the performance of the driving public The wide range of values obtaned necessitates the simpler type of statistical treatment developed for the analysis of biological and human data Falure to recognize this range and varrability leads to conflicting and erroneous interpretations

REFERENCES

1 Massachusetts Hıghway Accident Survey 1934 W P A of Massachusetts
2 Dickınson, H C, Highway Research Abstracts, Oct 1934
3 Greenshields, B D, "Distance and Time Requirements to Overtake and Pass Cars," Proceedings Highway Research Board, Vol 15, pp 332-342, 1935
4 Matson, T M and Forbes, T W, "A Preliminary Report on the Measurement of Overtaking and Passing Distances," Proceedzngs Inst Traffic Engineers, Oct 1938
5 Tilden, C J, Morris, D L, Martin, T M C, and Russell, E W, "Motor Vehicle Speeds on Connecticut Highways," Committee on Transportation, Yale University, 1936
6 Forbes, T W and Matson, T M, "Drıver Judgments in Overtaking and Passing," Paper before Amer Psychol Assn Meeting, Columbus, Ohio, 1938

DISCUSSION ON OVERTAKING AND PASSING REQUIREMENTS

Dr. B D. Greenshields, College of the Cuty of New York: It is gratifying to know that the authors' results agree so closely with those I arrived at by an entirely different method (Proceedings, Hıghway Research Board, Vol 15, pp. 332-342)

Of signficance is the fact that the time I found was the clearance time required on the opposite lane, and that it appar-
ently agrees with the total time for passing. This indıcates that drivers allow themselves very small margins of safety. Perhaps it should be added that due to the method of analysis, the time I found to be required for passing was the minlmum average for all drivers and should be compared with the 80 percentile value found by Forbes and Matson

[^0]: ${ }^{2}$ Figures in parentheses refer to list of references at end

[^1]: *Medıan Values

[^2]: * Median Values

