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The stress distribution due to a con
centrated load on a semi-infinite elastic 
body may be found by the Boussinesq 
equation. The stress distribution due to 
some other loading may be obtained by 
integration of the Boussinesq equation. 
A collection of the resulting formulas for 
several special cases may be found in the 
Proceedings of the International Con
ference of Soil Mechanics, Vol. I I , Page 
157,1936. A chart has been prepared by 
Newmark from which one may obtain the 
vertical pressure by graphical integration 
(Illinois Circular No. 24). 

This assumes a body with uniform 
elastic properties. Any change in elastic 
properties such as increasing Young's 
Modulus with depth of soil or a dis
continuity such as a rock layer, sand 
or muck from natural causes, or artificial 
discontinuities such as piers, pilings, 
bridge abutments or retaining walls will 
cause the actual stresses to differ from the 
values obtained by the Boussinesq equa
tion. So far as is known, very little has 
been done with the problem of variable 
elastic constants as this would complicate 
"the equations of elasticity. Various in
vestigators have considered the problem 
of discontinuities. A horizontal rock 
surface underlying a 'day layer has re
ceived the most attention. We shall 
divide this problem into two cases as 
follows: 

Case (a). The rigid rock is frictionless. 
Case (b), There is sufficient friction to 

prevent slipping. 
Case (a) has been solved by several 

writers.* We shall refer the reader to 

> Filon solved the two dimensional case for a 
live load. Phil. Transactions of the Royal 
Society Series A, Vol. 201,1903, Page 107. 

Carothers solved the problem for a strip 

these works for the theoretical treatment. 
There is still need for curves or charts to 
make these equations usable for the engi
neer. On the other hand, the writer is of 
the opinion that this case has limited 
applications in the field of soil mechanics. 

Case (b) appears to be more nearly in 
accord with actual conditions at the rock 
surface. The remainder of this paper will 
be concerned with this case. Its solution 
is much more difficult than Case (a). 
Carothers* who has a correct solution for 
Case (a) has an incorrect solution to 
Case (b) presented at the same Mathe
matical Congress in 1924. Timoshenko 
objected to Carothers' solution of Case 
(b) by oral discussion at the time, but the 
error was not generally known until very 
recently.' 

The fiirst correct solution for this case 
for plane strain was given by Marguerre." 
His theory is rather complete but his 
equations are not in a form that can be 
readily used. -

Biot* has solved the problem correctly 
for not only plane strain but also for the 

load, Proceedings of International Math. 
Congress, Vol. 2, Toronto, Canada? 

Timoshenko gives a more general mathe
matical treatment based on Filon's work, 
Theory of Elasticity, Page 45. 

Biot solved the axial symmetrical three-
dimensional problem, Physics, Dec. 1935. 

'Jurgenson apparently unaware of the 
error, assumes Carothers' solution to be correct 
and derives formulas for other loadings which 
he gives in his paper in the July, 1934 Journal 
of the Boston Society of Engineers, as well as 
on page 194, Vol. 2, Proceedings of the Inter
national Conference of Soil Mechanics, 1936. 

'Marguerre, "Druckverteilung durch eine 
elastische Schicht auf starrer rauher Unter-
lage." Ing. Archiv 2 (1931). 

* Biot, "Effect of Certain Discontinuities on 
the Pressure Distribution in a Loaded Soil." 
Physics, Dec. 1935. 
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, three-dimensional case of axial symmetry, at the rock surface. I t will therefore be 
Since he restricts his paper to an incom- necessary to have expressions for both 
pressible soil, and he is only concerned displacements and stresses. We shall 
with vertical pressure at the rock surface start with equations for displacements and 
i t was felt that there was a need for the find stresses by. differentiation. The 
complete stress analysis which follows: equations of equilibrium in rectangular 

Stresses are specified at the ground coordinates in terms of the displacements 
surface, and displacements are specified u, v, w are:' 

GAu + (X - I - G) g = 0, GAv - I - (X - f G ) ^ = 0 

GAw - I - (X - I - G) I? = 0 
(1) 

Where A is the Laplace operator, 5 = -t- | ^ + ^ is the volume expansion, 
dx fly dz 

and X and G are the elastic constants of Lam6, related by X = G where p. 
1 — 2/1 

is Poisson's ratio. 
PLANE STRAIN 

For plane strain we shall assume v = 0 and let 
u = sin kxtAe"" + Be"^ -\- zCe"" -|- zDe"""] (2) 

Then i t may be shown by substitution that the equilibrium equations are satisfied 
by: 

T A e - -

Since* 

w = -cos kx l Ae- - Be-^ + " ? + ^ ^ C e - - + ? " ^^^De- (3) 

S„ = X« + 2G?^ 

S.X = X6 + 2 G g ox 

S. Lsz ax. 

(4) 

by differentiation we obtain: 

S „ = 2G cos kx[(2 - 2M - kz)Ce'" - (2 - 2/i + kz)De-'" - kCAe"' -|- Be""")] 

S „ = 2G cos kxIkCAe"' -|- Be""') + kzCCe"' - f De"^) + 2^(06"" - De""")] \ (5) 

S„ = 2Gsinkx[k(Ae'" - Be""") -1- kzCCe"" - De""") - (1 - 2M)(Ce'" -|- De""')], 

Taking the origin of coordinates at the rock surface as shown in Figure 1, the 
boundary conditions are as follows: 

u = w,=: 0 at z = 0, Sx, = 0 at z = - h 

• Timoshenko, Theory of Elasticity, Page 200. 
• Timoshenko, Theory of Elasticity, pages 10 and 11. 
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Substitution of these three boundary conditions in the above equations gives: 

B = - A 

C = 

D = 

-coshkh + ^ - ^ \ - ^ ^ " ' 

(1 - 2M) sinh kh - kh cosh kh 

cosh kh - ^ -
3 — 4/* 

(1 - 2M) sinh kh - kh cosh kh 
The equations for stresses now become: 

4GkA cos kx 

kA 

kA 

S.. = 
kh cosh kh - (1 - 2/i) sinh kh 

2 ( 1 - n) cosh kh cosh kz 

- kz cosh kh sinh kz - eosh k(h + z) 

+ (1 - 2M)kz - I - 2kh( l - M) . 

Sxx = 

3 - 4M 

- (1 - 2M) sinh kh) sinh kz 

4GkA cos kx Tkh kz - 2M(1 - 2M) 

sinh k(h + z) - (kh cosh kh 

"kh kz - 2M(1 • 
iL 3 - 4 M 

cosh k(h - I - z) 

S,- = 

kh cosh kh - (1 - 2M) sinh kh 

- I - ^2Mkh - k z ( l ^ - 2M)^ g j ^ ^ H- z) - I - kz cosh kh sinh kz) 

- I - 2M cosh kh cosh kz -|- (kh cosh kh — (1 — 2M) sinh kh) sinh kz 

4GkA sin kx 
kh cosh kh - (1 - 2M) sinh kh 

(1 - 2M)k(h - I - z) 

"(1 - 2 ' ' ) ' + k z k h ^ . ^ , ^ , _ ^ ^ j 

3 - 4M 

3 - 4M 

cosh k(h - I - z) -f- kz cosh kh cosh kz 

- (1 - 2M) cosh kh sinh kz -|- (kh cosh kh - (1 - 2M) sinh kh) cosh kz 

(6) 

I f we let 

q = 4GkA 
"2(1 - M) cosh* a -h (1 - 2M) sinh''« + « - 2(1 - M)(1 - 2M)' 
. 3 — 4M 

a cosh a — (1 — 2M) sinh a 
Where a = kh, and substitute z = —h in the above equations for stress we find 

the normal load S„ at the ground surface to be S„ = q cos kx. By means of 
Fourier analysis we may reqresent any loading as a superposition of loads like the 
above. A concentrated load P at x = 0 is given by 

S. coskxdk. 
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This means that we substitute - dk for q and integrate from zero to infinity in 
TT 

each of the stress equations. 
We now have: 

"̂h I 2(1 - /*) cosh a cosh ^ - ^ cosh a sinh ^ 

2(1 - /x)(l - 2M) + 

3 ^ ^ 4 ^ 
cosh 

(1 - 2 r t o £ + 2«(1 - I.) / A 
+ s , n h . ( l + f) 

az + (fit cosh a - (1 - 2M) sinh a) sinh 

ax 
C O S - r -

T T ' 

3 - 4/i 

+ 

- I - 2M cosh a cosh -|- (a cosh a - (1 - 2M) sinh a) sinh 

( 1 - 2 M ) ^ + «^C 

3 

h • -r h 

2 L S Z 

X 
cos at-

(7) 

M; -1-« r / _\ 

+ cosh a cosh a^ — ( I — 2M) cosh a sinh a^ h n n 

+ (a cosh a - ( I - 2M) sinh a) cosh a^ 

. ax sm - r -
h 

where 

M = 2 (1 - M) cosh* « -h (1 - 2M) sinh* a + " ~ 1 4̂ ^̂  ~ • 
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I f we let z = - h we find, of course, that S i . = 0 for all values of x; and S „ = 0 
for all values of x except x = 0, where S „ is infinite. The total value of this concen
trated load I S P The honzontal stress is not zero but is given by. 

If we let z = 0 we find the following stresses at the rock surface. 

ax 

cos 
S „ = 4 f " 2(1 - M) cosh a - I - a smh a da 

irh Jo 3 — 4/1 L J M 

. a 

ax. J cos -T- d« 
D 

M 
(8) 

(9) 

s „ = ^ r r 
" irh Jo L 

p 

2(1 - M) ^ V, 
aVsosh a -

3 — 4/1 

/ / / / y / / / / / ' / / / / / / / / / / / / / / / / / , / / / / / / / / / 

2(1 - / i ) ( l - 2/1) 

3 - 4 / 1 
sinh I 

ax 
sin-r-n da 

Figure 1 

AXIAL SYMMETRY 

Consider now the three dimensional 
case of axial symmetry Using the usual 
cylindrical coordinates r, B, z, the prob
lem becomes very similar to the two 
dimensional case, smce displacements and 
stresses depend only on the two coor
dinates r and z I n fact, i t is proper in 
many respects to treat this case as two 
dimensional The differential equations 
and their solutions are similar though not 
so well known, because Bessel instead of 
circular functions are involved 

Again letting v = 0 the two necessary 
equihbnum equations m terms of the dis
placements u and w are 

G ( i » - H ) + (X + O ) ^ = 0 

GAw -H (X - I - G) 1̂  = 0 
oz 

(la) 

where 8 now becomes ̂  + - + T T " 9r r az 

u = Ji(kr) [Ae"" - f Be""" -h zee"' zDe"""] (2a) 
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and 

w = - J.(kr) [ A e - - B e - + ^ i - 3 ± ± M ^v. _ kz + 3 - 4e ^^.^^^ ^^^^ 

satisfy equations (la). The stresses in terms of displacements are as follows: 
s„ = xa-i-2G?!^ 

S „ = X « - F 2 g | ^ 

SM = X8 -1- 2 G ^ 

(4a) 

By differentiation we obtain: ' 

S.. = 2GJo(kr)[(2 - 2^ - kz)Ce'" (2 - 2/i -H kz) De""" - k (Ae"' -|- Be""")] 

S„ = 2GrJo(kr) - klAe"" + Be-"" + zCe"" + zDe""-] 

- I - 4G/«Jo(kr) [Ce"' - De"""] 
I 

S„ = 2G [Ac"' + Be-"" + zCe"' + zDe"""] + 4G,Jo(kr) [Ce"" - De-"'] 

S„ = 2GJi(kr) [k(Ae'" - Be""') -|- kz(Ce'" - De""") - (1 - 2M)(Ce'" -|- De""")]. 

For the boundary conditions which we have assumed the integration constants are 
related in exactly the same way as for plane strain. We shall omit a portion of the 
tedious mathematical work and proceed to the final equation for special cases. 

SPECIAL CASES 

We shall evaluate the stresses at the ground and rock surfaces for certain values of 
of Poisson's ratio for both Plane Strain and Axial Symmetry as follows: 

Plane .Strain. 

M = 0, z = - h 
i 

sinh' a — 3 X J cos a d a 
2 . .:_U2 . « 2 h 2 cosh a + sinh « + -s- — „ 

o o 

= 0 . z = 0 

S.. = ^C"sh« + t « s i n h a x ^ 

""^^^ 2 c o 8 h * « - 4 - s i n h * « + ^ - ? ^ 
o o 
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S „ = ^ f ! « e o « h « - f s i n h a x ^ ^ 

2cosh«a-Fsinh*« + | : - | ^ 

M = i , z = - h 

„ _ P f " cosh" a -h sinh' a — a' — j * , 
" ~ Thh 3cosh»a -|-sinh«« + a « - J T 

M = i , z = 0 

a P f cosh a -|- I «sinh a x , 
^ " = ^ i . 3 c o s h ' a s i n h ' a - h a ' - I ^ " ^ " h ' ^ " 

a P f " i cosh a -h a sinh a x , 
Sxx = - r / n r5 ; — i—5 a COS a r- da 

vh Jo 3 cosh' a + smh' a -|- a« - f h 
„ P f" f a cosh a =- f sinh a x . 
Sxi = - r / s—^5 ;—. • - ,—5 ; Sin a r da fl-h Jo 3 cosh' a + smh' a -|- a' - f h 

At = i ; z = - h 

cosh* a - a* ax , 
fo c o s h ' a - H a ' ' ° ' ¥ * ^ « 

M = = 0 

Q _ Q _ P /" cosh a - I - a sinh a ax , 

a cosh a . ax , sm da Jo cosh' a -1- a* 

Axial Symmetry. 

M = 0;z = - h 

sinh' a — 
a 

Zwh" Jo 5( „„nv,2« J - "">•' - 3 - 3 ^ ^ " ^ ' ^ 2 c o s h ' a - H s i n h ' a + ^ ! - | ^ ' ( " ^ ' ) " H ? ) ^ 

« p r h , M , 

2 cosh* a - I - smh '« + J - 3 

M = 0;z = 0 

' r i cosh a -f- j a sinh a r t<*r\ , 
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S, 2irh> Jo 

S( 

SOIL MECHANICS 

f a cosh g — f sinh a 

2 cosh* a + smh«« + j -1 AD da 

P 
2irh« 

M = i ; z = - h 

"(sinh^a - « * ) ( « J . f - 7 J i ^ ) + (cosh*a - | ) aJo f 

= x r : 
2,rhWo _ 

(smh* 

3 cosh* a + smh* d -|- a* - | 
h 
r 

da 

( c o s h ' a - l ) « J . ( ^ ' ) 

3 cosh* a + smh* a + a* - 1 

M = i ; z = 0 

I cosh a i « s m h « ^ ^ 

da 

S„ = 

= j L r 
2irh* Jo 3 cosh* a + smh*« -|- a* - f 

„ P f* f cosh a -h a smh a i f ^\ A 
^ " - 2 i h * J o 3 cosh*« smh*« -H «* - i r h / 

„ P f " i « cosh o — f smh a T ^ ' '^ j 
^ • = 2S*J!, 3 co8h*« -h smh»« + «* - i \,«h>/ 

M = J;z = - h 

p .« (cosh* a - a*) aJo -|- o* ̂  Ji ^ag^ 

^""2iS"*Jo cosh*a-|-«* 

^ ^ .acosh*«Jo(a0-a*^Jx(g)^ 
2irh* Jo 3g« 

S„ = 

cosh* a -h a* 

M = i ; z = 0 

„ _ P f " cosh a - I - a sinh a j f ar\ , 
S" = S.. = 2 ^ J ^ eosh*a-h«* " • ^ ' U j ' ^ " 

P 
2irh* r 

g* cosh a 
cosh* g -H g* Ji dg 

I t I S bebeved that the above equations Figure 2 shows the distnbution of the 
for stresses are mathematically exact, and vertical stress and horizontal shear in the 
certain qualitative conclusions may be case of a concentrated point load for 
drawn from them The method used to vanous values of M I t IS to be noted 
evaluate the integrals so that quantitative that for M = 0 5, the rock tends to prevent 
information may be obtained is given spreadmg of the load, producing an 
in the Appendix The results are sum- intensity 56 percent greater than the 
marized m the following. Boussinesq, when r = 0 Whereas for 
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It = 0, the maximum intensity is only 
about 60 percent of the Boussinesq. 

I t is of interest to note that a value of n 
somewhere between 0.25 and 0.60 would 
give a distribution approximately the 
same as the Boussinesq. 

Figure 3 shows a comparison of for
mulas for a strip loading of 2a in width, 

tained by the Carothers formula which 
fails to meet one boundary requirement 
at the rock surface. According to this 
formula the horizontal shear is the maxi
mum shear at this surface. These curves 
are independent of /i. Curve B is the 
theoretically correct curve for n = 0.5. 
I t is of interest to note that the Carothers 

I 
to 

A- t 
rt . 

OUJi 
. — 

inesy r as f-ribu i-Zon 

\ 
a •' t 

\ ? • • •• 

—a Srz\ £.• 
F: 

t 
7 \ \ \ —A 

c 

V \ 
r - L 

•E 

/ 
/ —F 

15 Z.5 

Figure 2. Pressure Distribution at a Rough Rock Surface In the Three Dimensional Problem 

and of intensity P on an elastic material 
supported by a rough, rigid rock at a 
distance h = 2a below the loaded surface. 

Curves C and D show maximum and 
horizontal shearing stress respectively, 
as obtained from integration of the Bous
sinesq equation, and necessarily neglects 
the discontinuity of the rock surface. 
Curve A shows the shearing stress ob-

formula has the proper shape but gives 
values about 20 per cent too high for 
M = 0.5. The Carothers formula has had 
considerable use in recent years, since 
Jurgenson^ extended i t to triangular load
ing, and i t may readily be extended to 
various types, as' shown in Figure 4. The 
author is not convinced that i t is safe to 
assume that y. = 0.5 for soil. But, if 
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such could be assumed, the comparatively 
simple formulas of Jurgenson, based on 
the Carothers' assumption, would be 
very useful. 

I t was the author's intention to prepare 
Newmark charts from which the stresses 
due to any distribution of normal loading 

was not considered advisable to construct 
such charts for horizontal stresses at the 
present time. 

In conclusion, the necessary equations 
have been derived for the exact deter
mination of the stresses, vertical, hori
zontal or shearing, at any point in a 

./ 
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Figure 3. Shearing Stress at Depth h Below a Uniform Loaded Strip 

could be obtained by graphical integra
tion. A few such charts were prepared 
but are omitted from the paper for the 
following reasons: (a) The existing New-
mark chart (Illinois Circular No. 24) is 
sufficiently accurate for vertical stress for 
all values o f / I from 0.25 to 0.50. (b) No 
method of constructing such a chart for 
shearing stresses was discovered, (c) I t 

homogeneous, isotropic, elastic solid of 
known Poissons' ratio, with thickness h 
bounded on one side by a rough, rigid 
rock, and carrying any known normal 
load on the other side. 

The Appendix shows how the equations 
are evaluated to give numerical answers 
for special cases. 
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z 

< eorfh 

£6rM. 

<• Earth 

Figure 4 

APPENDIX desired. For example, to evaluate the 
Since exact values of the integrals integrals involved for the determination 

involved are not known, we shall use an of stresses at the rock surfaces for M = 
approximate method which may be made 0.5, M = 0.25 and M = 0, the following 
to approach the exact value as nearly as substitutions may be made: 

, = 2e-" - e-*- - 0.345(a* e"*" -\- 100a* e-»»-) cosh* a -h a' 
sinh I 

cosh' a -H a' = 2 e - - 2 ( H - a ) e - * " ' - 5 a * e -

cosh a 
3 cosh' a + sinh' a 

sinh a 

+ a' 

3 cosh' a + sinh' a 
cosh a 

+ «* - i 

2 cosh' a + sinh' a ^ 3 
2 
3 

sinh a 

2 cosh'a -{- sinh'a ^ 3 
2 
3 

1 + 8 a -17a •g e -h 7a e 

1 -„ 9 + 19a 7a' 
18 e — 

2 , 1 + lOa 
3® + ^ 2 ~ ® 

2 -„ 8 + 15a - 4 „ 

3 " - ^ 2 - ' 

- 7a'e~ 

- 7a'e 6 -6 .6a 
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I t can be seen by inspection that the After making the above substitutions 
above equations become identities as g in the equations for stress at the rock 
approaches zero or infimty, and i t can be surface we find integrals whose solutions 
shown by numerical check that in no case are known The general forms are as 
does the substituted value differ from the follows. 
correct value by as much as one per cent 

I e - ' - s m ( « ? ) d g = 

X 

h 

i 

"e-""sin| dg = 

e cos I 

dg = 

( " E ) 

,{4 

j ; " g - e - " J o ( g l ) d g 

aa" 

X 

h 

â  + l ^ 
( - 1 ) " 

dg = a 

E 

aa» 
^ ^ + ( - h 

( -1 ) " 

d g = i i -
ah 

d g = 
ah 

dg = [••-(OT 
a" r = aT-r 

( -1 )" 

( -1 ) " 

Two examples will be worked out in suming M = 0 50 The horizontal 
more detail shear, wbach is the maximum shear, at 

Example I The case of Rectangular the rock surface due to a line load is 
loading illustrated in Figure 3 As- given by 

g cosh a ' gx , sm - r - dg n ^" whi cosh* g-I-a* 

Making the above substitution this becomes. 

Sx. = ^ j[' [2ge-" - ge-'" - 345g'e-*- - 34 5g'e-« sm dg 

which upon integration becomes. 
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2ns 

^ [ 2 . 0 3 5 + . 9 6 5 ( ^ ) ' - h ( | ) ' " 

[ - ( i ) 7 ; 

(5.5)* 

Since the above is only for a line load, we must now multiply by dx and integrate 
between the limits (x + a) and (x — a). This integration gives: 

' + '1 
3.517 + 3.965 ( ^ ) ' + 3 

34.5 X 720 [ l - 16 {^J + 15 ( ^ j - J - ( g ^ J 

( 5 . 5 ) ' X 6 [ 1 + ( ^ J J 

This is plotted as curve B in Fig. 3. 

Example I I . . To fimd the vertical Assuming in this case M = 0, the neces-
stress at the rock surface beneath the sary integral is: 
center of a uniformly loaded circular area 
of radius r. 

a o rr P r ^ cosh a -l- ^ a sinh a r (<A^ 1^^ 
^" = ^Jo l2iti^ i •2cosh'a + s i n h ' « - ! \h) J 

The part within the brackets gives the Making the substitutions as previously, 
vertical stress at any distance r due to a the bracketed expression becomes: 
concentrated load P. We shall find i t 
first. 

+ 10a - 2 a 28 4 - 4 a , 4 2 „ 
_ _ e - 3 - a e - f - - « e 

8 ^ + 1 5 a ' - 4 „ 14 7 -6.5.1 T / a \ . j g — e - - 3 « e \3o[^)da 

P 
2fl-h» 

Upon integration we obtain: 

16 - < l , — f e y . 
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U 6 2 - 2973(x) ' + 2 3 4 ( ^ ) ' - 3 2 ( x y 

00002608[ll2 - m{^)' + im{^)' - 2 4 5 ( ^ J ' 

The above is shown as Curve D in making the next integration, considerable 
Figure 2 The other curves m this figure labor is involved in reducing it to the 
were obtained in like manner After following 

S„ = P 2 -

- ( h ) 1 

+ 

- ( 0 

i z M . 

61,005 - 1785 ( ^ J + 3360 

30,240[l + ( i ) " ; 

The terms contaimng ^ g ^ ^ have been 
omitted because of negligible numencal 
value The above equation is repre
sented by Curve C in Figure 5 

Newmark charts may readily be con
structed from the curves of Figure 5, in 
fact, Curve B gives the original Newmark 
chart 
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Figure 5 Vertical Stress at Rock Stirface 
Beneath a Uniformly Loaded Circle of Radius r 
Newmark charts may be constructed from 
these curves 




