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The only scientific tool at our disposal 
for determining the stresses underneath a 
foundation is the mathematical theory of 
elasticity which deals with homogeneous 
elastically isotropic bodies. Soils are 
neither homogeneous nor elastically iso
tropic; in addition, besides the applied 
forces and body forces as considered in 
the theory of elasticity—mechanical ac
tion of moisture percolating through a 
mass must be taken into consideration. 
A great difi&culty in stress computation 
is the existence of the so-called "dis
turbed zone" under the structure itself. 
Physical properties of this zone undergo 
a certain change during the process of 
loading; hence elastic constants of the 
material in the "disturbed zone" also 
change. Formulas of the theory of 
elasticity, however, have been developed 
under the assumption that the elastic 
constants of the loaded body are the same 
before, during and after loading. Cour 
sequently, the use of elastic formulas is 
very questionable if stresses are to be 
determined within the "disturbed zone." 
Apparently, the deeper the layer, the 
more correct is the use of elastic formulas 
and in addition for determining stresses 
acting at a great depth the distributed 
load applied at the surface may be re
placed by a concentrated force. The 
latter statement may be proved by the 
Saint Venant principle. According to 
this principle, stresses remote from the 
boundary where a system of forces is ap
plied, differ but very little from those 
due to the resultant of this system. 
The principle in question is valid for 
determining stresses in an earth mass at 
a great depth. 

The most important stresses in foimda-

tion engineering are the vertical pressure 
and the maximum shearing stress. The 
horizontal pressure is of importance in 
particular cases, for instance, in design
ing a retaining wall. From the two most 
important stresses mentioned above one 
may assume the rdle of "controlling 
stress." For instance,'in the case of a 
heavy bridge pier founded at a consider
able depth, there is practically no shear 
danger; but owing to the presence of a 
still deeper soft layer, if any, there may 
be settlement due to consolidation of that 
layer. Hence the controlling stress in 
this case is the vertical pressure used to 
compute settlements which are due to 
consolidation. In the case of a shallow 
foundation, the shear danger is present, 
especially if the structure is simply placed 
on the earth surface, as an earth dam or 
a highway embankment. In such a case 
the controlling stress is the maximum 
shear. 

Since stresses cannot be computed 
exactly owing to the difference between 
an elastically isotropic body and the 
actual earth mass, i t is not worth while 
for a foundation engineer to compute 
them very accurately using complicated 
formulas. In the case when the shear 
stress is the stress controlling the situa
tion, all that is needed, is a rough estima
tion of the maximum shearing stress and 
Its checking against the shearing strength 
(shearing value) of the given material. 
In this paper a simplified method is 
given for determining the maximum 
shearing stress at a point of a semi-
infinite elastically isotropic body loaded 
at its surface by a uniformly distributed 
unit load acting on an arbitrary area. 
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BOnSSINESQ FOBMULAS 

According to Boussinesq/ if a con
centrated load, P, is applied at a point, 
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A, of the boundary of an elastically 
isotropic body the stresses at a point, O, 
of that body are (Fig. 1): 
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Figure 1. BouBslnesq Stress Distribution 

In formulas (1) the designations: <ry; 
(T, are normal stress components parallel 

1 J . Boussinesq, Application des Potentiels 
etc., Paris, 1885. 

to the axes OX, OY; OZ; respectively; 
Uy', Tlx; Txy are tangential stress com
ponents (shears), the second index mean
ing the direction of the axis to which the 
given shear is parallel, and the first is the 
direction of the normal to the plane of 
action of the given shear. The value of 
the radius vector R equals Vx* + y* + ^ 

• The positive sign (+) in formulas (1) 
means compression so far as normal 
stresses are concerned. 

To simplify these -formulas, let us 
imagine a vertical plane passing through 
point, O, and containing the vertical line 
of action of the load, P. Furthermore, 
let us take this plane for the X-Z plane. 
In such a case all the ordinates, y, in 
formulas (1) vanish, since y = 0. For
mulas (1) may then be rewritten thus: 
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U A X I M U M S H E A B I N T H E H A D I A L S T R E S S 

D I S T R I B U T I O N 

If Poisson's ratio of the given earth 
material were equal to J, or in other 
words, if its reciprocal were m = 2, 
Formulas (2) would be: 
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Formulas (3) describe the components 
of a stress, ir': 

a' = 3P z (4) 

Stress, (7', acting at point, 0, radiates 
from point. A, that of application of the 
given' load, P. The stress distribution 
described by formulas (3) is the spherical 
radial stress distribution; stress, v', is the 
major principal stress, the two other 
principal stresses being equal to zero. 
The value of the maximum shear in 
this case is: 

max'n = — 
2 (6) 

P R I N C I P A L S T R E S S E S I N T H E R A D I A L 

S T R E S S D I S T R I B U T I O N V I S U A L I Z E D 

A S V O L U M E S 

In Figure 2 point O is that where 
stresses are to be determined, and MN 
is a hypothetical foundation of arbitrary 
shape, loaded with a uniformly distrib
uted load, p. Consider an element of 
the area MN and trace straight lines 
joining all points of its perimeter with 
point O, thus forming an elementary 
solid angle, du. Trace a sphere passing 
through that element of the foundation, 
the center of the sphere being at point 0. 

The solid angle, dco, cuts out at the 
surface of the sphere an area element, R°. 
dw, where R is the radius vector or the 
distance from point 0 to the element in 
question. The area of the element of 
the foundation is then where 9 is Cose 
the variable angle formed by the radius 
vector with the vertical. Remembering 
that Cos e = this area is 

a, z 
and the value of the load acting on it is 

The value of the stress at point 
O caused by the load acting on that 
element may be determined using Equa
tion (4): 

, , 3p-R'.dM z 3p-d« 
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Figure 2 

If the element of the spherical surface 
intersecting the given element of the 
foundation, is loaded with the unit load, 
p, acting normally to that surface, the 
stress at point 0 would be the same as 
determined by Formula (6). Actually, 
in this, case z = R, from which, ap
plying Formula (4): 

. , 3p-R*.da) R 3p.dw 
— 2 ^ — R » - -25r 

Formula (7) does not contain the value 
of R; hence i t is valid for the surface 
element of any sphere having its center 
at 0 and which can be measured by the 
elementary solid angle, dw. Particularly, 
this is the case of the sphere of the radius, 



52 SOIL MECHANICS 

p, as shown in Figure 2. The discussion 
which follows refers to the horizontal 
plane, but may be extended to the case 
of any other plane passing through 
point 0. The elementary vertical pres
sure, do-,', or, in other words, pressure 
normal to the given horizontal plane, 
may be computed from equation (7) thus: 

d<r: = da'.Cos* e = ?5^.Cos* e (8) 

horizontal projection of that element 
(point b in Fig. 2); p.Cos 6 is the vertical 
projection of the radius vector; (line ab 
in Fig. 2) fn-p' is the volume of a 
hemisphere of the radius p (designation 
A will be used). Hence the product 
[p'.dw.Cos 6]. [p.Cos 6] is the volume of 
an elementary body bounded: at the top 
by the given surface element, p'.dw; at 
the bottom by the projection of that 
element p̂ .du.Cos 6; and at the sides by 
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Figure 3. Device for Determining Principal Stresses 

Multiply and divide expression (8) by p»; 
thus: 

d^: = 3^ .Cos*f l . p ' 
2ir p" 

= P 
[p'-dwCosOMp-CosO] (8(a)) 

the normals dropped from all points of 
the perimeter of the given surface ele
ment, p̂ .dw, to the horizontal plane. 
Extending this statement to the whole 
angle w, a body designated in Fig. 2 with 
the letters MicdNi is to be considered. 
Let V be its volume; then: 

The interpretation of Formula (8(a)) is 
as follows: p'.dw is an element of the 
surface of the hemisphere of the radius, 
p (point a in Fig. 2); p̂ .dw.Cos 6 is the 

ff. = p.-r (9) 

Suppose a point light is placed at 0 ; 
then M'N' will be the hypothetical 
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shadow of the foundation at the interior 
surface of the sphere. Hence: the nor
mal pressure on a plane caused by the' 
given foundation is proportional to the 
volume of a body bounded by the shadow 
referred to; by the projection of that 
shadow on the given plane and by the 
perpendiculars dropped from all points of 
the perimeter of the shadow in question 
on that plane. A position of this plane 
which corresponds to the maximum 
.volume of that body corresponds to the 
major principal stress. 

A P P A R A T U S F O R M E A S U R I N G N O R M A L 

S T R E S S E S S U G G E S T E D 

The device for determining normal 
stresses (Fig. 3) consists of a light source, 
a, and a spherical segment c, on which 
the shadow of the model of the founda
tion b, is obtained. Instead of being 
placed horizontally, the model of the 
foundation may be placed obliquely keep
ing its relative position with respect to 
the point 0. The scale of the model 
obviously has an influence on the result. 
A perforated plane, p, may revolve in all 
vertical directions, and its movements, 
are recorded on the rings r and d. The 
perimeter of the shadow is reached by 
special thin rods passing through the 
holes of the plate, p. As soon as a rod 
reaches the surface of the experimental 
segment, it is fixed in its position. The 
body thus formed by the rods is filled 
then with shot or with sand and this 
material is weighed, from which the 
volume of the corresponding body is 
found. 

S T E R E O G O N I O M E T E R 

The apparatus suggested is similar 
to the "Stereogoniometer" constructed 
according to a general idea of the 
writer in the Sloane Physics Labora
tory of Yale University (Fig. 4). The 
"stereogoniometer" may be used for 
measuring solid angles and for deter
mining the sum of principal stresses at 

a point within a semi-infinite elastically 
isotropic body loaded at its'boundary 
with a uniformly distributed load. The 
sum of principal stresses in question is 
proportional to the shadow of the 
loaded area at the surface of a sphere 
having the given point for center. An 
automobile tail light bulb (three candle 
power) represents the point, where 
stresses are determined. The apparatus 

Scah in inches 
o I e 3 * 3 e pooS) 

Figure 4. Stereogoniometer 

is characterized by the vertical line, AA, 
passing through the light source, and a 
vertical plane, W , practically con
stituting the plane of symmetry of the 
apparatus. There is a rotating shaft, 
C, on the vertical line, AA, which carries 
the model holder, H, provided with a 
vertical 180 deg. disk, D, and a 360 deg. 
horizontal disk, E. The height of the 
holder, H, may be read on the vertical 
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scale, S'. A quadrant bent from stiff 
aluminum angles i in. by i in. by i in. 
carries a transparent celluloid scale, S", 
which is graduated following the law 
(I - Cos $), where* is the angle formed 
with the horizontal by the radius vector 
joining a given division with the light 
point. The disk E, is turned by constant 
angles (usually by 30 deg.) and in this 
way, arcs of great circles of the shadow 
are successively brought for measure
ment on the scale, S". The model of 
the foundation is simply cut out of 
cardboard. The solution furnished by 
the stereogoniometer is an approxima
tion quite satisfactory for all practical 
purposes. 

I N F L U E N C E O F P O I S S O N ' S R A T I O I N T H E 

C A S E O F A C O N C E N T R A T E D L O A D 

Stress components (2) may be broken 
into three stress systems: stress com
ponents (Tx'; o-/; Txt as given by Formulas 
(3); and two systems of plane stresses 
(10) and (11) acting in the horizontal 
plane, z units deep. (See below.) 

The system (10) corresponds to a plane 
state of stress analogous to hydrostatic-
pressure since the two principal stresses 
(Tx" and ay" are equal. The system (11) 
describes tension, o-x'" being the only 
principal stress which does not vanish. 
Both systems (10) and (11), if super
imposed, describe the influence of Pois-
son's ratio on the value of stresses 
under a concentrated load, P acting at 
the boundary of a semi-infinite elastically 
isotropic body. 

// 3P m - 2 

I N F L X J E N C E O F P O I S S O N ' S R A T I O I N T H E 
C A S E O F A U N I F O R M L Y 

L O A D E D A R E A 

The horizontal projection of an area at 
the boundary of a semi-infinite body is 
the area itself. Stresses at point O 
caused by different elements of that 
loaded area may be computed graphi
cally by subdividing the projection of the 
area in question A, into circular rings 
with center at point, 0, where stresses 
are to be determined (Fig. 5). Sum
mation may be made graphically, and it 
will be shown how in the case of a uni
formly loaded area (unit load p) stresses 
as caused by tension <rx"', may be 
computed. 

Let x = az, where a is a number. 

Figure 5 

and: 

_R(R + z) ^ R». 

.R(R + z) R». 

2fl- 3m LR(R + z) R' 
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2v' 3m LR(R + z) 
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(11) 
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. 1 ^ (12) 

Since for a given horizontal plane z = 
const., the expression for a^'" may be 
represented thus: 

3P m - 2 f(a) 
'2it' 3m 

where f(a) is a function of a. Its values 
for different values of a = - are rep-

z 
resented in Fig. 6. Using this graph, 
stresses cx" may be readily computed 
for any value of x at a given horizontal 
plane. An arbitrary line, 00', is traced 
through point O, and curve f(a) is 
traced according to Fig. 6. The full 

Figure 6 

stress do-x'" at point 0, .caused by the 
load acting at the ring [MN].dx is: 

3p[MN].dx m — 2 [mn] dffx = s -f- Uo; 
2t 3m 

or introducing, for the sake of brevity, a 
designation: 

^ _3p m - 2 1 
" 2ir' 3m 'z*' 

Equation (13) may be represented thus: 
dffi" = c.[MN].[mn].dx (13(a)) 

Ordinate nm' in Fig. 5 is supposed to 
represent at a certain scale the product 
c.[MN].[inn]. Repeating this operation 
for all rings of area A, of which one only, 
namely (MN).dx is shown in Fig. 5 and 

plotting corresponding ordinates, such as 
nm', an area, A', is obtained, which, 
taking into consideration the scale of 
the drawing. Fig. 5, is proportional to 
the sum of principal stresses at point O, 
as caused by tensions a^'". 

Method of breaking the sum of 
principal stresses into the two principal 
stresses when the stressed condition is 

as M p 
air 

max o.6}r 

ce/fiV£(b) 

Figure 7. Stress Dlfierence at the Center of a 
Circular Loaded Disk 

caused by a uniform load acting on a 
circular arc has been given by the writer 
elsewhere.* The corresponding half 
stress difference is the maximum shear, 
max rs, caused by the stress system (11) 
at point 0. Since both principal stresses 
of system (10) are equal and of the same 

' Proceedings, Am. See. C. E . , Tratuaetiotu, 
Vol. 02, p. 1291. 
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sign, it will be assumed that system (10) 
does not contribute to the maximum 
shear stress at point, O. The two maxi
mum shearing stresses max n ; and max 
Tj are to be added geometrically to 
determine approximately the full maxi
mum shear at point O. The correct 
procedure would be, however, to deter
mine the principal stresses at point, 0, 

Figure 8. Stress Difference under the Edge of a 
Circular Loaded Disk 

from the three systems (3), (10) and 
(11) acting simultaneously and to com
pute the corresponding half stress dif
ference neglecting the influence of the 
middle principal stress. 

C I R C U L A R D I S K A N A L O G Y 

The preceding discussion shows how 
troublesome is the determination of the 

influence of Poisson's ratio on the max
imum shearing stress at a point of the 
mass. I t has been decided, therefore, to 
consider the stress difference under a 
uniformly loaded circular disk and to 
generalize conclusions drawn from such 
consideration. Figures 7 S'^d 8 rep
resent stress differences under the center 
and the edge of a circular disk of a radius, 
r. I t follows from these curves that the 
maximum influence of Poisson's ratio 
(curve (c) in Fig. 7) as found from the 
comparison of the curves (a) and (b), 
traced for the values of Poisson's ratio 
M = 0.25 and n = 0.5 in no case is 
greater than 50% of the stress difference 
corresponding to the value of it = 0.5. 

As stated in the beginning of this 
paper, the value of Poisson's ratio is not 
constant in the case of soils;.besides, it 
is not known how to determine this 
value in the field. Hence it is not 
worth while to make complicated com
putations operating with a quite arbi
trary value of Poisson's ratio. 

C O N C L U S I O N 

I t is being proposed to determine the 
shearing stress at a given point of the 
earth mass as caused by a loaded area 
at the earth surface, from the radially 
acting system of stresses (4) and to add 
50 per cent to take care of the influence 
of Poisson's ratio. The apparatus shown 
in Figure 3 is to be constructed and 
improved. 
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