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This problem has received but little 
attention in the literature of foundation 
engineering in the United States. The 
subject is frequently mentioned in con
nection with long slender piles driven 
through soft soil to bearing on hardpan 
or rock. I t is sometimes assumed that 
such piles are in danger of buckling as 
long columns and that the piles must be 
strengthened or reinforced to prevent this. 

I t is the purpose of this paper to indi
cate a method of analysis by which thiS' 
problem may be studied. In general, 
the paper will concern itself only with 
ordinary foundation piles that are com
pletely submerged in soil and are sub
jected to axial load only. The problem 
of a foundation pile subjected to a lateral 
load at the ground surface has been 
discussed by the writer elsewhere (A).' 

The analysis for-the stability of a pile 
subjected to axial load will be based on 
the method developed by Professor S. 
Timoshenko for the buckling of a bar on 
an elastic foundation (B). This stabil
ity problem has been the subject of a 
considerable amount of investigation, 
both theoretical and experimental, by 
Forssell (C), Granholm (D) and others 
at the Technical University of Stockholm 
in Sweden. Because Timoshenko's book 
is more readily accessible' to American 
engineers, it will be used as the basis of 
this paper. The Swedish investigations 
included also the case of a pile partly in 
and partly above the ground. Such a 
condition would exist in a dock or a trestle 
where the piles acted as free-standing 
columns over a part of' their lengths. 
I t is not the purpose of this paper to 
discuss this problem; the results obtained 

> Capital letters in parentheses refer to list 
of references at end. 

by the Swedish engineers indicated that 
it can be analyzed by an extension of the 
method they used for the completely 
submerged pile. 

T H E O R Y 

The theoretical analysis must neces
sarily be based.on certain assumptions 
about the end conditions of the pile and 
about the load distribution in the pile 
as well as in the surrounding soil. Refer
ring to Figure 1, the assumption will be 
made that the pile is hinged at both ends. 
I t will also be assumed that the entire 
load, P, is transmitted through the pile 
to the pile point. In other words, no 
part of the load, P, is to be thought of as 
being carried by friction or shear along 
the sides of the pile. I t will be further 
assumed that the pile is surrounded by 
a more or less elastic medium that will 
offer some resistance to lateral displace
ments of the pile at points along its 
length. 

This resistance of the surrounding 
medium is one of the most important 
factors of the problem and it is necessary 
to consider it in some detail. In practi
cally all of the technical literature dealing 
with beams and plates on elastic founda
tions, use is made of a coefficient which 
is called the modulus of foundation. 
This coefficient will be designated by K 
and its meaning will be explained by 
reference to Figure 2. The explanation 
will differ slightly from .that given by 
Timoshenko but the reason for the dif
ference will be explained later. In Figure 
2(a), the X-Z plane represents the sur
face of a large body of elastic material. 
A small part of this surface (QRST) 
carries a load, w, and this load causes 
a deflection, y. I t is assumed that the 
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deflection is proportional to the force 
and that the constant of proportionality 
is the modulus of foundation, K. The 
relation between w, K and y is then 
given by the equation 

w = Ky (1) 
The modulus of foundation, K, is defined 
as the force which is required to cause a 
unit area of the bearing surface to sink a 
unit distance (E). I t is important to 
keep this definition in mind so that there 

would be in pounds per square inch. 
With this method of expressing K, 
nothing is said about the third dimension 
which is in the Z direction. In effect, 
Timoshenko's method of defining w, y 
and K represents a two dimensional 
system. In Figure 2(b), a beam of length, 
L, and of breadth, b, has been placed on 
the surface of the large body of elastic 
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Figure 2 

Figure 1 

may be no confusion about the dimensions 
of K. In the' figure, pounds and inches 
have been used for purposes of illustra
tion. Any other units of force and length 
could be used as long as the units are 
consistent. The important point is that, 
by definition, K is a force divided by the 
cube of a length. 

In his discussion of this modulus, 
Timoshenko expresses w as a force per 
unit of length so that his K has the di
mensions of force per unit of area. In 
other words, w in Figure 2 (a) would be 
given in pounds per lineal inch in the X 
direction. Then, if y were in inches, K 

material. When the modulus of founda
tion, K, is used to study the behavior of 
this beam, it is necessary to consider the 
dimensions of the beam in the Z direction 
as well as those in the X direction. If w 
has been given as a force per unit of 
length, it must be understood that some 
unit of width is included in the definition. 
This unit of width does not necessarily 
have to be the same as the unit of length. 
For example, w could be given in pounds 
per inch of length per foot of width. 
However, it is necessary to pay attention 
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to the Z direction because actual problems 
are usually three dimensional. I t is the 
writer's opinion that the easiest way to 
avoid dimensional difSculties is to define 
K as a force divided by the cube of a 
length as is done in Figure 2(a}. I t 
should be noted that Timoshenko's defini
tion of K amounts to the same thing since 
a definite unit of width must be under
stood to be a part of his definition of w. 

I t is easily seen from Figure 2(a) that 
this definition of E involves an assump
tion about the nature of the deflection-
that is produced by the load, w. I t has 
been assumed that deflection occurs only 
under the area QRST to which the load, 
w, is applied. Actually, in the semi-
infinite elastic isotropic solid, a load, w, 
applied to the area QRST would cause 
deflections at other parts of the surface. 
When this fact is taken into account, the 
problem becomes involved in serious 
mathematical difficulties. The analysis 
leads to integral equations which have 
been solved only for certain simple con
ditions on the basis of further assump
tions about the nature of the deflections 
and the elastic properties of the material 
(F). In this paper, i t will be assumed 
that a modulus of foundation exists as 
represented by Figure 2 and Equation (1). 
I t will be further assumed that an ap
proximate numerical value for this mod
ulus can be determined by field tests. 

Figure 3(a) represents a free-standing 
column of length, L. The column is 
hinged at both ends and is loaded with 
an axial load, P. The critical buckling 
load for this column is given by 

creased and the buckled column would 
take the form shown in Figure 3(c). 
With elastic supports at the third points 
or at the quarter points, the critical 
buckling load would be further increased' 
and the buckled column would have the 
forms shown in Figure 3(d) or (e). 

In his analysis of this problem, Timo-
shenko assumes that these elastic sup-

/EI (2) 

in which EI is the flexural rigidity of the 
column. When the column fails it will 
buckle-into a single loop as shown in 
Figure 3(b). If an elastic restraint were 
placed at the mid-length of the column, 
the critical buckling load would be in-

Free-standing Column {Hinged Ends) 

(2) L ' 
{Pen = Euler's Buckling Load) 

With Surrounding Elastic Medium (Hinged 
• Ends) 

(1) v) = Ky (K = Modulus of Foundation) 
6KL* 
^EI 

(m = Number of Half-Waves) 
(3) 

m«(»t + 1)' 

(4) 
(Pes = Buckling Load) 

Figure 3 

ports are replaced by a continuous elastic 
medium which completely surrounds the 
column. This elastic medium is con
sidered as .having a modulus, K, defined 
by Equation (1). The derivation of the 
equations is based on a consideration of 
the strain energy of the system. When 
the column is deflected, a certain amount 
of strain energy of bending is stored up 
in the column. At the same time, the 
deflections of the surrounding elastic 
medium cause a certdn amount of strain 
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energy to be stored up in the medium. 
The critical condition for buckling occurs 
when this internal strain energy is equal 
to the external work done by the force, P, 
during the deflection of the column. The 
solution of the equation obtained by 
equating the internal and the external 
work indicates that the column would 
buckle into a sinusoidal curve. The 
number of half-waves in thp curve is 
given by the equation: 

m*(m + D' = bKL* 
jr«EI (3) 

in which m is the number of half-waves 
as indicated in Figure 3. I t is seen from 
Equation (3) that the value of m is 
determined by the elastic properties of 
the surrounding medium and by the 
length, the width and the flexural rigidity 
of the column. I t should be noted that 
the conditions of the problem require m 
to be a whole number. If Equation (3) 
leads to fractional values of m, it is 
necessary to use the next highest whole 
number. 

The critical buckling load for the 
column completely surrounded by an 
elastic medium is given by: 

/ E I / , 

The factor outside the parenthesis on the 
right-hand side of Equation (4) is easily 
recognized as the critical buckling load for 
the free-standing column with hinged 
ends. This buckling load is modified by 
the factor in parenthesis and, since m is 
always a whole number, it is seen that the 
effect of the surrounding medium is to 
increase the buckling load. In the 
Swedish investigations referred to, the 
derivation of the buckhng load equation-
was based on the differential equation of 
the elastic line of the deflected column. 
This is a fourth order differential equation 
for which a particular solution was ob
tained by means of the boundary condi

tions established by the hinged-end as
sumption. The resulting equation for the 
critical buckling load is exactly the same 
as Equation (4). 

N U M E B I C A L E X A M P L E 

Figure 4 is a graphic representation of a 
set of numerical calculations based on the 
theory outlined above. The analysis is 
made for a 12-in. concrete pile of circular 
cross-section. The pile is 100 ft . long 
and is hinged at both ends. The Young's 
modulus of the concrete is taken as 
3,000,000 lb. per sq. in. The pile is not 
reinforced and the moment of inertia of 
the cross section is 1015 in.'* The buck
ling load of this pile as a free-standing 
column may be calculated from Equation 
(2) as 20,900 lb. 

The curves show the behavior of the 
pile when it is surrounded by an elastic 
medium. On the horizontal axis are 
shown values of w in pounds per square 
foot when the deflection, y, is 1.0 in. or 
0.083 ft . From these values of w and 
y, the K-curve is calculated from Equa
tion (1). For example, when w is 1,000 
lb. per sq. ft . and y is 0.083 ft., K is 12,000 
lb. per cu. ft . Since Equation (1) is 
linear, the K-curve is a straight line. 

The m-curve is calculated by means of 
Equation (3). The area of pile that is 
bearing horizontally against the soil is 
taken to be the projected area of the 
cylindrical pile so that the width, b, is 
12 in. With numerical values, of b, 
K, L, E, and I substituted in Equation 
(3) , the right-hand side of the equation 
reduces to a dimensionless number. The 
square root of both sides of the equation 
is then taken and this operation yields a 
quadratic equation in m. The quadratic 
equation in m is then solved for m and the 
positive root is used because the negative 
root has no physical meaning. Although 
the m-curve has been plotted as a con
tinuous curve, it must be remembered 
that m can have only integral values. 
For example, when w is 600 lb. per sq. 
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ft . and y is 0.083 ft., the value of K is 
6,000 lb. per cu. f t . and m is determined 
as 3.7 haif-waves. This fractional value 
caimot exist and for this condition m 
should be taken as 4 half-waves. 

The P-curve is determined by Equa
tion (4). This curve shows the great 
increase in buckling strength that is 
obtained by surrounding the pile with an 
elastic medium. For example, consider 
a soil so soft that a load of 50 lb. per sq. 
ft . would cause a deflection of 1 in. 

subjected to a working load in excess of 
50 tons. Usually the working load is 
smaller than this. However, if this 12-
inT diameter plain concrete pile 100 ft . 
long were surrounded by a soil such 
that a load of 10 lb. per sq. f t . would cause 
a deflection of 1 in., the pile would be 
stable against bucklkig up to a load of 
about 57 tons. If the surrounding soil 
were such that a load of 200 lb. per sq. f t . 
would cause a deflection of 1 in., the 
critical buckling load would be increased 

PLHIH Cauemn PiLt (MOT RemroReto) 
Dinner tit • It iHOtea (eiiKuuiii emat-srenoM) 
LensTM ' loo rter 

K 
IH 

*/n» 
7" leis 
HiNoeo t 

IH 
'N 

* 
M 

-« m i.ccaaat 

m -e m M 

f 

y iiijtn 
•A •a •e 

/ e, t. 
/ M */ 4 tm / 

taee 
/ / 
\ w III y 1 men • w III y 1 men 

9 

roR K-euitvt 

W m Ky 

FOR l^-euitife 

too hao 9ce laoe UOO 

Figure 4 

The value of K for such a soil is 600 lb. 
per cu. f t . For the pile under considera
tion, the value of m in this soil is 1.88 
half-waves. The buckling load is cal
culated with m taken as 2 and the load is 
then determined as 236,000 lb. A soil 
as soft as this would be little better than 
a swamp and yet, when the pile is sur
rounded by such' a soil, its buckling 
strength is increased to about 11 times 
that of the same pile considered as a free
standing column. 

Ordinarily, a foundation pile is not 

to about 450,000 lb. This would be the 
crushing strength of the 12-in. diameter 
pile if it were made of 4,000 lb. concrete. 
From this analysis, it is apparent that the 
pile would be stable against buckling even 
though the surrounding soil were ex
ceedingly soft. 

In order to check the theoretical analy
sis, Swedish engineers have made numer
ous experiments which indicate that the 
theory is reasonably accurate. In one 
experiment, (G), a round steel rod f in. 
in diameter was driven vertically through 
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36 ft. of soft clay to bearing on rock. 
Because of the manner in which the load 
platform was fastened to the upper end 
of the rod, it was assumed that the upper 
end was fixed against rotation. The 
lower end was considered to be hinged. 
For these end conditions, the critical 
buckling load of the rod as a free-stand
ing column was calculated as 58 lb. 
The clay with which the rod was sur
rounded had a natural water content of 
45 per cent of the dry weight and its 
shearing strength was determined as ap
proximately 300 lb. per sq. ft . by the 
Swedish cone penetration method. The 
rod was loaded to a total of 6,600 lb. 
At this load, the measured deflection was 
0.29 in. which is but little more than the 
elastic compression that would occur if 
the rod were considered as a strut not 
subject to bending. There was no indica
tion of failure by buckling although the 
load on the rod was about 113 times the 
buckling load of the same rod considered 
as a free-standing column. Many other 
experiments made with models of various 
sizes gave similar results and all of the 
tests demonstrated the validity of the 
theoretical' analysis. Test loads placed 
on full-sized piles in actual construction 
work are not usually large enough to be 
used as a check on the theory. However, 
Professor Chas. M. Spofford has recently 
reported (H) a load test on a long 
slender pile which was driven to rock in 
Boston Harbor. The pile carried a test 
load 5 or 6 times as great as its buckling 
load would have been if it were a free
standing column with hinged ends. 
There wa& no indication of failure and 
stability against buckling was provided 
by soft blue clay with which the lower 
f of the pile was surrounded. The upper 
I was free-standing. 

S U H M A B Y A N D C O N C L U S I O N S 

Before any conclusions are drawn, it 
seems desirable to review the funda
mental assumptions on which the analy

sis is based. Referring to Figure 1, the 
basic assumptions were concerned with 
the load on the pile, the end conditions 
of the pile and the resistance of the sur
rounding medium. 

As to the load, P, the entire analysis 
is based on the assumption that all of 
the load is transmitted to the point of the 
pile. Ordinarily, this condition does not 
exist because some of the load is trans
mitted to the surrounding soil by friction 
or shear along the sides of the pile. In 
many cases the pile point does not rest 
on hard material such as gravel, hardpan 
or rock. When the total axial load does 
not reach the pile point, the pile has 
greater stability than the theoretical 
analysis indicates. Accordingly, the as
sumption about P represents the most 
critical load condition that could possibly 
exist and the actual conditions will 
usually, be very much more favorable for 
the stability of the pile. 

As to the end conditions of the pile, the 
assumption was made that both ends were 
hinged. In some cases, the pile points 
are driven several feet into hard material 
and, when this occurs, the lower end of 
the pile might be considered to be par
tially fixed against rotation. I t could 
be assumed that the lower end of the pile 
was elastically clamped. The upper ends 
of concrete piles and steel piles are usually 
embedded in concrete for a depth of at 
least a few inches. The upper ends of 
wood piles are sometimes embedded in 
concrete footings and sometimes framed 
into a wooden superstructure. I t would 
probably not be safe to assume that these 
fastenings or embedments could fix the 
upper end of the pile against rotation 
unless they were actually designed for 
that purpose. However, the, conditions 
at the upper end of the pile could easily 
be such that the head of the pile was at 
least partially restrained against rota
tion. Any such restraints at the ends 
of the pile would add to the stability of 
the pile against buckling. The hinged-
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end assumption is therefore a more 
critical condition than would ordinarily 
occur in actual practice. 

Concerning the resistance of the sur
rounding medium, it was assumed that 
a modulus of foundation exists and that a 
numerical value for this modulus could 
be determined by field tests. The argu
ment for the existence of the modulus -is 
based on the fact that any solid will offer 
some resistance to volume change and to 
distortion. A resistance coefficient of 
some sort must exist and the modulus, K, 
is simply one form in which this resistance 
coefficient may be used. The determina
tion of a numerical value for K would 
probably be made at or near the' ground 
surface. A method for determining the 
lateral resistance of soils at considerable 
depths below the ground surface was 
developed several years ago by Professor 
F. Kogler (I). 

In this connection, it is necessary to 
keep in mind the fact that the lateral 
resistance of the soil may vary with the 
depth. Tests made at the surface of the 
ground would have to be supplemented 
by borings or other investigations that 
would give information about the soil 
over the full length of the pile. The 
lateral resistance of the soil might increase 
or decrease more or less uniformly with 
the depth or this resistance might vary 
along the length of the pile in some more 
complicated manner. In this paper, it 
has been assumed that K would be con
stant over the full length of the pile. 
Therefore, in order to make numerical 
calculations with Equations (3) and (4), 
it would be necessary to select some 
average value of K. I t is mathematically 
possible to consider K as a variable and to 
define it â  some function of the depth. 
This function would have to be taken 
into account in the integrations with the 
result that the mathematical part of the 
problem might become considerably more 
complicated, depending on the nature of 
the function used to express K. 

Any analysis of a problem of this kind 
must necessarily be based on certain 
simplifying assumptions. However, it is 
the writer's opinion that the basic as
sumptions made in this paper represent 
more critical conditions than any that 
are apt to be found in ordinary pile-
driving operations. I t is also the writer's 
opinion that the foregoing analysis leads 
to the following conclusions: 

(1) In any soil that is capable of sup
porting an appreciable part of 
the axial load by friction or shear 
along the sides of the pile, there 
is no reason to believe that the 
pile might buckle as a column 
or that it should even be con
sidered as a column. 

(2) Even in very soft soils overlying 
rock or hardpan where it is 
reasonable to assume full point-
bearing, the surrounding soil can 
be exceedingly weak and still be 
able to provide sufficient lateral 
stability to prevent buckling 
under the loads ordinarily used 
on foundation piles. 

(3) In any soil condition where the 
full point-bearing assumption is 
justified, a relatively weak soil 
will provide lateral stability up 
to the crushing strength of the 
pile. 

In conclusion, the writer wishes to call 
attention to an important practical 
matter in connection with this problem. 
The probability of buckling of foundation 
piles is often considered by engineers 
when they are writing specifications or 
drawing up building codes. Sometimes 
an arbitrary requirement is set up for 
the maximum allowable ratio of length 
to diameter. In other cases, some form 
of stiffening is required to insure the 
stability of the pile against buckling. 
I t is the writer's opinion that these re
quirements are often purely arbitrary 
and in most cases they are entirely 
unnecessary. 
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