PERCENTILE SPEEDS ON EXISTING HIGHWAY TANGENTS

By D W. Loutzenheiser
Assoczate Highway Engineer, Publıc Roads Administration

SYNOPSIS

The distribution of speeds of over 260,000 vehicles in normal travel (1934, 1935 and 1937) on 40 different sections of highways of various types in four eastern states has been examined, summarized and analyzed in terms of percentile speeds Curve patterns of the distribution of speeds so expressed were found to be nearly identical over a wide range of highway types, average speeds, and traffic volumes
Since the term "assumed design speed" is defined only with respect to future travel speeds, and the relation of present day travel speeds to future travel speeds is not known, the analysis was made to select a percentile definition of "speed rating" which term is used to denote the speed which bears the same relation to observed travel speeds that the assumed design speed 18 intended to bear to future travel speeds.
Examination of the range of speeds found on the group of higher speed roads included, with average speeds of 40 to 50 mph , shows that definitions in terms of percentile values of 90 to 98 are necessary if these are to be rated as 60 mph highways. Even higher percentile values are necessary to rate any of them as 70 mph highways.

Analysis of these data to determine a percentile speed value to be used as a definition point for speed rating indicates that an 80 percentile value 18 too low, a 90 percentile value is questionably low, a 95 percentile value is reasonably desirable, and a 98 percentile value appears to be the desirable definition point.

An assumed design speed is being used to an increasing extent in the geometric design of highways. The A.A.S.H.O. approves the followng definition for assumed design speed: ${ }^{1}$
"The assumed design speed of a highway is considered to be the maximum approximately uniform speed which probably will be adopted by the faster group of drivers but not necessarily, by the small percentage of reckless ones."
The term "assumed design speed" properly applies only to the design of roads not yet constructed and properly should refer to future travel speeds. We do not know the relation between present travel speeds and future travel speeds. We do not know the precise point in the range of future travel speeds that should be chosen as the assumed desugn speed. We do know that this point should be such that only a small percentage of drivers will exceed this

[^0]speed but we do not know just how small this percentage should be

Roads on which the observations here reported were made, doubtless were not designed on the basis of an assumed design speed. Therefore the expression "highway speed rating," or smply "speed rating," is used to denote the speed which bears the same relation to observed travel speeds that the assumed design speed is intended to bear to future travel speeds. Since the speeds of all vehicles on any road can be measured, knowledge of a permissible value for the percentage of vehicles exceeding the highway speed rating would make it possible to determine the actual speed rating for that road. The object of this paper is to analyze speed data for existing roads and determine the percentile value to be used as a defintion for highway speed ratings.
The term "percentile", while perhaps unfamiliar, is specific in meaning and is a useful tool in reference to speed distribution data A dictionary definition is:
"Any setics of values that indicate the distribution of a laige group of measurements If the results obtained be arranged in order of magnitude and divided into 100 equal groups, then a value lying just above the first group is the first percentile, one just above the second, the second percentile, etc" A percentile speed iefers to the cumulative percentage of the number of vehicles which travel at or below a certain speed It is the highest speed of a lower speed group of vehicles, the number of vehicles in the group being a stated percentile of the total Percentile speed is a general term; only when it is applied to a particular speed distribution can it be expressed in actual miles per hour A 90 percentile speed may be 28 mph on one road, 51 mph on another road, 35 mph on a third; in each case the roads and traffic conditions are totally different yet the speed given is that exceeded only by the faster 10 percent of vehicles.

Data
In a series of studies during 1934 and 1935, the Division of Highway Transport of Public Roads obtained the individual vehicle speeds at a large number of highway locations in three eastern states and cooperated with the Illinois State-wide Highway Planning Survey in a similar study during 1937 While these studes were designed primarily to obtain data for use in determining the traffic capacity for highways of different widths and number of lanes, the data obtained covered such a large number of vehicles and highway locations and have been tabulated in such a form that they have also been useful for a variety of other studies relating to traffic flow. For this particular study, tables were made available showing the frequency distribution of speeds and average speed at each highway location Each study consisted of one or more days record of the speeds of all vehicles passing through a distance of
about $\frac{1}{5}$ mile, zesulting in speed-volume data for 2,000 to 25,000 vehicles at that location The studies were on 2-, 3- and 4 -lane roads, including some divided highways, and were for the most part on level tangent stretches although a few sections were on grades and curves Each study location was selected primarly as a point where high peak hour tiaffic volumes were anticipated. However, the length of study was sufficient to obtain data for the low traffic volume periods as well Avcrage data for the whole of each study are used

The times of entrance and cxit of each vehicle on the measured study length were recorded by manually operated electrically controlled pens on charts revolving at unifoim speed, permitting scale reading of the time requined to traverse the study section The accuracy of the recording device was such that individual vehicle speeds were determinable to an accuracy of one mile per hour for speeds under 40 miles per hour and from 15 to about 30 miles per hour for the higher speeds

A major portion of these data was obtained in 34 studics (12, 9 and 13 studies on 2 -, 3 - and 4-lane roads, respectively) in which speeds were measured for a total of 236,724 vehicles traveling over level tangent, or nearly so, sections of highways These 34 studies include all data obtained on level tangent study sections sufficiently removed from steep grades so that tiavel speeds were not affected by the grades Also included in the 34 studies are a fow made on slight grades or on flat curves Speeds measured in these studies show no appreciable variations from the specds on level tangent sections

Another group examined consisted of 6 other studies with a total of 12,336 vehicles traveling up grades of 7 and 8 percent and 11,205 vehicles traveling down the same giades

The data used consisted of a summary
of speeds observed on each study section showing the cumulative percentage of total vehicles traveling at or below indicated speeds. Data for each section of the level-tangent group are indicated on Figure 1 by the connected series of
served. Appended tabulations of such information for each study show average traffic volumes ranging from 240 to 1,694 vehicles per hour.

Tables 1, 2, 3 and 4 give the pavement width, grade, and alinement on the study

TABLE 1
Summary of 2-Lane Road Studies

Study number	Pavement wrdth (feot)	Grade and Curvature		Average (mph) (mpb	$\begin{gathered} \text { Average } \\ \text { volume } \\ \text { (vph) } \end{gathered}$	$\left\|\begin{array}{c} \text { Drectional } \\ \text { (pationt) } \end{array}\right\|$	Total vehicles included
4 A	22	level	tangent	21.9	1,061	45-55	8,028
5 P	24	level	tangent	297	632	44-56	3,678
40	24	level	tangent	301	860	47-53	6,086
4 N	20	level	tangent	30.2	850	45-55	2,865
5 A	20	level	reverse curve	34.4	649	45-55	9,155
7 F	18	level	tangent	359	519	45-55	4,060
5 C	18	level	tangent	370	739	47-53	14,709
70	20	level	4° curve	379	371	45-55	2,591
5 D	18	sl rolling	tangent	386	570	46-54	4,088
7 K	18	level	tangent	402	547	46-54	4,014
7 B	18	0.4\%	tangent	41.7	240	50-50	1,741
5 H	18	level	tangent	427	525	48-52	3,737
Total of 12 .							64,752

TABLE 2
Summary of 3-Lane Road Studies

Btudy number	Pavement width (feet) (feet)	Grade and Curvature		Average speed (mph)	Average volume (vph)	$\left\|\begin{array}{c} \text { Directional } \\ \text { ration } \\ \text { (percent) } \end{array}\right\|$	Total vehicles included
4 D	30	level	tangent	305	1,243	41-59	4,069
4 L	30	level	tangent	330	1,254	37-63	8,492
5 R	27	1\%	reverse curve	346	763	39-61	11,069
5 N	27	low crest	sl curve	351	1,284	39-61	18,689
4 M	30	level	tangent	369	1,138	33-67	12,128
4 Q	30	level	tangent	370	546	31-69	1,818
5 K	30	level	4^{0}	43.3	471	45-55	2,827
5 J	30	level	tangent	451	731	45-55	7,717
5 M	30	3\%	sl. curve	452	463	50-50	3,348
Total of 9 .							70,157

dots, producing an S-type curve. The small circles near the center of the curves indicate the average speeds for each of the studies The range of average speeds -from 22 to 47 mph -gives some indication of the diversity of highway and traffic conditions that have been ob-
sections used and traffic data for the vehicles observed. The prefix number 4,5 , or 7 of the study number (left column) indicates the years 1934, 1935 and 1937, respectively. The speed and volume figures are combined averages for the total (two directional) number of

TABLE 3
Sunmary of 4-Lank Road Studies

Study number	$\begin{gathered} \text { Pavement } \\ \text { vidth } \\ \text { (feet) } \end{gathered}$	Grad	d Curvature	Average speed (mph)	Average volume (vpn)	$\begin{gathered} \hline \text { Direchonal } \\ \text { ration } \\ \text { (percent) } \end{gathered}$	Total vehucles included
4 E	50	level	tangent	304	1,694	48-52	22,396
* 4 H	28-28	level	tangent	319	1,119	42-58	5,909
4 C	40	level	tangent	337	1,090	39-61	7,800
4 G	36	level	tangent	341	755	49-51	4,433
7 G	40	level	tangent	410	475	46-54	3,324
7 U	40	level	55° curve	412	560	49-51	2,981
7 P	36	level	tangent	412	358	45-55	3,177
* X	20-20	level	tangent	439	1,128	49-51	9,761
7 S	40	level	tangent	442	1,051	35-65	17,690
*7 L	22-22	level	tangent	442	800	40-60	4,108
7 V	40	level	tangent	444	728	44-56	5,457
*7 W	20-20	level	tangent	464	964	41-59	5,143
* 7	20-20	level	tangent	467	1,095	36-64	9,636
Total of 13							101,815

* Divided highway

TABLE 4
Sumarary of Studies on Grades of 7 \& 8 Percent (Figure 5)

$\begin{gathered} \text { Study } \\ \text { number } \end{gathered}$	$\left\|\begin{array}{c} \text { Pavement } \\ \text { (lanes) } \\ \text { (ldth } \\ \text { (feet) } \end{array}\right\|$		Grade and Curvature		$\begin{aligned} & \text { Aver } \\ & \text { age } \\ & \text { sped } \\ & \text { (mph } \\ & \text { (mph) } \end{aligned}$	$\begin{array}{\|c\|} \substack{\text { Average Vol- } \\ \text { ume }} \\ \hline \end{array}$		Durectional (percent)	Totalvehiclesstudied	$\left\lvert\, \begin{gathered} \text { Per- } \\ \text { tent } \\ \text { trueks } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Per- } \\ \text { perst } \\ \text { busses } \end{gathered}\right.$		
50	3	27			up 7\%	tangent	244	500	856	42-58	3,641	108	09
4 K	3	30	up 7\%	tangent	322	272	553	49-51	1,342	92	13		
5 E	2	18	up 8\%	winding	336	238	492	48-52	1,588	65	03		
4 J	3	30	up 7\%	tangent	338	327	706	46-54	2,387	91	08		
5 F	2	18	up 7\%	tangent	341	252	453	45-55	1,066	51	03		
5 G		18	up 7\%	tangent	342	229	486	47-53	1,412	50	01		
Total 6								Total	12,336				
50		27	down 7\%	tangent	292	357	854	42-58	2,308	145	11		
4 K	3	30	down 7\%	tangent	350	276	553	50-50	1,242	72	07		
5 E	2	18	down 8\%	winding	357	255	493	48-52	1,716	52	02		
5 F		18	down 7\%	tangent	368	201	453	44-56	1,578	74	04		
5 G	2	18	down 7\%	tangent	394	248	477	48-52	1,539	47	02		
4 J		30	down 7\%	tangent	404	388	711	45-55	2,822	66	08		
Total 6								Total	11,205				

vehucles shown The duectional ratio is the ratio between the percentage of total tiaffic tiaveling in one duection and
the percentage tiaveling in the other $\mathrm{d}_{1}-$ rection for the total time of study. The studies on grades and on 4-lane divided
highways (and study 4 E) were made separately for traffic in each direction but sufficient information is avaulable for the total volumes and directional ratios shown.
of the effect of volume on the speed distribution curve. Other than this (Table 5) all data used consisted of the combined average for all vehicles studied at each location.

TABLE 5
Summary of Studies by Volume Groups (Figure 6)
(Data for 10 -minute intervals combined into volume groups)

Study number	$\begin{aligned} & \text { Pave } \\ & \text { ment } \\ & \text { wdidth } \\ & \text { (feet) } \end{aligned}$	Grade and Curvature		Average speed (mph)	$\begin{aligned} & \text { Average } \\ & \text { volume } \\ & \text { (vph) } \end{aligned}$	$\begin{gathered} \text { Directional } \\ \text { (pationt) } \end{gathered}$	Total vebicles ancluded
7 F	18	level	tangent	357	359	42-58	323
70	20	level	$4^{\text {a }}$ curve	380	340	49-51	1,305
5 C	18	level	tangent	407	355	49-51	1,043
7 K	18	level	tangent	443	314	29-71	419
Total 4				Average	342	Total	3,090
4 N	20	level	tangent	320	528	49-51	761
7 F	18	level	tangent	34.2	566	50-50	1,131
5 A	20	level	reverse curves	344	588	32-68	1,894
70	20	level	4° curve	372	513	32-68	939
5 C	18	level	tangent	387	556	50-50	1,510
5 D	18	sl rolling	tangent	387	548	43-57	1,628
7 K	18	level	tangent	40.7	559	47-53	1,118
5 H	18	level	tangent	425	559	46-54	1,244
Total 8				Average	552	Total	10,225
4 A	22	level	tangent	243	716	no data	1,312
5 A	20	level	reverse curves	315	765	41-59	2,419
40	24	level	tangent	320	795		1,216
5 C	18	level	tangent	355	752	48-52	2,693
7 K	18	level	tangent	391	711	41-59	1,066
5 H	18	level	tangent	418	738	50-50	249
Total 6				Average	746	Total	8,955
4 A	22	level	tangent	228	1,011	no data	2,823
40	24	level	tangent	289	1,052	29-71	1,557
5 A	20	level	reverse curves	313	1,065	no data	1,293
4 N	20	level	tangent	31.4	1,098	43-57	809
Total 4				Average	1,055	Total	6,482

For purposes of studying highway capacity the basic data had been tabulated in $10-\mathrm{min}$. interval groupings and combined into various volume groups. Table 5 indicates the only portion of these detailed data used herein for examination

Speed Distribution Curves

Figure 1 demonstrates the form of the combined average speed distribution data for each study The three parts show the data for the various lane-width roads

in the group of 34 studies on level tangent highways. A general examination of the data in this form indicates that the speed distribution curves for any road width are of the same general form over a rather wide range of average speeds and volumes. All factors jointly control only the steepness or speed range of the curves. Further, comparing the curves for the different road widths, the range of speeds covered is about the same (with the single exception of the 2 -lane study 4A) for considerably different volumes Even the distribution of speeds on the 4 -lane divided highway (dashed) with their higher volumes show no marked variation from those on the 4-lane undivided highways Accordingly data for both divided and undivided 4 -lane highways are considered jointly

The speed distribution data presented in Figure 1 clearly illustrate the convenience and specific meaning of a percentile value in reference to a group of speed studies. The different highway and traffic conditions on the various locations studied gave speed distribution curves that are sumilar but widely varied for any actual speed value For instance, the studies on 2-lane roads show a speed of, say, 30 miles per hour (vertical line) for percentages of vehicles ranging from 5 to 98; for each study there is a different percentage at this speed. However, use of any one percentile value, say 90 , (horizontal line) determines the same relative point on all of the curves-the speed that is exceeded by only the faster 10 percent of the total vehicles.
The lowest speeds in Figure 1 are about 10 to 15 mph in all cases and top speeds vary widely, from 50 to 90 mph . The average speeds (indicated by small circles) are in all cases less than 50 mph and fall chiefly within a range of 30 to 47 mph . On the speed distribution curve the average speed invariably is slightly above the median speed, falling within the range of 50 to 60 percent of
vehicles. That is to say, about 55 percent of the vehicles observed on the highways were traveling at or slower than the average speed of all vehicles.
Examination of the 34 curves of Figure 1 indicates that, regardless of the volume or the lanes of road, the curves for the same average speed are nearly identical. This suggests that combination and analysis of data can conveniently be made in terms of the average speed for each study. This basis is desirable since the term "average speed" is unversally used and is not confusing. Most engineers have no immeduate conception of highway and traffic conditions identified by a "speed range (say 40 mules per hour between limits of 1 to 99 percent of vehicles) or by a 90 "percentile" speed of 40 miles. But all have some immediate visualization of highway and traffic conditions that result in an average speed of (say) 40 miles per hour on a highway of (say) 2 lanes.
Figure 2 shows the average speed plotted against the average volume for each of the 34 studies on level tangent sections on roads havng different numbers of lanes. In this form the data may be said to show a general trend of lower average speeds for higher volumes of traffic (sloping down toward the right) for each width, as we all know should be the case But this trend is not clear cut, particularly for the 4 -lane roads. It is, in fact, quite indicative of the usual shotgun diagram obtained with widely varied volumes of traffic. From this chart it can just as logically be stated that, considering all studies jointly, roads of the same average speeds may be carrying almost any volume of traffic. This is in effect a restatement of the apparent conclusion from Figure 1, i.e., that speed distribution curves for different roads with the same average speed are nearly identical, regardless of the traffic volumes or the number of lanes. It is concluded therefore that combination and analysis
of these data can logically be made in teims of the average speeds.

Analysis

The method of analysis in teims of the average speed is indicated by Figure 3 Speeds fol three peicentiles, 98. 95 and 90, are shown from top to bottom for the roads of 2 -, 3 - and 4 -lane widths from left to right Each dot is the speed for one study at which the indicated peicentage of vehicles was included plotted against the average speed for the studv While only high percentile values are
speed divided by the average speed of the study to obtain a 1atio, which is designated as K The value of K , then, is a ratio that is the quotient of a selected speed of tiavel and the average speed tor a studv It is a speed scale in pioportrons of the average speed These ratios for a giren percentile weic then averaged numericallv to obtain a gioup average for different types or combinations of roads, which is cferred to as average K for an indicated peicentile

In Figure 3 the light solid lines indicate values of K to show the limited spicad

Figure 2
illustiated in Figure 3, the same tvpe of chat relation is found at all peicentiles It is appaient in all cases illustiated that there is little erior in expicssing the peicentile speed-average speed relation as a straight line, or that for anv percentile speed its ratio to the average speed is nearlv a constant for all the studies

This presents a ready means for combining the values of the vanous studies The procedure consisted of plotting the separate speed distubution cuives in the form shown in Figure 1, and iounding the values to a smooth S-cuive Fiom this lounded curve the value of the speed was read for a designated percentile and this
for the percentile. While the K values vary for the different percentiles theie is little variation between the gioups of studies fol different road widths The slope of heary line is the average value of K at that peicentile, for the group of studies.

Figure 4 presents the avelage values of K for the whole range of peicentiles, with a separate line for cach lane-width gioup of studies The heavy dots indicate the combined average value of K for all $3 \pm$ studies, the cursed lime itselt being omitted foi cleaness The calculated values for these four curses ane shown in the first five columns of Table 6.

Pigure 3

Figure 4

The data at the bottom of this table mdicate this combined curve to be the tesult of obseivations of $\mathbf{2 3 6}, 724$ vehicles

The average K values for the gioups of studies on 3- and 4-lane roads are nearlv. the same evcept for less than 20 peicent

TABLE 6
Sumart of Calculated Values of K (Speed of Travel - Average Speed)

Percent of vehicles included	A verage values of K									
	Major studs by road widths				$\begin{aligned} & \text { Grade studs } \\ & (1-w a y) \end{aligned}$		Volume study			
	${ }_{\substack{\text { 2-lane } \\ \text { roads }}}$	${ }_{\substack{\text { 3-lane } \\ \text { roads }}}$	4-laneroads	Combined total	$\underset{\substack{7-8 \% \\ \text { grades }}}{\mathrm{Un}^{2}}$	$\begin{gathered} \text { Doun } \\ \text { grade } \\ \text { grades } \end{gathered}$	Average volume of			
							342 vph	552 vph	746 vph	1055 vph
100	2025	1598	1826	1915	1913	1718	1788	1989	1807	1702
99	1496	1407	1420	1444	1562	1420	1472	1474	1488	1445
98	1419	1355	1354	1378	1502	1357	1420	1402	1418	1372
97	1376	1317	1318	1338	1455	1320	1385	1356	1372	1330
95	1324	1270	1265	1287	1390	1275	1330	1302	1310	1270
93	1285	1242	1235	1255	1347	1245	1288	1270	1267	1232
90	1240	1207	1200	1216	1300	1205	1245	1228	1225	1190
85	1183	1161	1158	1168	1243	1158	1190	1176	1167	1135
80	1138	1128	1125	1130	1202	1127	1148	1135	1127	1098
70	1078	1069	1070	1072	1133	1072	1085	1070	1057	1040
60	1022	1022	1024	1023	1067	1025	1030	1019	1003	1005
50	975	977	981	978	1002	980	980	975	962	965
40	928	934	937	933	940	938	925	930	922	935
30	878	891	894	888	870	897	868	881	880	895
20	823	842	837	833	783	852	812	828	842	855
15	792	813	802	803	715	818	778	799	812	830
10	752	778	758	761	620	778	738	760	778	795
6	707	737	709	716	512	735	690	716	740	758
2	626	661	607	628	333	652	585	654	663	685
No of studies	12	9	13	34	6	6	4	8	6	4
included	64,752	70,157	101,815	236,724	12,336	11,205	3,090	10,225	8,955	6,482
Range of avg speeds										
Low	219	305	304	219	244	292	357	320	243	228
High	427	452	467	467	342	404	443	425	418	314
Range of avg vols										
Low	240	463	358	240	238/492	201/453	314	513	711	1,011
Hıgh	1,061	1,284	1,694	1,694	500/856	388/711	359	586	795	1,093
Plotted on figure	4 \& 5	4	4	4\&7	5	5	6	6	6	6

at 34 locations, in average study volumes ranging fiom 240 to 1,694 vchicles per hour and for av erage speeds ranging from 22 to 47 miles per hou
of the rehicles, and even then are not far removed The curve for the group of studies on 2-lane roads is somewhat flatter m slope indicating a greater spread
in the range of speeds. While there is a measurable difference between the three curves, the combined curve is sufficiently close to any one of the three that it alone may be used for further analysis, without appreciably affecting the results.

The value of K is 1.0 at the average speed, which is found to be that of 55 percent of vehicles That is, the average speed of travel is a 55 percentile speed, slightly above the median speed (50 percent of vehicles). The maximum or 100
values (left scale), and is only slightly S-curved between 10 and 90 percentile values. Dividing the K scale roughly into thirds, it is found that almost half of the vehicles travel at speeds in the lower third of the speed range, about half of the vehicles travel at speeds in the intermediate third of the speed range, leaving only a small percentage of vehicles that travel at speeds in the upper third of the speed range. Or, stated otherwise, an overwhelming majority of

Figure 5
percentile speed is 1.92 times the average speed for the combined curve, while a near maximum or 99 percentile speed is 1.44 times the average speed. The minumum speed is only 05 the average speed. Accordngly the range of travel speeds is from 05 to 19 or about 1.4 times the average speed. By substitution of actual mile per hour values for any one average speed in lieu of the K scale this chart becomes a typical distribution curve for that average speed.

The combined speed distribution curve of Figure 4 is nearly a straight line for speeds between 20 and 80 percentile
the vehicles travel at speeds in the lower two-thurds of the speed range. Similarly, it is found that nearly 90 percent of vehicles travel in the lower one-half of the speed range.

Before proceeding further in a per-centile-speed rating analysis it is pertinent to note the effect of grades and of volumes on the type of curves of Figure 4. For the effect of grades Table 4 gives details of six other studies made on 7 and 8 percent grades, the available speed data being for one-way operation. The calculated average values of K are shown in the sixth and seventh columns of

Table 6 and ane plotted on Figure 5 The data for these 6 studies on giades showed no appreciable difference between those on 2-lane roads and those on 3-lane roads Accordingly they are summarized together, and ane to be compared with the level groups of the same lane width Figure 5 shows speed distribution curves for tiavel in both diections on the grades The cential cuive, as indicated, is the average for the 2-lane level roads The curve for the 3 -lane level roads so
alelage speeds downgrade are 2 to 6 mph fastel than the avelage speeds upgiade

For the effect of volume, Table 5 m dicates the valious volume gloupings of data available in the 12 studies on 2-lane loads, consisting of basic data for $10-$ minute intei tals combined into groups of the indicated volumes Each of these is only a pait of the total data for the study as previouslv used The last four columns in Table 6 list the calculated

Figure 6
closelv follows the cuive for downgiade travel that it was omitted for clanty. Figure 5 indicates that the effect of a steep grade is a decided flattening of the K curve for the tiavel upgiade and a slight stecpening of the curve for the tiavel downgiade The flatter curve for the tiavel upgiade shows a wider range of tavel speeds, doubtless due to the lower tiuck speeds It is interesting to note that the speeds downgrade are not more extensive in lange than those for level 2- and 3-lanc highways The
avelage values of K , which are plotted on Figure 6 The four volume groups are indicated by different line symbols and the combined average for 2-lane roads is shown by the heavy dots. This chait indicates that there is relatively little difference in the K values between volume ranges of 342 and 1055 This difference is only slightly greater than that between the 2 -lane and 4 -lane ioads (Fig 4) and is less than that between the upgrade and downgrade tiaffic (Fig 5). The steepening form of cuive for the
higher volumes (Fig 6) indicates a reducing range of speeds at which the vehicles travel showing the influence of the bunching of vehicles While the various effects of different volumes of traffic may be extensively discussed, it is not the purpose of this analysis to elaborate on such phases. This chart

55 percentile value as unity, and is shown as the right curve in Figure 7 The combined speed distribution sumilarly can be presented with other percentule values as unty, i.e., replotting the curve on such proportions on the horizontal scale that the unity point falls on other desired percentile values. The com-

TABLE 7
Comparison of Speed Distribution in Terms of Various Percentile Speeds (Figure 7)
(Combined average of 34 studies)

Percent of vehiclesincluded made	Speed of travel as a multuple of							
	$\begin{gathered} 85^{*} \\ \text { percentale } \\ \text { speed } \end{gathered}$	$\underset{\substack{\text { percentule } \\ \text { speed }}}{ }$	$\underset{\substack{\text { percentile } \\ \text { speed }}}{\text { so }}$	$\underset{\substack{\text { percoentile } \\ \text { speed }}}{\text { got }}$	$\begin{gathered} 95 \\ \text { percentile } \\ \text { speed } \end{gathered}$	$\begin{gathered} \text { 日8 } \\ \text { percentile } \\ \text { speed } \end{gathered}$	$\underset{\substack{\text { perceantule } \\ \text { speed }}}{\text { ge }}$	$\underset{\substack{\text { percentile } \\ \text { speed }}}{100}$
100	1915	1786	1695	1575	1485	1390	1326	1000
99	1444	1347	1278	1188	1120	1048	1000	. 754
98	1378	1285	1220	1134	1069	1000	954	719
97	1338	1248	1185	1100	1037	971	927	699
95	1287	1204	1140	1058	1000	936	893	. 674
93	1255	1170	1110	1032	973	911	869	655
90	1216	1135	1076	1000	943	883	842	. 635
85	1168	1086	1034	961	906	848	807	610
80	1130	1054	1000	930	876	820	783	590
70	1072	1000	949	882	832	778	743	560
60	1023	954	906	842	793	742	708	534
50	978	012	865	804	758	710	677	510
40	933	870	826	767	724	677	646	. 487
30	888	828	786	730	689	645	615	458
20	833	777	737	685	646	604	577	435
15	803	747	709	659	621	582	554	. 419
10	761	. 710	. 674	. 626	590	552	527	397
6	716	. 668	634	589	555	519	496	370
2	. 628	. 586	556	. 517	487	456	435	317

* Average speed.
is used primarily to demonstrate that in the form of K values the effect of volumes is relatively small.

The combined speed distribution curve for the 34 studies on level tangent highways has been derived (Fig. 4) in terms of K , which is the speed of travel expressed as a multiple of the average speed. This is a speed distribution in terms of a
bined speed distribution is shown in Figure 7 with values of unity at 55,70 , $80,90,95,98,99$ and 100 percentiles; these data are listed in Table 7. In this form the combined data may be studied to determine the effect of various percentile values as definttions of the highway speed rating.
For convenience the data of Figure 7
are shown in the same form but on actual values as definitions The right insert mile pei hour abscissae in Figure 8 shows the 97 to 100 percent values on an

Figure 7

Figure 8

A speed rating of 60 mph is assumed for this demonstration of vanous percentile
enlarged veitical scale, of particular use in reading the top speed

Percentile Defintion of Hughway Speed Rating
The data presented have demonstrated that for any given highway (and to some extent for any traffic volume upon it) the range of speeds at which all types of vehicles travel upon it and the distribution of the traffic withn this range of speeds follow a definte curve pattern when expressed in terms of the average speed or any one percentile speed. This curve pattern is the same whether the combinations of highway, topography and traffic are such as to produce a low average speed or a high average speed The combined distribution pattern is in a form to be examined to determine at what point in the speed range the speed rating should be defined.

To agree with the definition it is apparent that a highway speed rating should be such that only a few of the highest speed vehicles are not included. But the speed rating need not be as high as the top speeds measured Obviously the speed rating should be considerably higher than the average speed, which would include only 55 percent of vehicles A low percentile value results in a low speed rating and consequent low standards to accommodate vehicles at or below it, but a greater proportion of vehicles will exceed the speed rating As the percentile value approaches 100 there is an increase in the speed rating and the standards to accommodate vehicles at or below it, but few vehicles will then exceed the speed rating.

Figure 8 strikingly demonstrates the different speed distributions that can be represented by various percentile defintrons of a speed rating of 60 mph . Note first the range of average speeds that these definitions would cover, from 31 mph for the $\mathbf{1 0 0}$ percentule to $\mathbf{6 0 \mathrm { mph }}$ for the 55 percentile. Referring to the orig1nal data, Figure 1, the higher speed group of studies showed average speeds between 40 and 50 mph .

Referring to Figure 8 and projecting 40 to 50 mph speeds (lower scale) it is obvious that percentile definitions of 90 to 99 are necessary in order to rate these highways at 60 mph Figure 8 also shows that a percentile definition less than 90 would result in an average speed or a range of speeds well above those so far found on our highways if the rating is to be $\mathbf{6 0 ~ m p h}$.

The extent of the difference between the speed rating and the average speeds of travel for various percentile values as definitions, Figure 8, gives a clue toward selection of a proper percentile value For percentile defintions of 70, 80, 90 and 95 the speed rating of 60 mph is $4,7,11$ and 14 mph above the average speed, respectively For 99 and 100 percentrle values the speed rating is 19 and 29 mph above, respectively It appears that little would be gained unless the speed rating is at least 10 mph above the average speed, corresponding to a percentile value of about 90 for the 60 mph rating, and it certainly need not exceed about 20 mph above, corresponding to a percentile value over 99. For speed ratings less than 60 mph (not illustrated) higher percentile values yet are necessary in order that the speed rating will be at least 10 mph above the average speed. This means that the speed rating definition should be high enough that not over 10 percent of the vehicles will exceed it, but by the same token it need not be high enough to include all vehicles.
Considering only speeds above the speed rating, the distributions in Table 8 are noted from Figure 8 (assumed speed rating of 60 mph).

These data indicate that only the first two percentile values as definitions, 95 and 98 , are well within the scope of desired speed ratings The 90 percentle values as a definition might be included, but is on the questionable verge. Lower percentrle definitions defintely are beyond the desired limits.

Considering the distirbution of tiaffic speeds below the speed rating, Figure 8 shows the data in Table 9 (assumed speed rating of 60 mph) The data of Table 9 mdicate the undesinable low proportion of vehicles, 6 to 42 peicent, that would be tiaveling slower than specds of 40 to 50 mph ($\mathrm{e}, 067$ or 083 times the speed rating) if the speed lating were to be defined as one of the lower peicentile values It appear's desirable

TABLE 8

Percentule value as a definition of speed rating	Percent of vehicles exceeding speeds of				
	60 mph	65 mph	70 mph	75 mph	80 mph
98	2	06	02	006	002
95	5	17	05	02	005
90	10	4	13	05	02
80	20	9	4	14	05
70	30	16	7	3	12

TABLE 9

Percentile value as a definttion of speed rating	Percent of vehicles traveling at or below speeds of				
	40 mph	45 mph	50 mph	55 mph	60 mph
98	37	63	82	94	98
95	24	48	71	86	95
90	16	35	58	78	90
80	9	22	42	63	80
70	6	16	31	51	70

to so "peg" the speed rating that about half of the vehicles ave tiaveling slower than specds in the range of 07 to 08 of it (Figure 7), or about 40 to 50 mph as shown in figure 8 Again only the 95 and 98 percentile values are as desined for definition, and the 90 percentile value is just on the edge Lower peicentile definitions will not suffice

Chorce of a percentrle value for use as a definition of speed rating would be simple if the combined speed distribution curve (Fig 4, 7 oı 8) had a decided bieak in the uppei iegion There is no marked
point of change in curvature, but it is possible roughly to deteıminc at what percentile value inciement changes begin to increase rapidly. Such analysis indicates that the more abrupt change in curvature occurs in the 96 to 98 range of percentile values Below these values a unit increment in the percentage of vehicles included results in a nearly pioportionate increase in the speed But above these values a unit inciement will result in a much greater incicase in speed The higher speed rating to m clude the few vehicles going faster than these percentile speeds appears entirely out of propoition to therr number It therefore appeass desuable to use a 96 to 98 peicentile value as a definition point for the speed lating

Another confirmation of the choice of a peicentile definition in the high nuncties may be found in the nisk involved in vehicles traveling at speeds higher than the speed rating If the shaipest curves are such that rehicles traveising them at the rated speed can hold the road by using only the side firction considered safe in design, and the vehicles tiaveling at higher speeds do not slow down when rounding these curves, then the percentile definition should be such that the hugher speed vehicles are not only few in number but that ther speeds, while somewhat hazardous, are not great enough to 10 quine finction approaching that at impending skid to keep them on the road

Minimum radius of curve for a given speed may be calculated by the formula

$$
R_{m 1 n}=\frac{067 V^{2}}{E+F}
$$

where
V is the specd in mph
E is the maximum supeceleration, feet per foot, and
F is the friction factor
The limiting value of E generallv is consideled to be 010 The amount of frictional resistance to tiansveise sliding
that may be developed with safety by a vehicle travelng around a curve is represented by a value of \mathbf{F} of 0.16 for speeds of 30 to 60 mph and by a value of 0.14 for a speed of $70 \mathrm{mph} .^{2}$ Omitting the relatively minor effect of the latter value, the expression for the minimum radius then is:

$$
\mathrm{R}_{\operatorname{man}}=\frac{.067}{0.26} \mathrm{~V}^{2}
$$

Substituting for $\mathbf{R}_{\text {min }}$ the speeds are in the ratio:

$$
\frac{V_{x}^{2}}{V^{2}}=\frac{.067}{026} \times \frac{\left(0.10+F_{x}\right)}{.067}=\frac{0.10+F_{x}}{0.26}
$$

or

Let V_{x} represent any speed higher than V and F_{x} the factor for the friction developed when rounding the above curve at speed $V_{\boldsymbol{x}}$ Then

$$
V_{x}^{2} \doteq \frac{R_{m a n}\left(0.10+F_{x}\right)}{.067}
$$

[^1]For any assumed value of the friction factor (F_{x}) the ratio of the speed corresponding to this factor to the speed corresponding to a friction factor of 0.16 can be found by the foregoing formula. By superimposing this ratio on the upper portion of the curves of Figure 7 (K multiple greater than 1) the percentage of vehicles traveling faster than these higher speeds can be found for each
percentile value as a defintion of speed rating These relations are plotted in Figure 9 and are tabulated as follows for thee values of the higher fiction factor

Percentile value as a definition of speed rating	Percentage of vehıcles exceedıng speed indicated by		
98	$F_{x}=025$	$F_{x}=030$	$F_{x}=035$
95	02	007	001
95	15	02	008
90	45	02	
80	40	16	06
70	78	33	14

Use of a 90 or higher peicentile value as a definition of speed rating will result in less than 05 percent of vehicles thaversing curves at the neal cutical fiction factor of 030 and less than 15 percent at the only slightly less cistical factor of 025 Use of lower peicentile defintions result in 16 to 78 peicent of vehicles at the conresponding excess speeds A 99 peicentile talue as a definition will assue that all vehicles do not exceed tuction factors of 035 .

Conclusions

This analysis of speed distribution data foi nearly a quarter million vehicles on 34 sections of level-tangent highways shows a definte curve pattein foo speed-peicent-of-vehicles ielation when expressed in teims of anv peicentile speed These cuive patterns aic nearlv identical ovel a wide iange of highwav conditions. parement widths, average speeds and
traffic volumes Lowest specds were about 05 and highest speeds about 19 times the averagespeed. Nearly 90 peicent of vehicles weie traveling at speeds in the lower half of the total range of specds observed

Since the term "assumed design speed" is not specifically applicable to speeds on existing roads, the term "speed rating" or "rated specd" is used to denote the speed which bears the same relation to observed travel speeds that the assumed design speed is intended to beal to future travel speeds

Examination of the range of speeds found on the group of higher speed roads included, with average specds of 40 to 50 mph, shows that definitions in terms of percentile values of 90 to 98 are necessary if these are to be rated as 60 mph highways Even higher percentile values are necessalv to rate anv of them as 70 mph highways

Analysis of these data to determine a percentule speed value to be used as a definition point foo speed rating indicates that an 80 peicentile value is too low, that a 90 percentile value is questionably low, that a 95 percentile value is reasonablv desuable, and that a 98 percentrle value appeas to be the desinable defintion point As a concrete evample, a highway on which the distribution of speeds shows a lowest speed of 25 mph , an average speed of 45 mph and a top speed of 85 mph would have a 98 peicentile value or speed rating of 60 mph

DISCUSSION ON PERCENTILE SPEEDS ON HIGHWAYS

Dr B D Greenshiclds, Bioohlyn Polytechnuc Instatute. In the paper it is shown that at present with arelage speeds ranging fiom 20 to 47 mph , theie is a ceitain distribution and lange of speeds If we boost that average speed up to 60 mph , what would the top speed be?

In other words, would the culve stay just the same?

Mr Loutzenheiser. You raise a point that is beyond the scope of this studv and is entiely a matter of conjecture It was found in this study that
average speeds on highways do not exceed 50 m.p.h. Yesterday Dr. DeSilva reported average speeds of only 44 to 46 miles an hour on open highways under relatively high speed conditions It will be helpful to know if the distribution of speeds for traffic under freeway con-ditions-as will be found on the Pennsylvania Turnpike-follow the same pattern as that on other roads While the whole range of speeds would be higher I would guess that they will follow the same general distribution pattern found here.
This report should be considered only a first step in a broad project of research on speeds to be used in design. It will
be necessary to carry out studies for many other factors and conditions before the whole field has been covered.

Dr. Greenshields: This paper has shown that the "curve patterns of the distribution of speeds are found to be nearly identical over a wide range of highway conditions, pavement widths, average speeds, and traffic volumes." This is the important findng, and Mr Loutzenheiser has used it to determine what percentile speed to use in design. But it has other and to my mind just as important significance.

Figure 1

A knowledge of tiaffic flow patterns has made it possible to use shoit-tıaffic counts to determine tiaffic flow with sufficient accuacy for all practical purposes Kinowing the pattein of the distribution of the speeds of vehicles a comparatively few observ ed speeds, say 100 , should in most cases give all the necessary information about speeds at any paiticular location If conditions warrant more accuiate information several 100 -car samples taken at different times of the day give a more accurate result than the same number taken at one time

Mr Loutzenheisel has demonstrated that the speeds at which people drive when plotted accoiding to fiequency, fall into that chanactenstic " S " shaped curve of a 1 andom or noimal distribution This is to be expected foi it has been found to apply to many measuicments such as the heights of persons, the length of ears of corn, the size of grains of sand, the precipitation of rain and to human abilities as measured by ceammation or other means

The " S " shaped cuives $4-\mathrm{O}$ and $5-\mathrm{H}$ of Figure 1 of Mr Loutzenheisel's paper have been plotted on anthmetic probability papei in Figure 1 of this discussion It will be noticed that the points in $5-\mathrm{H}$ fall in nearly a stiagght, and in 4-0 in a slightlv cuived, line This makes plotting casiel It also suggests that speed recordings should be made by classes on groups such as those less than $30,40,50$, 60,70 and 80 mules pel hour A count of the vehicles tiaveling in each of the class intervals would make the arrangement of data for plotting a short and simple piocess Picliminaiv design work and field tirals are being conducted on a selective speed recorder based upon this principle It seems to me that, say, five points would be sufficient to plot such a cuive

The mathematical basis for Mr Loutzenheiser's use of the quotient of the speeds divided by the mean speed is given bv W A Adams, authol of "Road Traffic

Considered as a Random Senes," Journal of Institution of Civil Enginceis, November 1936 He states in a letter to the witer that according to a result fist demonstrated by Whitwoith "Choice and Chance" that the probability of any inter val excecding " s " (speed) is $e \frac{-s}{M}$ where M is the average "speed" This implics that the percentage of specds exceeding " s " will be $1000 e \frac{-s}{M}$.

Mr Loutzenheiser The " S " shaped speed distribution curves arc skewed rather than normal distribution curves They anc not coriectlv appioximated as stiaight lines on anithmetic piobabilits scales, particularly for the highel values The skewed distribution can best be illustrated by plotting bell-shaped curves for noncumulative peicentages The use of piobability and also loganthmic scalcs was considered early in the study, but was discarded; with such scales it is difficult duectly to make and demonstiate the conclusions drawn The cential line has been added to Figuic 1 of Di Greenshields' discussion to show the average K value for the 34 studics (Table 6) expiessed in teims of a unit value of 35 mph (in ordel to be on the same scale and fall between the two studies shown in detall) Note that while the values below 90 peicent are nearly a sti aight line, the higher values cuive upwaid

I question the accuacy of the use of obscrved speeds of only 100 vehicles to determine a speed distribution curve. Such shoit tiaffic counts could be applied only to determine an avelage (or selected central percentile) speed, which value would serve to determine the evact location of a predetermined general speed distribution curve, such as deirved in this studv Most studics show a lange difference between average speeds for successive gıoups of 100 vehicles, even duing conditions of simılar traffic volume and
directional flow concentrations. Several 100 vehicle counts at different times during the day, prorated as necessary, appear desirable to determine the average speed for the whole of the day.

A speed distribution curve could be approximated on arthmetic probability paper with five or more points distributed over the range of values, eliminating the
need for a greater number of points to correctly plot the " S " type curve. But in either case the speeds of all vehicles in the sample must be determined, either separately for unit increments or in successive speed groups. Speed meters with cumulative counters that automatically group the vehicle speeds into desired speed ranges already are in use.

[^0]: 1 "A Polncy on Highway Classification"A. A. S. H. O., 1940.

[^1]: 2 "Safe Side Friction Factors and Superelevation Design" by J Barnett Proceedings, Highway Research Board, Vol 16, 1936.

