DECELERATION DISTANCES FOR HIGH SPEED VEHICLES

By Ernest E. Wilson
Director, General Motors Pronnng Ground

Abstract

A senes of tests was run to determine average deceleration rates under several types of decelerating conditions The first series were made to determine the maximum average deceleration rates obtainable Test speeds were 50,60 and 70 miles per hour The average deceleration rates were between 19 and 22 ft per sec ${ }^{2}$ The second series of tests was made to determine deceleration rates "ith only engine braking, air and rolling resistance supplying the decelerating foices Decelerations on the order of 32 ft per sec ${ }^{2}$ were obtained at 70 miles per hour but the values dropped to 08 ft per sec ${ }^{2}$ at 10 miles per hour The third series evaluated the decelerating effects of ar and rolling resistance alone About 175 ft per sec ${ }^{2}$ deceleration at 70 miles per hour and about 037 ft per sec 2 at 10 miles per hour were obtanned under these test conditions A fourth series was made to evaluate comfort factors for passengers and driver The reactions of the observers were that about 855 ft per sec ${ }^{2}$ average deceleration produced a comfortable stop Average deceleration of 1105 ft per sec ${ }^{2}$ was undesirable and somew hat uncomfortable The driver would rather not use this rate of deceleration Rates of 1390 ft per sec ${ }^{2}$ were considered very undesirable by the passengers and any loose articles resting on the scats were thrown off on the floor This rate becomes dangerous to the passengers The average deceleration figures were determmed from distances and initial velocities This calculation must be emphasized since the maximum rate of deceleration obtained during the test is considerably greater Furthermore, often-times figures from maximum teading decelcrometers have been used for computation purposes The distances calculated from such data would require much too severe stops for comfort or safety

It was concluded that highway design should be based on the comfort figure wherever possible, for evample, sight distances should be calculated for average decelcration rates of $850-900 \mathrm{ft}$ per sec ${ }^{2}$ rather than, say, the mavimum capability figure of $19-22 \mathrm{ft}$ per sec ${ }^{2}$

The function of the Highwav Designeı is to build roads which will provide the greatest icturn to the using public This ictuin should be interpieted in teims of the fastest possible movement of tiaffic with safetr and comfort If a load is to be made safe and comfor table and at the same time permit fast movement of vehicles, it is necessaiy to conside both vehicle limitations and human limitations

The distances and deceleiation rates required to bing a vehicle to a safe stop are of essential importance in highway design The limiting values of stopping distance and deceleiation rates should not be determined by the vehrele itself, but by passengel reaction Most vehicles could be stopped in much shoiter distances and with higher deceleration
rates than is now the practice without haim to the vehicle, providing sufficient tiaction were available Deceleration rates gieater than those now avalable are very probably not desuable because of human limitations and icsponses. The build up of passenger resistance to accelciation is sufficiently slow that a high decelcration suddenly applied, while not haımful to the vehicle, could cause senous injuics to the passengers and even the diver The limitation is in the time required by an individual to adjust himself to externally applied forces High uniform accelciations can be compensated for providing that these accelerations are reached very gradually. It is beheved that about 10 ft per scc^{2} is the limiting value for comfort if mantained for any length of time and that at
least one half second should be used to change from 0 acceleration to 10 ft . per sec ${ }^{2}$.

A series of tests was run to determine the vehicle capabilities under several decelerating conditions and in addition some tests were made to determine passenger and driver reaction. The distances, times, and average deceleration rates observed during this series of stopping tests are shown in the accompanying curves and tables. These data are representative of the average of a

Figure 1. Maximum Deceleration Tests. Level Grade
number of vehicles of different makes where only vehicle capabilities are considered Where driver and passenger characteristics are considered, the averages of eight experienced observers were used. These men were Proving Ground Department Heads or their Asssistants.

The tests were all run on level stranghtaways and, except for those tests involving passenger reaction, the road surfaces were of concrete. Speeds were observed by a fifth wheel speedometer and distances measured from a counter attached
to the fifth wheel. The counter is accurate to 5 ft . in a mile and the speed to within 0.5 of a mile per hour.

The deceleration rates for all of the stopping tests were calculated from the initial velocities and stopping distances. No reaction tıme or distance was involved.

The first data obtaned were for the extreme emergency condition where the shortest safe stopping distance was required. The specification for this test was that the driver must bring the car to a stop from 70 miles per hour as quickly

Figure 2. Deceleration Time, Distance and Deceleration from 70 m.p.h. Level Grade, Deceleration Without Use of Brakes. Average weight of 15 (1940) cars 4004 lb .
as possible and still keep the car within the boundaries of a $12-\mathrm{ft}$. concrete lane. This specification was made to rule out the sliding stop, since a vehicle is not in good control with the wheels sliding. All passenger cars have brakes adequate to slide all wheels, and all cars are subject to the difficulties encountered if the driver locks the wheels with the brakes. The results of these tests are shown in Figure 1. The average deceleration rate, distance, and time are shown by the curves and the points show the variation for the several cars.

The second set of tests covers that type of decelecation where only the engine biaking is used This biaking paactice is used bv most divers whenevel slowing down for turns, ol when watehing a changing situation ahead which, as it develops futher, mav requre some further mancuver such as changing course ol changing speed Results for this type of deceleration are shown in Figure 2 The distance cusves indicate the distances iequined to decelciate from 70 miles per hour to any desned speed Fol ceample, it takes 2170 feet to slow down fiom 70 miles peı hou to 20 miles per hour with the engme supplying the braking effort The time curve shows that it takes 36 sec to accomplish this speed reduction by such means These distance and time curves apply only when deceleration starts fiom 70 mph The deceleration curve shows that the deceleration rate vanics with speed where the engine is used as a buake These deceleration rates will be the same regardless of the speed fiom which the deceleration stalts That is, if the test had been statted at 50 ol 60 miles per hour instead of 70, the deceleration iate at 30 mules per hou would still be $\mathbf{1 6 2}$ ft per sec^{2} Therefore, these values mar be used to compute distances or times fiom anv imitial condition It will be noted that the decelecation rates obtaned are more than are uscable for most ici conditions at moderate and high speeds where the road finction coefficient may be on the older of 007 With this coefficient, the road finction obtaned from the two rear tues can provide traction for approximately 1125 ft pel sec 2 deceleration

The thud set of tests shows the results of coasting tests where the only decelerating forces ane those everted by an resistance and rolling resistances The data for these tests ate shown as part of Figuic 2 Here agam the distance and time cuives are shown wheh apply only
for the deceleration starting at a speed of 70 miles per hour In this case, it takes 5000 ft and 86 sec to coast from 70 miles per hour to 20 miles pel hour The rates of deceleration shown in the decelectation curve apply regardless of the speed at which deccleration was started and may be used to calculate time and distance cuives for any speed at which deceleration staits These deceleration rate data are agan shown in Figure 3 An equation of the type $\mathrm{F}=\mathrm{K}_{1} \mathrm{~W}+$ $\mathrm{K}_{2} \mathrm{AV}^{2}$ was found to fit the observed data very well where $\mathrm{F}=$ force in lb , $\mathrm{W}=$ cat weight in lb, $\mathrm{A}=$ frontal area in $\mathrm{sq} \mathrm{ft}, \mathrm{V}=\mathrm{mp}$.h ; and K_{1} and $\mathrm{K}_{\mathbf{2}}=$ constant (F was plotted as ft per sec^{2} in these curves, since the mass of the car was known) In this case, $\mathrm{K}_{1}=$ 00115 and $\mathrm{K}_{2}=000125 \quad \mathrm{~K}_{2} \mathrm{AV}^{2}$ is the an resstance component in this equation The above equation is the trpical twoterm an and rolling iosistance equation worked out fiom studes of a considerable amount of data on both arr resistance and rolling resistance
The an sesistance forces are of considerable interest because these are forces additive to those obtamed though the finction between the tue and the road and ale a function of the speed of the vehicle The maximum obtanable decelcartions for any condition of road sulface must be the sum of that which mav be obtaned fiom 1 oad finction and that obtaned from an resistance Of cousse, under accelerating conditions, the ant lessistance becomes a subtractive portion
The effects of aur and rolling resistance are shown in Figue 3 by a cuive plotted for values of $\mathrm{K}_{2} \mathrm{AV}^{2}$, the an ressistance, and a cuive for the sum of the road finctional forces and all iesistance This curve indicates that a cal could be stopped and held on a giade of appioximatelv 7 per cent in iev weather A cuive of accelerating capabilitv is also shown in Figue 3 This cuive shows
that on ice, assuming a 0.07 coefficient, the maximum obtainable speed is about 58.5 miles per hour and is determined by the air and rolling resistance.

In Figure 4, the same effects are shown by comparisons between deceleration distances calculated by the use of a friction coefficient of 0.07 (which is about that to be expected for ordinary icy conditions bordering on the wet side), and those distances calculated from the sum of the road friction and air resistance

Figure 3. Air and Rolling Resistance Effects Added to Avaliable Road and Tire Tractive Force For Icy Road Conditions.
decelerating forces. A grade climbing ability curve based on the friction coefficient of 0.07 and the air resistance is also shown in Figure 4 This curve is calculated from the tractive ability of the two rear tires less the air resistance of the vehicle and the rolling resistance of the two front tires. This curve indicates that if the gradients on a road do not exceed 3 per cent, very little difficulty should be experienced with cars becoming stalled on hills because of lack of traction. Since there is more decelera-
tion capability on ice than acceleration capability as shown by the curves in Figure 3, it is obvious that there is a desirable safety feature in lımiting grades to 3 per cent, both from a climbing ability and stopping ability standpoint.

A further series of tests involving passenger and driver reactions were run to determine comfortable braking distances from 70 miles per hour The results of these tests are shown in Table 1. The decelerations shown are, as stated before, average decelerations calculated

Figure 4
from the initial speed and stopping distance. The maximum decelerations obtained during the test naturally are above this average. Emphasis has been placed on the fact that the results are shown in terms of average deceleration rates. Oftentimes readings for this type of test are taken from indicating decelerometers. Then when calculations are made, the stopping distances arrived at are of such an order that if a driver were to keep within these distance requirements the stop required would be much too severe. It appears from the

TABLE 1
Stops from 70 Miles per Hour
$\left.\begin{array}{ll}\begin{array}{ll}\text { Comfortable to Passengers } \\ \text { Preferred by Driver }\end{array} & \} 619 \mathrm{ft}=855 \mathrm{ft} \text { per sec }{ }^{2} \text { average } \\ \begin{array}{ll}\text { Undesirable but Not Alarming to Passengers } \\ \text { Driver Would Rather Not Use }\end{array} & \} 479 \mathrm{ft}=11.05 \mathrm{ft} . \text { per sec }{ }^{2} \text { average } \\ \begin{array}{ll}\text { Severe and Uncomfortable to Passengers } \\ \text { and Objects Off Seats }\end{array} & \text { Shdes Packages } \\ \text { Driver Classes as Emergency Stop }\end{array}\right\} 380 \mathrm{ft}=1390 \mathrm{ft} \mathrm{per} \mathrm{sec}^{2}$ average

129 ft per sec ${ }^{2}$ Used in Designing Sight Distances

TABLE 2
Distances for Different Types of Stops from 70 Miles per Hour-Incloding a 2-Sec Daytime and a 3-Sec Night Time Perception-Reaction Time

test results in this table that the average decelcration iate for comfort should not exceed $850-900 \mathrm{ft}$ per $\mathrm{sec}^{2} \quad$ An average deceleration 1ate of 139 ft pel sec^{2} is excessive and if used without warning may result in passenger injuiy

A summary of tests is shown in Table 2 This table shows that the capability of the car to stop is beyond the comfort and safe range for the passengers It is beheved that where it is at all possible, the designers should use the decelesation rates which do not exceed the normal comfortable iange since, even on stiaight, level roads with unlimited visibility, emergency conditions demanding high deceleration $1 a t e s$ sometimes occu The most desirable road should be the one where the greatest margins of safety are provided by allowing the driver the maximum possible time to make a response to any situation which may occur. In other words, we belicve it may be stated that the best and safest road with a given number of traffic lanes is the one which will handle most iapidly a given volume of traffic with the maximum comfort to the driver and passengers

DISCUSSION ON DECELERATION DISTANCES

Prof R A. Moyer, Iowa State College I would like to support the general conclusions in regard to the comfortable rates of deceleration given by Mr Wilson
which he proposes should be used by designers of highways At Iowa State College we have for the past two years been operating four test cais dally as a
part of a project on the study of motor vehicle operating costs. The speeds ranged from $25 \mathrm{mp} . \mathrm{h}$. to $65 \mathrm{~m} . \mathrm{ph}$. Each of these cars is equipped with a Tapley decelerometer I agree with Mr Wilson that this device gives the maximum stopping rate and not the average rate. However, we have found that the difference between the maximum and the average rate is very small if the brakes are in good condition and if a reasonably uniform pressure on the brake pedal is provided. In driving these cars in normal cross-country type of operation for a distance of more than a quarter million miles, our drivers rarely have found it necessary to stop at the maximum rate established by test by Mr Wilson to be about 19 to 20 ft . per sec per sec. In the ordinary emergency stop the rate was more likely 12 to 13 ft per sec per sec. than 19 to 20 ft . per sec. per sec. and even for this lower rate considerable pressure on the brake pedal was necessary to develop this braking force. Our expenence has indicated that if the higher rate is developed on dry pavements, skıd marks will show up as a result of locking the wheels. While skid marks are commonly observed on pavements, my observations lead me to say that considering the volume of traffic and the number of stops made, the percentage of stops involving skid marks is very low indeed.

I heartily agree with Mr. Wilson that the comfortable rate of stopping of 8 to 9 ft . per sec per sec. is the one preferred by drivers and is the one which designers should use. In approaching intersections, sharp curves, or any other point along the road where deceleration may be necessary, our experience indicates that the drivers prefer to use the motor compression to reduce the speed of the car to about 30 m p.h. At speeds below
$30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. the deceleration rate provided by engine compression is so slow that brakes are necessary and it is in this range of speed that the stopping rate of 8 to 9 ft . per sec. per sec. should be used for all normal driving operations. It is possible that on high speed express type highways such as the Pennsylvania Turnpike, the initial speeds are so high that braking in the deceleration lanes will start at speeds above $30 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. and that the deceleration rates during braking will be greater than 8 to 9 ft . per sec. per sec. This is a point which should be investigated by speed surveys on the Turnpike. But even if the rates in the surveys were found to be greater than 8 to 9 ft per sec. per sec., I would still favor the lower rate for design purposes to provide a greater margin of safety and to encourage drvers to stop at this safer lower rate.

Mr. Joseph Barnett, Publuc Roads Administration: I should like to record appreciation to Mr. Wilson and the General Motors Proving Grounds for these tests of stopping distances from speeds of 60 and 70 miles per hour Very few tests of stopping distances at high speeds were available About 40 m.p.h. was about the highest speed used in observations of stopping distances heretofore. The American Association of State Highway Officials adopted the practice of designing sight distance based on stopping distances resulting from the use of a friction factor of 0.4 , making allowance for perception and reaction time There has been considerable criticism that a friction factor of 0.4 was too low, that it should be higher and the stopping distances should be shorter These tests should quet such criticism for they indicate that 0.4 is none too low.

