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SYNOPSIS

The exact or rigorous determination of stresses in suspension spans 18 some-
what tedious and involved For this reason it has been general practice to
make certain approximations, particularly in the design of structures of com-
paratively short span. Suchrapproximations, in certain eases, involve errors of
considerable magnitude, and errors which affect different portions of the struc-
ture 1n different degree Because of this the Oregon Highway Department 1n
1937 1nitiated certain researches looking toward the derivation of exact and
rational design methods for highway suspension bridges and the development
of design graphs which would shorten the time and lessen the labor involved
This work was undertaken by Mr G 8 Paxson, Bridge Engineer, and Mr. Dexter
R Smth, Structural Research Engineer for the Oregon Department, under the
general direction of the author, and is completely described in Oregon Technical
Bulletin No 13, entitled ‘“‘Rational Design Methods for Short-span Suspension
Brnidges for Modern Highway Loadings,’’ and Technical Bulletin No 14, entitled
‘“The Derivation of Design Constants for Suspension Bridge Analysis (Fourier-
series Method)’’ from which much of the material presented hereinafter has been
extracted

The present paper summarizes the mathematical theory underlying the exact or
rigorous method of stress analysis, utilizing the Fourier-series expansion of the
deflection term proposed and developed by Timoshenko and Priester A com-
parison of the results obtained by this method with those derived by the ap-
proximate method indicates a degree of divergence amounting, in certain cases,
to over 250 per cent, as shown by Table I of this article, which table 18 based on
a companson of 24 separate designs. The degree of error increases with the span
length and decreases as the rigidity of the stiffemng frame is increased. The
large degree of maximum error, together with the variation in percentage of
error for different portions of the same structure warrants the conclusion that
the approximate or ‘‘elastic-theory’’ method is of questionable value 1n any case

A recommended design procedure based upon the results of the Oregon studies
is indicated and certain design graphs are presented which may be used with
reasonable accuracy for two-lane roadway structures designed for standard
highway loadings

DESIGN PROBLEMS AND OBJECTIVES

The suspension bridge because of the
comparative flexibility of its long elastic
cable system presents certain design
problems uniquely inherent 1n the type.
Such an elastic system becomes appre-
ciably distorted under load, thus render-
ing it necessary, for exactitude in analy-
sis, to compute and consider the displace-
ment of all load points. It is true that
such elastic displacements constitute
an essential ingredient in the analysis of
all statically indeterminate structures,
but in most structural types these dis-

tortions are of a comparatively low
order of magnitude, and, while it is
necessary for an exact determination of
internal stress trajectories to consider
both the equlibrium and the compati-
bility of all strain components, it is
universal practice to assume that such
strains do not appreciably affect the
position in space of the external load
system 1n reference to its supports.
When this assumption is applied to the
suspension type, however, errors of
considerable magnitude are involved,
although such errors decrease as the

549



550

stiffness of the ensemble is increased.
As a consequence, two distinct methods
of analysis have developed through the
years. The first 1s the exact or rigorous
method whose underlying theory will be
briefly summarized mn the paragraphs
which follow This method takes into
consideration the effect of elastic load-
point displacements on resulting moment
lever arms. The second method is the
approximate or so-called elastic-theory
method. It disregards the effect of the
distorted geometry of the frame, and
treats the suspension span in exactly the
same manner as any other statically
indeterminate frame type.

The relative precision of these methods
may be roughly visualized from an
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inspection of Figure 1 which is, of course,
plotted to an exaggerated scale The
total moment M, for any given loading
is obviously resisted by the stiffening
frame, and the cable acting as an elastic
unit. If we represent by the term M
that portion of the total moment carried
by the stiffening frame, the ngorous or
exact method writes

M=Mo—-Hy(y+4) —HpA (1)

The approximate theory disregards
the effect of the deflection A, and writes.

M = Mo — Hry 2

In addition to these two methods there
is a modification of the ngorous method
which merely disregards the secondary
distortions assuming the cable always
to remain m parabolic form. This
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method is nearly as accurate as the rgor-
ous treatment, but, since the work in-
volved 1n its application 1s nearly as
great, 1t will not be considered in the
compansons which follow.

Because of the development of these
radically diverse methods of attack, and
because of the rather extended calcula-
tions mvolved in the applecation of the
rigorous method, the Oregon Highway
Department mn 1937 initiated a research
project looking toward the development
of rational design methods for highway
suspension bridges and the derivation of
certain design graphs which would lessen
the labor involved. These researches,
undertaken by Mr Glenn 8. Paxson,
Bridge Engineer for the Oregon Highway
Department, and Mr. Dexter R. Smith,
Structural Research Engineer, under the
general direction of the author, are com-
pletely described in Oregon Highway
Department Techmeal Bulletin No. 13,
entitled “Rational Design Methods for
Short-span Suspension Bridges for Mod-
ern Highway Loadings,” and Oregon
Technical Bulletin No. 14, entitled ‘“The
Derivation of Design Constants for
Suspension Bridge Analysis (Fourier Se-
ries Method).” Much of the material
presented hereinafter has been extracted
from these published reports. Among
the purposes and objectives stated were
the following.

1 To summarize and outline the mathe-
matical theory underlying the exact or
rigorous method of stress analyss

2 To compare the results obtained by this
method with those based upon the hy-
pothesis of an unstrained load-point
geometry (the so-called elastic theory).

3 To develop conclusions and recommenda-
tions for design practice together with
certain design graphs for the purpose of
expediting the work mvolved

These graphs were developed with
particular reference to two-lane roadway
spans designed for modern highway
loadings, but with certain modifications
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thei1 use may be extended to othei load-
ings and roadway widths

The discussion which follows 15 of
necessity somewhat abbieviated, no at-
tempt being made to include the various
mathematical denvations 1 complete
detail nor to consider many of the phases
mcluded m the 1eports For a further
discussion of these, the 1eader 1s referred
to Technical Bulletins Nos 13 and 14

THEORY

The fundamental theoiy underlying
the rigoious method of analysis 1s based
upon the energy balance existent in any
stiuctural frame at rest and under load.
When the equilibrium of such a frame is

g
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(Wg) done by the deflection of the ex-
ternal loads may thercfore be equated to
the internal energy (Wy) absorbed by
and stored within the frame Moreover,
this cquality will hold not only for the
entire stiucture but for any portion of 1it,
consideied as a “frec body in elastic
equilibrium,” provided the action of the
balance of the fiame upon the segment
unde: consideration 1s represented by the
corresponding exteinal force or forces

Figuie 2 1s a layout of a single-span
suspension bridge under the action of a
umform hive load extending from pont
a(=kil) to pomnt b(=kel), and Figme
3 15 the same stiucture sepaiated into
two components !
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distuibed by temperature change o1 by
the addition, alteration or removal of
live loading, 1t 1s immediately set in
motion, the pont of application of each
external load 1s forced to execute a small
displacement, and each of the internal
members 15 required shghtly to change
shape i order to conform to 1ts newly
distorted position Each mternal stress
is therefore displaced through a short
distance represented by 1ts corresponding
strain, thus absorbing energy, and the
motion (deflection) will continue until
such energy absorption s sufficient to
balance the kinetic energy generated by
the motion of the loads. For any elastic
fiame under load and at rest, the work

Let Hp = horizontal component of
cable stress due to dead

load,
Hi, = horizontal component of
cable stress due to live load,
A = deflection of cable at any
point,
A = area of cable,
E. = elastic modulus of cable,
w = dead load per unit length of
span,
q = that portion of the lhve
loading (p) transmitted

1 In the interest of ssmphcity the backstay
or side spans are not considered. These will
be consideted later
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from the stiffening frame
to the cable,
8 = Hp/Hp.

The following expressions, represent-
ing respectively internal and external
energy may be easily derived from
elementary mechanics:
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Moreover, the term q representing the
distributed (but nonuniform) lLve load
transmitted to the cable may be repre-
sented by the term

a=pw-Hpl +HS8 @

For elastic equilibrium, therefore, we may
write:

H} o

e (L+5/28 f =L [+ wer2

(1 + ﬁ) ]Adx (6)
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Equation 6 is not in shape to handle
because of the fact that it involves the
deflection term A which is not only un-
known but also variant from point to
point along the span.

Dr. Timoshenko and Dr. Priester have
developed a very ingenious method of
handling this equation by utihzing a sine-
series expansion of the unknown deflection
term, A, that is to say, wnting’

27x

A—alsm—+agsin T

3rx nrx

+aasin 5=+ +oo 4 Sasin—= 4. @

In order to evaluate the unknown coeffi-
cients a;, a2, a3, ete., they utilized the
following device

Considering the stiffening truss as a
free body in elastic equilibrium, the in-
ternal work generated by its deflection
may be represented by the term.

M’dx=E1“: ]dx ®

which may be transformed by means of
the above Fourier expansion into the form
Elr* o=
-4'1': n=1 n‘ 8.: . (9)
Differentiating this expression with re-
spect to any particular Founer coefficient
a, yields*

Wl=—

W=

4_4
It can also be shown that
dWE =p f sin Iﬂ‘dx
—-q .L sin !-llxdx (11)

The right-hand terms of equations 10 and
11 may now be equated and solved for the
Fourier coefficient a,, whence is derived
the following.



McCULLOUGH—DESIGN OF SUSPENSION BRIDGES

For “n” odd:

_ 21'[p(cos nzk, — cos nwks) —28w]
% = "Elew + Ho( + sl 2

For “n” even:

_ 21%p(cos nwk; — cos nrk,)]
= Elvn® + Hp(l + Hm AL

We may now go back to equation 6
and substitute for the term 4, its equiva-
lent in terms of the sine series, whence we
derive

HI B ldss‘
e +a/2)£ o

(13)

-2 rpafn+ Bede]
T
2
k3
+ Hp(1 +B)4—l

fal + 2%a; + a3+ ...] (14)

This is the final equation from which the
term B for any single span may be de-
veloped. If temperature changes as well
as gravity loadings are considered, this
expression becomes:

Hp b ds®
imAa +:s/2)fo o
l 2
+ etHp[1 + 6/2] _L g—i
=24"—’[1+ﬁ/21[a1+%‘+%‘+---]
T

2
T
+ Hp(1 + B)Zl

faf + 2%a3 + a3+ --.] (15)

Considering the interaction of the side
spans, the above expression is expanded
into the following form:

e [ e [t 4]

+Hp(l + 3/2)ct[ l g—';: +32 _[h g—xsz]
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_ 2wl 83 , 85
= 711+B/2][a1+§+—5-+---]
2

+Hn(1+ﬂ)411[a§+2’a§ +3%a3+...]

4W111 ba bs
+—T—[1+ﬂ/2][b1+'§+3+ "']

21‘_2
+ Hp(l + 5)4—11
b + 2°b; + 3*b3 + --.] (16)

1
The integrals l I, the terms wy and [, and

the coefficients by, by, etc. refer to the
side spans, these latter coefficients being
calculated in exactly the same manner as
for the main span.

The fundamental equations suffice for
the determination of the term B repre-
senting the ratio of live to dead load cable
stress. Obviously, with this ratio deter-
mined, the stress distribution throughout
the entire structure is determinate from
statics. Since the term B occurs in both
sides of equation 16, it must be deter-
mined by a process of trial and error
However, this process is not particularly
complicated or tedious.

The foregoing derivation, except for the
neglect of hanger distortions is rigorous
and exact, and its application is consider-
ably less cumbersome than the solution
of the linear differential equation involved
in the Melan method.

COMPARISON OF EXACT AND APPROXIMATE
METHODS

In order to effect this comparison, 24
separate designs were analyzed by the
exact or rigorous method and also by the
approximate method, or so-called elastic
theory. Table 1indicates for four typical
designs in each length group the maxi-
mum degree of error introduced by the
use of the elastic theory method. It will
be observed that the degree of error in-
creases with the span length, and de-
creases as the rigidity of the stiffening
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frame (as evidenced by the value In) is
increased, which results are logical and to
be expected.

The investigation also developed the
fact that even for the same design the per-
centages of error for different portions of
the structure were widely variant so that
it is not feasible to apply any fixed coeffi-
cient of correction. This fact, coupled
with the large degree of maximum error,

TABLE 1

MaxiMmuM PERCENTAGE OF ERROR IN
EvasTic THEORY!

De- | Manm Il::r?u%ff %;?—“ﬁnlutm Tmf
sign | Span Stifenang
o Frame (Im) | Positive | Pottave | Cable
Moment | Shear | Strees
ft | brquadratscsn % % %
5 450 72,000 | 40 56| 32 57| 0 74
6 450 144,000 | 23 33| 20 63| 0 70
7 450, 216,000 | 17 51 15 00} 0 62
8 450 288,000 | 14 50{ 12 08} 0 56
17 900 108,000 | 198 51| 108 76} 0 73
18 900, 216,000 | 106 61| 73 91| O 67
19 900] 324,000 | 73 01] 58 22| 0 63
20 900 432,000 | 53 84 48 59| 0 54
21 | 1,800 720,000 | 252 86| 112 99] 0 55
22 | 1,800( 1,440,000 | 140 62| 91 31| 0 53
23 | 1,800{ 2,160,000 | 100 24| 75 52| 0.49
24 | 1,800| 2,880,000 | 79 08| 61 34| 0 46

1 The above data are for the main span.
The percentages of error for the side spans are
of a similar order of magnitude.

appears sufficient to support the conclu-
sion that the approximate method is of
practically no value whatsoever even for
preliminary work.

RECOMMENDED DESIGN PROCEDURE

Based upon the results of these investi-
gations, the recommendation was made
that the exact or rigorous method of
analysis be used in all cases since, as be-
fore stated, the elastic theory method in-
volves errors of material and variant

DESIGN

magnitude. The following procedure for
analysis and design was recommended.

1 Sketch a general layout of the strue-
ture to fit the particular needs of the site,
and calculate the dead load cable stresses
in the usual manner.

2. Using an average value of g8 (from
tables given 1n Bulletins 13 and 14), com-
pute the approximate maximum cable
stress, and select an approximate value
for the cable area A.

3. Using different values of the moment
of inertia I, develop a series of grade
change and moment graphs such as illus-
trated in Figure 4, and with the known
maximum grade change as previously
determined from traffic necessities, or as
given in the design specifications for the
structure in question, enter the diagram
and determine the necessary values of
I, and I,.

4. With these values, test both main
and side spans for maximum fiber stress
induced by positive moment.

5. If one or both of these stress values
exceed the safe allowable limit, make such
adjustments as are necessary to bring
them into conformance. The economy
and feasibility of modified frame depths
and also of the employment of alloy steels
should be investigated in this connection.
It should be remembered that since the
stiffening frames are structurally redun-
dant, more hberal unit working stresses
may be employed than are ordinarily per-
missible. It should also be remembered
that the moment values in the stiffening
frame are functions of the moment of in-
ertia I of the frame in question, and when
these I values are changed during the
process of balancing the design, moment
values must be adjusted accordingly.

When the design has been finally se-
lected and balanced, as deseribed hereto-
fore, it will, of course, be necessary to
test it for negative moment and also for
shear. However, positive moment stress
is generally the controlling factor.
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DESIGN GRAPHS

Throughout the research which forms
the basis of this report, there was evidence
of a relationship between maximum stress
and strain and certain design constants
representing relative loading, stiffness and
other related data. This led to an n-
creasing degree of hope regarding the
possibility of developing certain design
graphs at least of sufficient accuracy for
preliminary purposes, and for estimates.
Obviously the only method of approach
was that of repeated trial, plotting the
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pression Grade change =
23, 4+ 3a; + ete.. .)

The Fourier coefficients a,, as, a;, ete,
involve the terms.

p representing the specified unit live

1r/l- (3.1 +

load,
l representing the span length,
k representing the proportionate
loaded length,
E representing the elastic modulus of
the frame,

I representing the moment of inertia
of the stiffening frame,
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control data against various design con-
stants and projecting correlation curves
through the points thus derived. Several
months were expended in this effort, and
the results finally attained represent
about the closest and simplest correlation
possible n view of the many factors in-
volved. The following description of the
development of these design graphs is
taken almost verbatim from Bulletin
No. 14.

Grade-change Values

The maximum grade change occurs at
the towers, and is represented by the ex-

and also the unknown ratio 8 = Hy,/Hp,
the dead load (w), and the horizontal
component of the dead load cable tension
which, in turn, is a function of (w) and
the sag ratio (f/1), this last ratio being
assumed as 1/10 for the curves herein
developed.

After repeated trial, a design constant
hereinafter termed the load-stiffness fac-
tor was developed. This constant is
represented by the formula.

EIT" EI]m [w]
LS.F. = I:Wla] +[ﬁ, . l—)‘
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Against this constant, the correspond-
ing values of maximum grade change
were plotted, assuming a side-span length
(l) equal to 50 per cent of the main-span
length (). The degree of correlation is
qute close, as will be observed from
Figure 5, wherein the correlation graph
is seen to lie quite close to the individual
data points.

DESIGN

Values of k for Mazimum Positiwe Moment
wn the Main Span

The graphs given in Figures 7 and 8 are
correlation curves for two design con-
stants. As abscissae are plotted, the
values of the so-called stiffness factor
EI/® (pounds per linear inch) while as
ordinate is plotted, the design constant

Similar graphs for maximum grade 5 _ k’EI
changes in the side spans are indicated in B
\ \ B g MAXIVUM GRADE CHANGES
S L T i3 MAIN SPAN
s \ SAG.S * o =100

=a \\\\
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§ \\\ ~
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% Lve .oadonl\—bQ: Live Load plus Temp Rise of GO*F
g 2 1952 \Pk\}
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w+Dead Load E=Mod of Elashcity
p*Live Load I=Mom of Inertia
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w
LOAD-STIFFNESS FACTOR-(L S F) = o *VE_E' ( F

Figure 5

Figure 6. In this latter case, the design
constant employed 1s represented by the
formula.

"/ EI, \'/?
SiF. = —')
Ly [<8W1l:

EI, ”’] [w: + pl]
+ (8p1 l:) P1

In each of the above figures, two graphs
are indicated, one for live load only, the
other for live load in combination with a
60°F. rise m temperature.

* The subscripts are to distinguish the
values of I, w, I, ete, for the side spans.

It is only necessary, therefore, to com-
pute, for the design at hand, the value of
EI/B, enter the diagram with this ab-
scissa and determine for the particular
section x/1 under investigation, the value
of Z. The loaded length k is then deter-
mined from the formula:

Z 1/2
= (E-ll') as indicated in the figures.

Figure 7 is for stiffness factors ranging
from zero to 10 1b. per lin. in., while Figure
8 carries the correlation graphs up to a
value of 55 lb. per Iin in.
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Mazimum Positive Moments in the Main
Span

With the values of k determined from
Figures 7 and 8, the next four graph
sheets (Figures 9 to 12) may be employed
to calculate maximum positive moment
values for each tenth point along the
main-span frame. As abscissae are plot-
ted the values EI/I*.k; as ordinates are
plotted, the term

MEI 1/8
Y= (m)

557

Figures 9 and 10 are for live load plus
temperature, while Figures 11 and 12 are
for live load only.

Mazimum Moments in Side Spans

“Bince the criterion for the maximum
posttive side-span moment is full live load
over the entire span, no graphs are neces-
sary to the determination of k. The de-
sign constant finally selected for the cor-
relation graphs is represented by the ex-
pression:

\ IMAXIMUM GRADE CHANGES
N
Pul L] SIDE SPANS
SAG S+lfo 9100
o
”~~
(=
z4 <
8 ’ .
E Live Load plus Temp Rise of GO°F
wa i l
g ]
Lwve Load enlg/ .
;.
(A% _ 2
TS [
00|
° 0
o e |
weDead Load I=Mom of Inerha
p*Live Load ErMod. of Elasherty

0 050 100 150

300

00 350 400
LOAD-STIFFNESS FACTOR({L1 S F) =[ Els E;-%W( '%"gl)

iy

Figure 6

It is only necessary, therefore, to (1)
determine k from Figures 7 or 8; (2) cal-
culate E%{
enter the diagram with the above value
and determine Y for the section x/I under
investigation, and (4) determine M from
the formula:

for the design at hand; (3)

- Y8k2p2l5

M EI

1/2
MLSF. = ( EL )

3
W1 ll

and has been termed the side-span mo-
ment load-stiffness factor.
Against this design constant as ab-

. . ML \?
scissa, 8 moment coefficient hy, = (-—I‘

pli
has been plotted as ordinate in Figure 13,
correlation graphs being developed for
each tenth-point section x/I along the
span. It is only necessary, therefore, to
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compute from the d(lensign data the term
1
M,L:S,F. = (813—1;,) enter the diagram
161
with this value, and for any section x/l,
determine hy. The side-span moment at
the section considered 1s clearly given by
the expression.

M, = hiplf

The term My, given in Figure 13 repre-
sents the side-span moment due to live
load only. Similar correlation graphs for
the side-span moment, My, representing
the combined effect of live load and a
60°F. temperature rise, are given in
Figure 14.

B Values

The correlation graph for 8 values is
indicated in Figure 15. As abscissae are
plotted, the values of the stiffness factor:
S.F. = EI/B in Ib. per lin. in. As ordi-
nates are plotted, the corresponding
values of the coefficient (O) where

It is only necessary, therefore, to enter
the diagram with the proper value of
S.F.(= EI/P) and determine the corre-
sponding value of O. The value of 8 1s
given by the expression

_ Ofp
~ Elw

Figure 16 is ssmilar to Figure 15, except
that the values of S.F.(= EI/I®) have
been carned up to a maximum of 60
pounds per linear inch It will be ob-
served that the S8 correlation graphs are
straight lines

Figures 15 and 16 give the values of 8
for full live load on the span in combina-
tion with a temperature drop of 60°F.
In Figures 17 and 18 are plotted 8 values
for a uniform live load placed in such
position as to produce maximum positive
moment m the main span. In these

B
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latter curves, the values of the stiffness
factor S.F.(= EI/P), as abscissae are
plotted against the coefficient b = %’
one correlation graph being plotted for
each tenth-point section x/I along the
span It is only necessary, therefore, to
enter the diagram with the proper stiff-
ness factor (S.F.), determine the corre-
sponding value of b for the section x/!

under consideration, and calculate 8 from
the formula:

_ bi'p
= ETw

Lematatrons to Employment of Graphs

The correlation graphs and design data
described have been developed from the
particular designs investigated, and are
therefore somewhat himited in their appli-
cation. Specifically, these limitations are
as follows

(a) The graphs are smooth curves pro-
jected through a group of individual data
points, as will be seen from an inspection
of the figures. Their use, therefore, leads
to results which are approximate only,
and any design developed therefrom must
be checked by a detailed analysis. Their
principal utility 18 to enable the designer
rapidly to develop a preliminary design
sufficiently exact for estimating purposes.

(b) The graphs are mited to struc-
tures having the same relative geometric
properties as those considered herein, to
wit, & mam-span sag ratio of one-tenth,
and side-span length ratios of 50 per cent.

(c) The graphs are based upon an as-
sumed value of ¢¥(= In/I) equal to
umty. The results, therefore, must be
adjusted to take into account the variance
in side-span interaction if other values of
the ratio ¥ are found to be necessary 1n
the final design. It is generally found,
however, that the effect of varying ¢
values is shght.
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Illustrative Problem

In order to illustrate the use of the
graphs, let us consider the design of a spe-
cific structure having the following prop-
erties:

Main span 500 ft

Side spans 250 ft

Sag ratio 1/10

E 29,000,000 1b per sq in.
Dead Load 2,2001b per hin. ft of frame
Live Load 1,000 1b per lin ft of frame

Temperature variation 60°F.

As before stated, the design procedure
involves four initial steps, as follows:

(a) The development of four graphs or
curves, such as are shown in Figure 4,
to wit:

Main span grade change vs. I,
Main span positive moment vs I

Side span grade change vs. I,
Side span positive moment vs. I,

(b) The selection of I, and I, for bal-
anced grade-change values.

(c) The testing of the above values to
determine their adequacy, as regards posi-
tive moment capacity, in other words, to
see if either of the frames selected is over-
stressed for moment.

(d) To make such adjustments as are
necessary to effect the greatest degree of
balance consistent with safe unit stresses
and maximum economy of materials.

Let us first consider the development of
the four basic data graphs:

(a) Main-span grade-change graph—
The grade changes in the mam span
plotted as functions of the so-called load-
stiffness factor are indicated m Figure 5.

Assuming an arbitrary value of I, equal
to 160,000 biquadratic inches

12 '
(%‘) = (11717)"* = 3428

1/2
(%‘) = (25778)"" = 5077

w/p = 2.2
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Load-stiffness factor = .3423 + 2.2
(:5077) = 1.46, and the corresponding
grade-change value from Figure 5 is 1.51
per cent for live load only, and 1.91 per
cent for live load plus 60°F. temperature
nse, as indicated by the dotted lines
plotted thereon

The foregoing determination establishes
one point on the grade change-I,. graph
(Figure 19). Assuming varying values of
In and repeating the above operation,
other points are established and the curve
constructed as shown in Figure 19.

(b) Main-span moment graph—The
next step is the development of the main
span positive moment vs. I, graph. In
order to determine the points on this
curve, it is of course necessary first to
determine the critical values of k for
maxima.

The curves of Figures 7 and 8 give the
value of k for varying values of the so-
called stiffness factor EI/I3. Using the
same trial value of In (160,000 biquad-
ratic in.) we find:

SF. — 29,000,000 X 160,000
** = 7 216,000,000,000

Utilizing this value of 8. F., the data in
Table 2 are obtained from Figure 8

Using the values of k in Tablet2 the
term EIk/P is computed for each section
x/1 to be investigated, and from’ Figure 9
or 10, the corresponding values'of Y are
determined. From these last vAlues, the
Yek2p?[s

EI
readily derived, the calculations, in this
case bemng given in Table 3.

The maximum-positive moment occurs
at section x/I = 0.30, and amounts to
55,672,000 in.-lb. This may not be the
absolute maximum since the sections be-
tween x/l = 0.20 and x/I = 030 on the
left and between x/l = 030 and x/l =
0.40 on the nght have not been investi-
gated. For absolute accuracy, it would
be necessary to investigate two or more

= 21.48

positive moment values, M =
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graph from which the absolute maximum 3423

Swili
could be determined graphically. The
above value, however, is sufficiently exact &)m = 5077
for our present purpose. Spli )
This procedure establishes one point in
the Positive Moment vs.—I, graph for witp_ 320 and L.S.F. = [.3423

intermediate points and to plot a moment ( EI, )"’

the main span. Proceeding in exactly P
the same manner with other values of I, + .5077]3.20 = 2.72
11;_‘1‘;; gra;las}; is developed as indicated m TABLE 2

ure 19.

(c) Side-span grade-change graph—In  SGY™ | z | PWET k I

Figure 6 are plotted the grade-change
values in the side spans as functions of the
0 2570 | 0 507 2571

0
020
factor. 0 %
L. F [( El, )"’ 0 40 03496 | 0591 | .3517
S AV ™Y 0 50 7

01927 | 0 439 1927
+ (EI.‘ )"’] [w; + px] TABLE 3
3
8p1 ll P Seo- Elk Y b kY3 Moment
Assuming i o
Wy = w = 22001b. per lin. ft , and_.. 0 10| 7 927| 282/ 022426/ 0030535 35,536,000

1 = p = 10001b. perlin. ft.,and 0 20| 9 087) 200/ 024380 0033839 50,785,000

. 0 30 [10 891| 265| 018610] 0047837| 55,672,000
taking the first tnal value of I, as 160,000 0 40 112.730| 230| 012167 0042785| 49,793,000
0 50

biqgadratlc inches, we de_rlve the fol- o 430| 271| 019003 0038357| 44,640,000
lowing value for the load-stiffness factor:

01359 | 0 369 1362
01783 | 0 422 1780

P R N
~2R8E
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From Figure 6, we find the correspond-
g grade-change values to be 155 per
cent for live load only, and 1 64 per cent
for live load plus tempeiature, as indi-
cated by the dotted hines shown thereon.
Proceeding 1n like manner with other
values of I,, the side-span grade-change
graph 1s developed, as indicated 1n
Figure 19.

(d) Stde-span moment graphs—In Fig-
ure 14 are plotted the values of the side-
span positive moment coefficient

My 1
hr =

against values of the so-called side-span
moment load-stiffness factor

( EL, )"’
8W1 l:
Using the value assumed for I, (160,000

biquadratic inches), the factor evaluates
to 0 3423 as noted Using this value, and
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the section x/1 = 0 50 (which 1s the pont
of maximum moment 1n the side spans) we
determine (from Figure 14) the value of
hyr to be 0.462.

The maximum positive moment 1n the
side span (for I, = 160,000 biquadratic
inches) 1s, therefore

Mz = b°pl? = (.462)’-(%0)

-(250 X 12)* = 73,958,000 in.-lb.

The foregoing procedure establishes one
value of Myr. Proceeding in like man-
ner, but with other values of I,, the side-
span moment graph is developed as indi-
cated in Figure 19.

With the graphs of Figure 19 once de-
veloped, the remaining procedure 1s
largely one of adjustment for maximum
balance and economy. The detailed cal-
culations for this adjustment are given in
Bulletin No. 14, pages 228, et seq





