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SYNOPSIS 
The exact or rigorous determination of stresses in suspension spans is some­

what tedious and involved For this reason it has been general practice to 
make certain approximations, particularly in the design of structures of com­
paratively short span. Such-approximations, in certain cases, involve errors of 
considerable magnitude, and errors which affect different portions of the struc­
ture m different degree Because of this the Oregon Highway Department m 
1937 initiated certain researches looking toward the derivation of exact and 
rational design methods for highway suspension bridges and the development 
of design graphs which would shorten the time and lessen the labor involved 
This work was undertaken by Mr G S Paxson, Bridge Engineer, and Mr. Dexter 
R Smith, Structural Research Engineer for the Oregon Department, under the 
general direction of the author, and is completely described in Oregon Technical 
Bulletin No 13, entitled "Rational Design Methods for Short-span Suspension 
Bridges for Modern Highway Loadings," and Technical Bulletin No 14, entitled 
"The Derivation of Design Constants for Suspension Bridge Analysis (Fourier-
senes Method)" from which much of the material presented hereinafter has been 
extracted 

The present paper summarizes the mathematical theory underlying the exact or 
rigorous method of stress analysis, utilizing the Fourier-series expansion of the 
deflection term proposed and developed by Timoshenko and Priester A com­
parison of the results obtained by this method with those derived by the ap­
proximate method indicates a degree of divergence amounting, in certain cases, 
to over 250 per cent, as shown by Table I of this article, which table is based on 
a comparison of 24 separate designs. The degree of error increases with the span 
length and decreases as the rigidity of the stiffening frame is increased. The 
large degree of maximum error, together with the variation in percentage of 
error for different portions of the same structure warrants the conclusion that 
the approximate or "elastic-theory" method is of questionable value in any case 

A recommended design procedure based upon the results of the Oregon studies 
is indicated and certain design graphs are presented which may be used with 
reasonable accuracy for two-lane roadway structures designed for standard 
highway loadings 

D E S I G N P R O B L E M S AND O B J E C T I V E S tortions are of a comparatively low 
The suspension bridge because of the magnitude, and, while i t is 

comparative flexibility of its long elastic ?ecessary for an exact determination of 
cable system presents certain design "^*frna^ stress trajectones to consider 
problems uniquely inherent m the type, ^oth the equilibrium and the compati-
Such an elastic system becomes appre- ^^^^ °^ s*"^ components, i t is 
ciably distorted under load, thus render- universal practice to assume that such 
ing i t necessary, for exactitude in analy- do ^o* appreciably afifect the 
sis, to compute and consider the displace- position in space of the external load 
ment of all load points. I t is true that system in reference to its supports, 
such elastic displacements constitute When this assumption is applied to the 
an essential ingredient in the analysis of suspension type, however, errors of 
all statically indeterminate structures, considerable magnitude are involved, 
but in most structural types these dis- although such errors decrease as the 
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stiffness of the ensemble is increased. 
As a consequence, two distinct methods 
of analysis have developed through the 
years. The first is the exact or rigorous 
method whose underlying theory will be 
briefly summarized m the paragraphs 
which follow This method takes into 
consideration the effect of elastic load-
point displacements on resulting moment 
lever arms. The second method is the 
approximate or so-called elastic-theory 
method. I t disregards the effect of the 
distorted geometry of the frame, and 
treats the suspension span in exactly the 
same manner as any other statically 
indeterminate frame type. 

The relative precision of these methods 
may be roughly visuahzed from an 

Method 

• \ M o d i f i e d 
M e t h o d 

Figure 1 

inspection of Figure 1 which is, of course, 
plotted to an exaggerated scale The 
total moment Mo for any given loading 
is obviously resisted by the stiffening 
frame, and the cable acting as an elastic 
unit. I f we represent by the term M 
that portion of the total moment carried 
by the stiffening frame, the ngorous or 
exact method writes 

M = Mo - H L ( y - f A) - H D A (1) 
The approximate theory disregards 

the effect of the deflection A, and writes. 
M = Mo - H t y (2) 

In addition to these two methods there 
is a modification of the ngorous method 
which merely disregards the secondary 
distortions assuming the cable always 
to remain m parabolic form. This 

method is nearly as accurate as the ngor­
ous treatment, but, since the work in­
volved in its application is nearly as 
great, i t will not be considered in the 
comparisons which follow. 

Because of the development of these 
radically diverse methods of attack, and 
because of the rather extended calcula­
tions involved in the application of the 
rigorous method, the Oregon Highway 
Department in 1937 initiated a research 
project looking toward the development 
of rational design methods for highway 
suspension bridges and the denvation of 
certain design graphs which would lessen 
the labor involved. These researches, 
undertaken by Mr Glenn S. Paxson, 
Bridge Engineer for the Oregon Highway 
Department, and Mr. Dexter R. Smith, 
Structural Research Engineer, under the 
general direction of the author, are com­
pletely described in Oregon Highway 
Department Techmcal Bulletin No. 13, 
entitled "Rational Design Methods for 
Short-span Suspension Bridges for Mod­
em Highway Loadmgs," and Oregon 
Technical Bulletin No. 14, entitled "The 
Derivation of Design Constants for 
Suspension Bridge Analysis (Fourier Se­
ries Method)." Much of the material 
presented hereinafter has been extracted 
from these published reports. Among 
the purposes and objectives stated were 
the following. 

1 To summarize and outline the mathe­
matical theory underlying the exact or 
rigorous method of stress analysis 

2 To compare the results obtained by this 
method with those based upon the hy­
pothesis of an unstrained load-point 
geometry (the so-called elastic theory). 

3 To develop conclusions and recommenda­
tions for design practice together with 
certain design graphs for the purpose of 
expediting the work involved 

These graphs were developed with 
particular reference to two-lane roadway 
spans designed for modem highway 
loadings, but with certam modifications 
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theii use may be extended to othei load­
ings and roadway widths 

The discussion which follows is of 
necessity somewhat abbieviated, no at­
tempt being made to include the various 
mathematical deiivations in complete 
detail nor to consider many of the phases 
included in the leports For a further 
discussion of these, the leader is refeired 
to Technical Bulletins Nos 13 and 14 

THEORY 

The fundamental theoiy underlying 
the rigoious method of analysis is based 
upon the enorgj' balance existent m anj' 
stiuctural frame at rest and undei load. 
When the equilibnum of such a frame is 

(WE) done by the deflection of the ex­
ternal loads may theicfoie be equated to 
the internal energy (Wi) absorbed by 
and stoied within the frame Moreover, 
this cqualit}-̂  will hold not onlj' for the 
entire stiucture but for any portion of it, 
consideied as a "free body in elastic 
equilibiium," pro\ided the action of the 
balance of the fiame upon the segment 
undei consideration is represented by the 
corresponding external force or forces 

Figuie 2 is a layout of a single-span 
suspension bridge under the action of a 
unifoim Uvc load extending from point 
a( = kiZ) to point b(=ksZ), and Figuie 
3 is the same stiucture sepaiated into 
two components ' 

Uniform Live Load 
From OL f o b 

Span Span=l. 

Figure 2 

distuibed by temperature change oi by 
the addition, alteration or removal of 
live loading, it is immediately set in 
motion, the point of application of each 
external load is forced to execute a small 
displacement, and each of the internal 
members is i-equired slighth' to change 
shape m order to conform to its newly 
distorted position Each internal stress 
is therefore displaced through a short 
distance represented by its corresponding 
strain, thus absorbing energy, and the 
motion (deflection) will continue until 
such energy absorption is sufficient to 
balance the kinetic energy generated by 
the motion of the loads. For any elastic 
fiame undei load and at rest, the work 

Let H D = horizontal component of 
cable stress due to dead 
load, 

H L = horizontal component of 
cable stress due to live load, 

A = deflection of cable at any 
point, 

A = area of cable, 
Ec = elastic modulus of cable, 
w = dead load per unit length of 

span, 
q = that portion of the live 

loading (p) transmitted 
1 In the interest of simplicity the backstay 

or side spans are not considered. These will 
be consideied later 
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from the stiffening frame 
to the cable, 

i3 = H L / H D . 

The followmg expressions, represent­
ing respectively internal and external 
energy may be easily derived from 
elementary mechanics: 

Wi = H ? ) ( H - ^ / 2 ) 5 | - J ^ . (3) ± f 'ds] 
lEc 

W E = j [ ' (w- | -q /2)Adx (4) 

i t i t i U i m j u j t t t t t t t t t t 

titmttiHH tttimmtttttttttntu 

4k 

*A =a,sinint + a,aina3pt*.—•»ow,aoa^«.. 

Figure 3 

Moreover, the term q representing the 
distributed (but nonuniform) live load 
transmitted to the cable may be repre­
sented by the term 

q = i 8 w - H D ( l + | 3 ) ^ (5) 

For elastic equilibrium, therefore, we may 
write: 

H 
AEc 

- ^ a + /s)' 

Equation 6 is not in shape to handle 
because of the fact that i t involves the 
deflection term A which is not only un­
known but also vanant from point to 
point along the span. 

Dr. Timoshenko and Dr. Priester have 
developed a very ingenious method of 
handling this equation by utihzmg a sine-
senes expansion of the unknown deflection 
term, A, that is to say, writing-

. irx , . 2irx A = ai sin - I - aj sm 

- f -a .s in?p- | - . . . + a„sin5p-|-. (7) 

In order to evaluate the unknown coefii-
cients a i , as, as, etc., they utilized the 
following device 

Considering the stiffening truss as a 
free body in elastic equilibrium, the in­
ternal work generated by its deflection 
may be represented by the term. 

I f M M x E l f ' T d ^ A T , 

which may be transformed by means of 
the above Fourier expansion into the form 

Elir* ^ n - « 4 2 
Wi = 2-n-i n an (9) 

Differentiating this expression with re­
spect to any particular Founer coefficient 
an yields-

dWi ^ E L r V a n 
da. 7^ 

I t can also be shown that 

dWe 
dan 

(10) 

= p J sin dx 

_qjj 's in5pdx (11) 

The right-hand terms of equations 10 and 
11 may now be equated and solved for the 
Fourier coefficient an, whence is derived 
the followmg. 



McCULLOUGH—DESIGN OF SUSPENSION BRIDGES 553 

For "n" odd: 
_ 21*[p(cos na-ki - cos nirk^ - 2|3w] ^, 

^ El7r*n» + HD (1 + |8)n»»»l« ^̂ '̂ ^ 
For "n" even: 

„ _ 21*[p(cos nirki cos nirlft)] 
EIw«n» + HD (1 + P)n'i^P 

= ^^ll+p/2h. + ^ + ^ + ...' 

- I - HD (1 + ^) J * [a? + 2*1^ - I - 3*a| + . . . ] 

(13) - H t ^ ' t l + | 3 /2 l [b .+ ^« + ^ + . . . " 

We may now go back to equation 6 
and substitute for the term A, its equivar 
lent in terms of the sine series, whence we 
derive 

= ^ ^ [ l - l - ^ / 2 ] [ a i - f - | - H | ^ 

- f H o d - h i S ) ^ ' 

+ 

.[a? + 2*ai- |-3V3-|-. . .] (14) 

This is the final equation from which the 
term j9 for any single span may be de­
veloped. I f temperature changes as well 
as gravity loadings are considered, this 
expression becomes: 

- f ctHD[l + i3 /2] j [ '^ 

= 2?L ' [ l -Hi8 /2 ]L -H$-h^^ + . . . ' 

IT L " " . 

- | - H D ( 1 + ^ ) J ' 

.[a?-i-2*^-f 3*a|-f . . . ] (15) 
Considering the interaction of the side 
spans, the above expression is expanded 
into the following form: 

^ ^ . ( l + . / 2 ) [ { ^ , . 2 f g ] 

+ H „ ( l + ^ / 2 ) c t [ j [ ' f + 2 f | ; 

- | - H D ( 1 + /3)^* 

.[bi + 2*bi + 3 ' b | - | - . . . ] (16) 

The integrals , the terms Wi and l\ and 

the coefficients b i , b2, etc. refer to the 
side spans, these latter coefficients bemg 
calculated in exactly the same manner as 
for the main span. 

The fundamental equations suffice for 
the determination of the term j8 repre-
sentmg the ratio of hve to dead load cable 
stress. Obviously, with this ratio deter­
mined, the stress distribution throughout 
the entire structure is determinate from 
statics. Since the term j9 occurs in both 
sides of equation 16, i t must be deter­
mined by a process of trial and error 
However, this process is not particularly 
complicated or tedious. 

The foregoing derivation, except for the 
neglect of hanger distortions is rigorous 
and exact, and its application is consider­
ably less cumbersome than the solution 
of the linear differential equation involved 
in the Melan method. 

COMPARISON OF EXACT AND APPBOXIMATB 
METHODS 

In order to effect this comparison, 24 
separate designs were analyzed by the 
exact or rigorous method and also by the 
approximate method, or so-called elastic 
theory. Table 1 indicates for four typical 
designs in each length group the maxi­
mum degree of error introduced by the 
use of the elastic theory method. I t will 
be observed that the degree of error in­
creases with the span length, and de­
creases as the rigidity of the stiffening 
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frame (as evidenced by the value Im) is 
increased, which results are logical and to 
be expected. 

The investigation also developed the 
fact that even for the same design the per­
centages of error for different portions of 
the stmcture were widely variant so that 
i t is not feasible to apply any fixed coeffi­
cient of correction. This fact, coupled 
with the large degree of maximum error, 

T A B L E 1 
M A X I M U M P E R C E N T A G E O F E R R O R I N 

E L A S T I C T H E O R Y ' 

Maximum Percentage of 
De- Uain Hom of 

inertia of 
Error^Elastic Theory 

IT Span 
Length 

Stiffening 
Frame (In) Positive Positive Cable 

Moment Shear Stress 

bî ltioclratictn % % % 

5 450 72,000 40 56 32 67 0 74 

6 450 144,000 23 33 20 63 0 70 

7 450 216,000 17 51 15 00 0 62 

8 450 288,000 14 60 12 08 0 56 

17 900 108,000 198 51 108 76 0 73 

18 900 216,000 106 61 73 91 0 67 

19 900 324,000 73 01 58 22 0 63 

20 900 432,000 53 84 48 59 0 54 

21 1,800 720,000 252 86 112 99 0 55 
22 1,800 1,440,000 140 62 91 31 0 53 

23 1,800 2,160,000 100 24 75 52 0.49 
24 1,800 2,880,000 79 08 61 34 0 46 

1 The above data are for the main span. 
The percentages of error for the side spans are 
of a similar order of magnitude. 

appears sufficient to support the conclu­
sion that the approximate method is of 
practically no value whatsoever even for 
prehminary work. 

RECOMMBNDBD D E S I G N P R O C E D U R E 

Based upon the results of these investi­
gations, the recommendation was made 
that the exact or rigorous method of 
analysis be used in all cases since, as be­
fore stated, the elastic theory method in­
volves errors of material and variant 

magnitude. The following procedure for 
analysis and design was recommended. 

1 Sketch a general layout of the stmc­
ture to fit the particular needs of the site, 
and calculate the dead load cable stresses 
in the usual manner. 

2. Using an average value of jS (from 
tables given m Bulletins 13 and 14), com­
pute the approximate maximum cable 
stress, and select an approximate value 
for the cable area A. 

3. Using different values of the moment 
of inertia I , develop a series of grade 
change and moment graphs such as illus­
trated in Figure 4, and with the known 
maximum grade change as previously 
determined from traffic necessities, or as 
given in the design specifications for the 
stmcture in question, enter the diagram 
and determine the necessary values of 
Im and I , . 

4. With these values, test both main 
and side spans for maximum fiber stress 
induced by positive moment. 

5. I f one or both of these stress values 
exceed the safe allowable limit, make such 
adjustments as are necessary to bring 
them into conformance. The economy 
and feasibility of modified frame depths 
and also of the employment of alloy steels 
should be investigated in this connection. 
I t should be remembered that since the 
stiffening frames are stmcturally redun­
dant, more liberal unit working stresses 
may be employed than are ordinarily per­
missible. I t should also be remembered 
that the moment values in the stiffening 
frame are functions of the moment of in­
ertia I of the frame in question, and when 
these I values are changed during the 
process of balancing the design, moment 
values must be adjusted accordingly. 

When the design has been finally se­
lected and balanced, as described hereto­
fore, i t will, of course, be necessary to 
test i t for negative moment and also for 
shear. However, positive moment stress 
is generally the controlling factor. 
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DESIGN GRAPHS 

Throughout the research which forms 
the basis of this report, there was evidence 
of a relationship between maximum stress 
and strain and certam design constants 
representmg relative loading, stiffness and 
other related data. This led to an in­
creasing degree of hope regardmg the 
possibility of developing certam design 
graphs at least of sufficient accuracy for 
preliminary purposes, and for estimates. 
Obviously the only method of approach 
was that of repeated trial, plotting the 

pression- Grade change = ir/Z-(ai + 
2 8 8 + 3as + etc.. .) 

The Fourier coefficients ai, a2, as, etc , 
involve the terms. 

p representing the specified unit live 
load, 

I representing the span length, 
k representing the proportionate 

loaded length, 
E representing the elastic modulus of 

the frame, 
I representing the moment of inertia 

of the stiffening frame, 

HaxnTMn 

25000 

MAXIMUM KSmVE MOMENTS 
AND 

NEGOIVE GRADE CHANGES 
STIFFENING TRUSSES 

OP 
IVMnUS MOMENTS OF INERTUk 

inMiinSptei <l>flOO 

100 ISO 200 '7SO 30O 
MOMENT OF INERTUk OF STIFFENING TRUSSES ( MUNCHES*?*' 

460 £00 

Figure 4 

control data against various design con­
stants and projectmg correlation curves 
through the points thus derived. Several 
months were expended in this effort, and 
the results finally attained represent 
about the closest and simplest correlation 
possible in view of the many factors in­
volved. The following description of the 
development of these design graphs is 
taken almost verbatim from Bulletin 
No. 14. 

Grade-change FoZues 

The maximum grade change occurs at 
the towers, and is represented by the ex-

and also the unknown ratio jS = H L / H D , 

the dead load (w), and the horizontal 
component of the dead load cable tension 
which, in turn, is a function of (w) and 
the sag ratio (f/1), this last ratio being 
assumed as 1/10 for the curves herein 
developed. 

After repeated trial, a design constant 
hereinafter termed the load-stiffness fac­
tor was developed. This constant is 
represented by the formula. 

L.S.F. = + 
" E I T " Tw" 
. p p j 1P. 
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Against this constant, the correspond­
ing values of maximum grade change 
were plotted, assuming a side-span length 
(k) equal to 50 per cent of the main-span 
length (Q. The degree of correlation is 
quite close, as will be observed from 
Figure 5, wherein the correlation graph 
is seen to lie quite close to the individual 
data points. 

Similar graphs for maximum grade 
changes in the side spans are indicated in 

Values of kfor Maximum Positive Moment 
m the Mam Span 

The graphs given in Figures 7 and 8 are 
correlation curves for two design con­
stants. As abscissae are plotted, the 
values of the so-called stiffness factor 
EI/Z* (pounds per linear inch) while as 
ordinate is plotted, the design constant 

MAXIMUM GRADE 04AN6E6 
IN 

MAIN SPAN 
*-100 SAG, S •••,10 

Live Load plus Temp Rise of fiCF 
LivsLaad 

1317.t 

E-Modof Elartieitu 
! • Mem of Inarfia 

w Dead lead 
p • Live Load 

LQAD-SnFFNESS FAeTOR-(L S F ) • V ,̂ • ( 2^) 

Figure 5 

300 

Figure 6. In this latter case, the design 
constant employed is represented by the 
formula. 

. . „ . 
LiSiI 

+ /Ei,ynrwx-Fpx-
\8piZ!/ JL Pi . 

I t is only necessary, therefore, to com­
pute, for the design at hand, the value of 
E I / ! ' , enter the diagram with this ab­
scissa and determine for the particular 
section x/l under investigation, the value 
of Z. The loaded length k is then deter­
mined from the formula: 

Spill/ J L Pi 
In each of the above figures, two graphs 

are indicated, one for live load only, the 
other for live load in combmation with a 
W F . rise m temperature. 

*The subscripts are to distinguish the 
values of I , w, I, etc , for the side spans. 

as indicated in the figures. 

Figure 7 is for stiffness factors ranging 
from zero to 10 lb. per Im. m., while Figure 
8 carries the correlation graphs up to a 
value of 55 lb. per hn in. 
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Maximum Positive Moments in the Main 
Span 
With the values of k determined from 

Figures 7 and 8, the next four graph 
sheets (Figures 9 to 12) may be employed 
to calculate maximum positive moment 
values for each tenth point along the 
main-span frame. As abscissae are plot­
ted the values El/P-k; as ordinates are 
plotted, the term 

^ _ / M E l Y " 
\k*p«Py 

Figures 9 and 10 are for live load plus 
temperature, while Figures 11 and 12 are 
for live load only. 

Maximum Moments m Side Spans 
Since the criterion for the TrmYiiminn 

positive side-span moment is ful l live load 
over the entire span, no graphs are neces­
sary to the determination of k. The de­
sign constant finally selected for the cor­
relation graphs is represented by the ex­
pression: 

MAXIMUM GRADE CHANGES 
N 

SIDE S M N S 
SAC S'MO 

Live Load plus Temp Riae of £0*F 

Liva Load enkj 

wDeadLoad I •Mom of Inertia 
p-LivaLoad E'Modcf Elashotu 

L<W>•STmF^«SSFAC^OR ( J . .S ,F ) . [ ( ;^ , , )^(^ /J f !S>^ 

Figure 6 

£00 

I t is only necessary, therefore, to (1) 
determine k from Figures 7 or 8; (2) cal-

E l -k 
culate — ^ for the design at hand; (3) 

enter the diagram with the above value 
and determine Y for the section x/l under 
investigation, and (4) determine M from 
the formula: 

MiLiS) 

M = 
E I 

and has been termed the side-span mo­
ment load-stiffness factor. 

Against this design constant as ab­

scissa, a moment coefficient hj, = (^^^ 
has been plotted as ordinate in Figure 13, 
correlation graphs bemg developed for 
each tenth-pomt section x/l along the 

I t is only necessary, therefore, to 
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LOAOEO LENGTH 
OF 

UNIFORM LIVE LOAD 
10 PRODUCE 

MAXIMUM MSmVEMGMEMT 
IN THE 

MAIN SPAN 

lOOO 

STIFFNESS F A C T O R - f S - F ) - ^ (LBS PER LINEAR INCH) 

Figure 7 

Loaded l a n g l h - k - \ 

LOADED LENGTH 
OF 

UNIFORM LIVE LOAD 
TOPROOUCE 

MAXIMUM POSmVE MOMENT 
IN THE 

MAIN SPAN 

5S0O 
STIFFNESS FACTOR(S F ) . (LbS PER UNEAR INCHl 

Figure 8 
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u. .14 

MAXIMUM POSmVE MOMENT 
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MAIN S P A N 
DUETO 

UNIFORM 1MB LOAD 
PLUS 

TEMP RISE SO*F 
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Figure 9 
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UNIFORM LIVE LOAD 
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Figure 10 
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DUETO 
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Figure 11 
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Figure 12 
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compute from the design data the term 

MiLiS F - E I . 1/2 
enter the diagram 

with this value, and for any section x/l, 
determine hL. The side-span moment at 
the section considered is clearly given by 
the expression. 

M L = hJ,pZ! 

The term M L given in Figure 13 repre­
sents the side-span moment due to live 
load only. Similar correlation graphs for 
the side-span moment, MLTI representing 
the combined effect of live load and a 
GOT. temperature rise, are given in 
Figure 14. 
P Values 

The correlation graph for j8 values is 
indicated in Figure 15. As abscissae are 
plotted, the values of the stiffness factor: 
S.F. = EI/J» in lb. per lin. in. As ordi-
nates are plotted, the corresponding 
values of the coefficient (O) where 

0 = ElwjS 

I t is only necessary, therefore, to enter 
the diagram with the proper value of 
S.F.(= El/P) and determine the corre-
spondmg value of 0. The value of |9 is 
given by the expression 

Figure 16 is similar to Figure 15, except 
that the values of S.F.(= EI/P) have 
been earned up to a maximum of 60 
pounds per linear inch I t will be ob­
served that the j8 correlation graphs are 
straight lines 

Figures 15 and 16 give the values of /3 
for full live load on the span in combina­
tion with a temperature drop of 60"'F. 
I n Figures 17 and 18 are plotted /3 values 
for a uniform live load placed in such 
position as to produce maximum positive 
moment m the main span. In these 

latter curves, the values of the stiffness 
factor S.F.(= EI/P), as abscissae are 

plotted against the coefficient b = 

one correlation graph being plotted for 
each tenth-point section x/l along the 
span I t is only necessary, therefore, to 
enter the diagram with the proper stiff­
ness factor (S.F.), determine the corre­
sponding value of b for the section x/l 
under consideration, and calculate P from 
the formula: 

. _ b ? p 
" - E i ; ^ 

lAmitatums to Employment of Graphs 
The correlation graphs and design data 

described have been developed from the 
particular designs investigated, and are 
therefore somewhat limited in their appli­
cation. Specifically, these limitations are 
as follows 

(a) The graphs are smooth curves pro­
jected through a group of individual data 
points, as will be seen from an inspection 
of the figures. Their use, therefore, leads 
to results which are approximate only, 
and any design developed therefrom must 
be checked by a detailed analysis. Their 
pnncipal utility is to enable the designer 
rapidly to develop a preliminary design 
sufficiently exact for estimatmg purposes. 

(b) The graphs are limited to struc­
tures having the same relative geometric 
properties as those considered herein, to 
wit, a main-span sag ratio of one-tenth, 
and side-span length ratios of 50 per cent. 

(c) The graphs are based upon an as­
sumed value of Im/Ia) equal to 
unity. The results, therefore, must be 
adjusted to take into account the variance 
in side-span interaction if other values of 
the ratio ^ are found to be necessary in 
the final design. I t is generally found, 
however, that the effect of varying ijf 
values is slight. 
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Ittusirative Problem 
I n order to illustrate the use of the 

graphs, let us consider the design of a spe­
cific structure having the following prop­
erties: 

Main span 500 ft 
Side spans 250 ft 
Sag ratio 1/10 
E 29,000,0001b per sq in. 
Dead Load 2,200 lb per lin. ft of frame 
Live Load 1,000 lb per lin ft of frame 
Temperature vanation OOT. 

As before stated, the design procedure 
involves four initial steps, as follows: 

(a) The development of four graphs or 
curves, such as are shown in Figure 4, 
to wit: 

Main span grade change vs. Im 
Main span positive moment vs Im 
Side span grade change vs. I . 
Side span positive moment vs. I , 

(b) The selection of Im and 1. for bal­
anced grade-change values. 

(c) The testing of the above values to 
determine their adequacy, as regards posi­
tive moment capacity, in other words, to 
see if either of the frames selected is over-
stressed for moment. 

(d) To make such adjustments as are 
necessary to effect the greatest degree of 
balance consistent with safe unit stresses 
and maximum economy of materials. 

Let us first consider the development of 
the four basic data graphs: 

(a) Mcanrspan grade-change graph— 
The grade changes m the mam span 
plotted as functions of the so-called load-
stiffness factor are indicated m Figure 5. 

Assuming an arbitrary value of Im equal 
to 160,000 biquadratic inches 

= (-l^l?)*'* = .3423 

( ^ ) " " (-25778)"* = .6077 

w/p = 2.2 

Load-stiffness factor = .3423 + 2.2 
(.5077) = 1.46, and the corresponding 
grade-change value from Figure 5 is 1.51 
per cent for live load only, and 1.91 per 
cent for live load plus eO'F. temperature 
rise, as indicated by the dotted lines 
plotted thereon 

The foregoing determination establishes 
one point on the grade change-Im graph 
(Figure 19). Assuming varying values of 
Im and repeating the above operation, 
other pointe are established and the curve 
constructed as shown in Figure 19. 

(b) Main-span momerd graph—The 
next step is the development of the main 
span positive moment vs. Im graph. In 
order to determine the points on this 
curve, i t is of course necessary first to 
determme the critical values of k for 
maxima. 

The curves of Figures 7 and 8 give the 
value of k for varying values of the so-
called stiffness factor EI/I». Using the 
same trial value of Im (160,000 biquad­
ratic in.) we find: 

g p ^ 29,000,000 X 160,000 ^ „! 48 
216,000,000,000 

Utilizing this value of S. F., the data in 
Table 2 are obtained from Figure 8: 

Using the values of k m Table'2 the 
term Elk/P is computed for each sifection 
x/l to be investigated, and from'Figure 9 
or 10, the corresponding values'of Y are 
determined. From these last vi^ues, the 

positive moment values, M = —g|— are 

readily derived, the calculations, in this 
case bemg given in Table 3. 

The maximum-positive moment occurs 
at section x/l = 0.30, and amounts to 
55,672,000 in.-lb. This may not be the 
absolute maximum since the sections be­
tween x/l = 0.20 and x/l = 0 30 on the 
left and between x/l = 0 30 and x/l = 
0.40 on the nght have not been investi­
gated. For absolute accuracy, i t would 
be necessary to investigate two or more 
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intermediate points and to plot a moment 
graph from which the absolute maximum 
could be determined graphically. The 
above value, however, is sufficiently exact 
for our present purpose. 

This procedure establishes one point in 
the Positive Moment vs.—Im graph for 
the main span. Proceeding in exactly 
the same manner with other values of Im, 
the graph is developed as indicated m 
Figure 19. 

(c) Stde^span grade-change graph—In 
Figure 6 are plotted the grade-change 
values in the side spans as functions of the 
factor. 

( EI^Y" = .3423 

1/2 
= .5077 

wi + pi 
Pi 

3.20 and L.S.F. = [.3423 

+ .507713.20 = 2.72 

T A B L E 2 

Section 
x/1 z I>Z/EI k k> 

0 10 2 92 0 1359 0 369 1362 
0 20 3 83 0 1783 0 422 1780 
0 30 5 62 0 2670 0 507 2571 
0 40 7 61 0 3496 0 591 .3617 
0 50 4 14 0 1927 0 439 1927 

/ E i . - \ " n r w i + p r 
\8pW?/ JL P» . 

T A B L E 3 

<8p: 

Assuming 
wi = w = 2200 lb. per Im. f t , and. 
Pi = p = 1000 lb. per lin. f t . , and 

taking the first tnal value of I . as 160,000 
biquadratic inches, we derive the fol­
lowing value for the load-stiffness factor: 

Sec­
tion 
x/1 

Elk 
<• Y Y« k«Y> Moment 

(m. lb.) 

0 10 7 927 282 022426 0030535 35,536,000 
0 20 9 087 290 024389 0043639 60,786,000 
0 30 10 891 266 018610 0047837 56,672,000 
0 40 12.739 230 012167 0042785 49,793,000 
0 60 9 430 271 019903 0038367 44,640,000 
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From Figure 6, we find the coirespond­
ing grade-change values to be 1 55 per 
cent foi hve load only, and 1 64 per cent 
for live load plus tempeiature, as indi­
cated by the dotted lines shown thereon. 
Proceeding in like manner with other 
values of I„ the side-span grade-change 
graph IS developed, as indicated in 
Figure 19. 

(d) Side-span moment graphs—In Fig­
ure 14 are plotted the values of the side-
span positive moment coefficient 

against values of the so-called side-span 
moment load-stiffness factor 

\8wil?/ 
Using the value assumed for I , (160,000 

biquadratic inches), the factor evaluates 
to 0 3423 as noted Using this value, and 

the section x/Z = 0 50 (which is the point 
of maximum moment in the side spans) we 
determine (from Figure 14) the value of 
hLT to be 0.462. 

The maximum positive moment in the 
side span (for I , = 160,000 biquadratic 
inches) is, therefore 

M „ = h'pZ? = (.462)'.(15^) 

.(250 X 12)* = 73,958,000 in.-lb. 

The foregoing procedure establishes one 
value of MLT - Proceeding in like man­
ner, but with other values of I , , the side-
span moment graph is developed as indi­
cated in Figure 19. 

With the graphs of Figure 19 once de­
veloped, the remaining procedure is 
largely one of adjustment for maximum 
balance and economy. The detailed cal­
culations for this adjustment are given in 
Bulletin No. 14, pages 228, et seq 




