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SYNOPSIS 
A brief review points out the lack of applicable mathematical relationships be

tween the analysis of the variables and the design of flexible surfaces or other 
structures involving soil or aggregate masses This is followed by the develop
ment of a possible fundamental equation through the application of the Law of 
Similitude to the problem in its simplest form Since the well known Housel re
lationship between soil support and perimeter area for a given deflection seems 
to be a special form of this general equation, the prospects that i t may be sub
stantiated seem excellent. I f this equation is proved correct i t will have some 
interesting corollaries, such as the possibility that laboratory tests can be extra
polated to field use. The definite need for flexible test plates instead of the rigid 
so far used is another possible consequence from the impbcations of the formula 

The derivation of the relationship between the increase in supporting strength 
and layer thickness for foundation materials over a subgrade, where the load tests 
indicate Housel's relationship is being maintained, throws further light on the 
design situation, as i t affords an indication of which type of design formula may 
be required to most nearly represent the conditions. I t indicates that the sup
porting power of the foundation is directly proportional to the foundation ma
terial strength, from which i t would follow that methods which specify set foun
dation thickaesses regardless of the foundation material quality, are incorrect 

in conclusion warning is given that the formulae must be fully confirmed by 
experiment, but i t is felt that the relationships derived may be quite helpful 
in indicating the proper trend of future investigation and methods to use in 
analyzing the results. 

• 

Aggregate structures for the spreading of No solution to a similar attack, for an elastic 
stresses or the carrying of loads were early layer of different structural characteristics 
used by man. Despite the apparent simpllc- imposed upon the base medium—unless the 
ity of such structures, their analysis for design Westergaard analysis for a rigid slab can be so 
purposes is among the most complex problems classified—is known to the writer, but a very 
of mechanics. The growing importance of general analysis of this type would undoubt-
highways and airports, and the economic edly be far more helpful. Perhaps the deter-
benefits which wiU result from the develop- mination of the trend of the variables in-
ment of a rational method of design of flexible volved, through a S}rstematic experimental 
surfaces (mcludmg m this classification all study by the use of materials exhibiting these 
which are composed of discrete particles of soil ideal properties, wdl be a compromise solution, 
or aggregate functioning as a mass through As a result of this general mathematical 
fnctional interlockmg or the cementing effect situation, the usual approach to this problem 
of fluid binding materials), have given this has been either through field tests or the ap-
subject outstanding prominence today. plication of empu-ical formulae to experience 

Even in simphfied form, the problem is not data, with no solution from either attack gen-
readily susceptible to mathematical analysis erally accepted as satisfactory today. How-
of the stress stram relationships. The classic ever i t does appear possible to throw some 
solution for the distribution of stresses result- light on certam aspects of the situation 
ing^from a uniform load applied over a circular tlurough a fundamentally rational mathemati-
area to a completely elastic, homogeneous, and cal attack, and this paper is concerned with 
isotropic medium has been of some help m the such analysis, 
study of cohesive soils; but if anything, i t has _, 
b e t n ' ^ l l ^ m i t e ' a t t e m p t e d a p ^ U o n s ' ^ ^ A M E N T A L LOAD BEARING BELATIONSHIP 
to actual structures with properties differing In the actual applications, with which we 
greatly from these assumed characteristics, are primarily interested in practice, the load is 
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applied to the structure through pneumatic 
tires, resulting in a more or less uniform in
tensity of loadmg Test procedures to evalu
ate the load bearing characteristics of soils and 
aggregates have m general resorted to ngid 
application surfaces, such as steel plungers or 
plates, due to theu: immediate availability and 
the apparent difficulties involved in usmg an 
apphcation surface which gives uniform pres
sure distribution—that is, a so-called "flexible 
bearing plate" A number of engineers, m-
cludmg the writer, have questioned the cor
rectness of applying the results from such a 
loading techmque to field design, feehng that 
a umform correlation might not exist between 
the two load apphcation methods, and cer
tainly the assumption of a direct relationship 
is quite questionable. Since the ideal way to 
determine the load bearing capacity of a 
material when used in a structure is through 
the apphcation of actual loads, the load bear
ing test attack seems the most rational and is 
consequentiy receiving the maximum of at
tention at the present time I n the course of 
so doing, this matter of ngid versus flexible 
bearing plates is bong given attention, al
though i t is not yet certain that the mechaiucal 
difficulties of working out a suitable plate have 
yet been solved in such fashion as to permit 
the obtammg of all the data needed. Cer-
tiunly any analysis which will assist on this 
point, and incidentally throw some basic light 
on probable relationships between the varia
bles involved in the carrying of loads by such 
structures, should be helpful 

The simplest load beajmg situation is the 
apphcation of a uniform loadmg over a known 
circular area, resulting in some measurable 
deflection of the soil or aggregate surface. I f 
the deflection at the center of the plate is used 
as a criterion of this situation, we then have 
three variables. I n general, the aggregate 
structure resists by its ability to withstand 
direct compression and frictions! movement 
or shear. I f we assume that the soil or ag
gregate mass can therefore be completely 
characterized from a structural standpoint by 
coefficients which express these two properties, 
we have two more variables or a total of five. 
Through the application of Rayleigh's "Law 
of Smulitude," i t appears that if the dimen
sions of the soil constants can be determined— 
that is, if the constants can be properly 
chosen—we might throw some hght on the 

inter-relationships of these various quantities 
in this case. 

Smce the soil acts more or less as a confined 
mass, i t seems reasonable to characterize the 
compression resistance on the basis of resist
ance per unit of volume or pounds per cubic 
foot. Note that this differs from tiie usual 
factor, the modulus of elasticity in compres
sion expressed in pounds per square foot, the 
use of the latter would also require the brmg-
ing m of Poisson's ratio. The shearing tend
ency, which occurs on planes, seems 
reasonably to be expressible m resistance per 
unit of area or pounds per square foot. These 
are accordingly assumed. 

Another important assumption is that the 
problem is statistically determinate in the 
range of pressures considered; or in other 
words, that static equihbrium results from the 
application of any force m this range. 

The resulting apphcation of dimensional 
equations to the problem is given in Section 2 
of the Appendix, following Nomenclature in 
Section 1. This derivation indicates that a 
possible solution of the problem—that is, a 
relationship between the variables—can take 
the form of 

Equation 1 

As pointed out in the Appendix, this appears 
to be the familiar perimeter area relationship 
used by Housel but in a more general form. 

This equation indicates that the pressure 
will be directiy proportional to the deflection 
for any plate, yet we know from observation 
that this IS rarely the case This however may 
be easily explained A basic assumption in 
the derivation was that the soil had constant 
characteristics Quite evidently if consobda-
tion has not taken place, all the structural soil 
properties will change as the squeezing to
gether of the particles m the soil or aggregate 
mass occurs However once this consolida
tion has been completed (as a result of com
paction and/or use) so that none additional 
occurs from the application of loads withm the 
design range, i t can be expected that the 
deflection be directiy proportional to the 
pressure. Furthermore field or laboratory 
proof that this occurs will serve as some evi
dence of the correctness of the equation. 
Evidentiy, to take care of this situation, the 
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equation should be expressed m the differen
tial form. 

Equation 2 

This IS the most general form of the relation
ship, holdmg for any variation of k , and kg 
witii D , if the other assumptions made remain 
valid However in view of the objections by 
some to the differential form, as well as the 
wide acquaintanceship with the equation used 
by Housel, Equation (1) mstead of Equation 
(2) will be referred to hereafter, with under
standing of its limitations, since this does not 
affect the validity of these further conclusions 

Certain corollaries immediately follow from 
any demonstrated correctness of Equation 
(1). I f the relationship is proven for any 
range of the variables—or more particularly, 
the dimensionless groups—it immediately fol
lows that i t will probably hold through theu-
entire variation. This follows because the 
experimental verification for any set condition 
not merely is apphcable to those values but for 
any others which result in the same dimension-
less product value I f the relationship is 
proven for a number of qmte different soils 
(as may be hoped for from results to date) 
over a considerable range of plate radii, i t is 
obvious that the probable range of the dimen
sionless quantity so substantiated will be quite 
large. In other words, if the Housel relation
ship proves to stand up with flexible plates 
(below the failure pomt of the soil), i t ^ould 
be possible to extrapolate i t to a zero value of 
the perimeter area ratio Also all other hnes 
on the penmeter area ratio graph for analogous 
structures over the same subgrade will then 
pass through this same zero value; because 
obviously, for the plate 'of mfimte radius, the 
only supporting factor will be the subbase 
compressive resistance, which must in the end 
cany (and hence determine) the load support 
value regardless of any added layers to im
prove the load distribution From the stand-
pomt of the apphcation of laboratory or field 
bearing tests with small loads to the design 
for the large units which may be apphed to 
such surfaces, this is an extremely important 
conclusion. 

There is another deduction to be made from 
this relationship. I f the assumptions speci
fied are correct and Equation 1 is confirmed by 

experiment, the application of a uniform pres
sure makes possible the need for only two 
dimensionless groups, from which the relation
ship follows I f the load however is not um-
iormly applied over the surface, as occurs with 
a rigid plate, another dimensionless quantity 
characterizing the pressure distribution must 
be brought in We then have three dimen
sionless groups, the relationship of which must 
be determmed by experiment. I t is quite 
evident that, if the pressure distribution co
efficient for a rigid plate holds constant over 
a range, a straight hne may result, but this is 
only true while these circumstances mamtain 
and this straight hne relationship may change 
at some pomt to some other one Even in the 
rangewherethe straight Ime relationship holds, 
the correlation with the straight Ime usmg a 
flexible plate is still not known, though i t can 
possibly be ultimately estabhshed by expen-
ment At the present time i t is obviously un
wise to attempt to apply the results of bearing 
tests obtained from rigid plates where the load 
conditions involve flexible load application 
equipment. The obviously erroneous results 
which would have been obtained had field 
bearmg tests with rigid plates been extrapo
lated to the design conditions in certam m-
stances are thus explained. 

I f the additive properties of the various 
resisting effects (shearmg, etc) maintam and 
some experimental information on the geome
try of the pressure distribution can be ob-
tamed, this attack through dimensional analy
sis has possibilities for a better understanding 
of the soil reaction under rigid plates. Even 
the deformation curve under flexible plate 
loadings may throw some hght on this subject. 
Since the diaracterization of subgrade reac
tion (or the smtability of the various assump
tions made concerning i t ) , seems to be the 
remaining pomt to be settled m connection 
with the rational design of ngid slabs, this 
whole matter may prove to be of interest to 
the designers of such structures as well as of 
flexible surfaces. 

In general, i t would seem that the foregoing 
general relationship, if found applicable as 
Housel's work leads us to hope, wJl be of great 
benefit m permitting a more rational analysis 
of the problem. Some correlation can be per
haps estabhshed between the constants m the 
Housel formula and the fundamental proper
ties of the soil. The relationship between the 
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changes resulting from compaction and those 
in these fundamental soil constants may also 
be of use in a study of this practical matter of 
consohdation, its prediction and control. 

EFFECT OF FOUNDATION' THICKNESS 

Anotiier point in the present discussion of 
flexible surfaces is in connection with the rate 
at which the load is distributed or spread by 
layers of supportmg aggregate, such as a 
crushed stone foundation. For example, the 
Gray formula, which was an early attempt to 
give a more rational design attack, assumes a 
constant 45 deg angle for this slope The 
Elinger formula likewise specifies a constant 
angle but allows for its variation with the 
matenal. Some msight may be thrown on 
this situation by some elementary mathemati
cal analysis, as shown by paragraph three of 
the Appendix 

In considering the application of Equation 
(3) to the conditions possibly existing, there 
appear to be three cases requiring analysis, 
remembenng always the pnmary assumption 
that the Housel formula is found apphcable to 
all layers. ' 

The first case will occur where an additional 
layer of the subgrade material is added Ob
viously this n-ill not change the soil constants 
nor will the area subjected to shear or other 

action be altered. Consequentiy should 

equal zero, and there will be no mcrease in 
permissible pressure This conclusion would 
have to result, because the basic assumptions 
behind Equation 1 call for an infinite depth 
and this addition of a soil layer of the same 
material will consequently not alter the 
situation in any respect. 

The second case will occur where a layer of 
a different but granular material—or perhaps 
more exactly, material offering resistance only 
through compression and shearing effects— 
has been added. Obviously the assumptions 
behmd Equation 1 as derived are no longer 
present and therefore i t does not directiy 
apply. I t may come m only through the 
implication that the combined struciture acts 
exactly as though i t were composed of one 
matenal, showing the resistance reqmred by 
Equation (1). The addition of such a layer 
under these cu:cumstances could mcrease the 
area of the planes m the foundation layer sub
jected to shear in duect proportion to the 

thickness of this layer I f this happens, the 
resultant shearmg effect, or the effective shear
ing constant in the substitute Equation 1 
found applicable, would change directly vrith 
the thickness, even though the shearing prop
erties of the foundation material remained 

unchanged. In this case then ^ would be 

equal to a constant 
Obviously in this second case we have the 

equivalent of a resistance by sheanng, with 
this shearmg effect m proportion to the 
foundation layer thickness This is exactiy 
in line with the thickness formulae proposed 
by Housel and others Conversely the find
ing that ^ is equal to a constant implies that 

at 
the straight Ime formula wiU clearly represent 
the situation, although i t is an implication 
only that the added layer functions through 
compression and shearmg effects, with actu
ally the latter the only one mcreasing the load 
support value 

Where this second case exists, as indicated 

by the finding of a constant value of -r-, the 
at 

angle of distribution—the tangent of which is 
dr 

equal to ^ in Equation (3) (Appendix)t— 
obviously increases as the bearing value de
creases This is a very interesting conclusion. 
Its immediate corollary is that the weaker the 
subgrade the more effective a foundation layer 
of given thickness m increasing its strength. 
This 18 of great practical interest when the 
rather large thickness called for by recent 
empirical formulae for flexible surfaces where 
the subgrade is quite weak, is considered. 

The third case occurs when effects other 
than compression and shear resistance are ob
tained through the foundation layer This 
primarily implies the additional presence of 
cohesion, which through horizontal shear gives 
bendmg resistance up to the hmit of the 
cohesive strength of the foundation material. 
Obviously the assumptions made in deriving 
Equation (1) will be greatly exceeded in this 
situation; if the relationship charactenstics of 
Equation (1) still hold, such are simply experi
mental findings though not necessarily un
reasonable. Where these cohesive effects are 
appreciable, the increase m shearing areas will 
still be proportional to the thickness, but the 
bending resistance will increase at a faster 
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rate, consequentiy ^ will not be a constant 

as in Equation (2) but presumably will mcrease 
with the thickness The actual amount of the 
change m thickness will have to be ex-
penmentally determmed but Equation (3) 
mdicates that this increase will have to be 
roughly proportional to the pressure increase 
for the Gray or Klinger type formulae to hold 
even approximately. Since the mcrease m 
thickness of the foundation layer where such 
effects exist will involve not merely a greater 
load bearing capacity by the foundation layer 
but in addition a more rapid spread of the 
effective radius of load distnbution to the sub-
grade, the relationships may obviously be 
quite complex 

I t will be noted, that in the second case the 
strengthenmg effect of the foundation layer is 
proportional to its shearing strength, and in 
the last to its shearmg strength plus or multi-
phed by an additional factor due to cohesion— 
most hkely the combination of the two I t is 
obvious that the load distnbutmg effect of 
each and every layer in the foundation is di
rectiy dependent upon the strength charac
teristics of the matenal used I t then follows 
that design methods which in specifying the 
foundation thickness do not allow for the 
strength of the foundation matenal, or which 
only call for high bearing strength m the top 
layers and imply that the characteristics of the 
lower layers are less or not important, are 
mcorrect in principle if Equation (3) is valid 
for the conditions. 

I f the straight hne relationship for different 
flexible bearing plates mamtains, even with 
foundation layers over subgrades, as the find
ings to date indicate may be the case, though 
far from conclusively, i t is evident that Equa
tion (3) offers a means to analyze the situation 
and determine which of the proposed struc
tural formulae most nearly represents the 
actual facts. 

CONCLUSIONS 

In conclusion some wammg must be given 
The attack suggested has been primarily sto
chastic. The assumptions made, while reas
onable, are not obviously demanded or even 
apparently more or less necessary Conse
quently the equations denved cannot be taken 
as literal physical laws until substantiated by 
evidence. They do however seem quite in 

line with the trend of the data so far made 
available I f verified they should serve as an 
excellent tool for better understanding the 
phenomenon of load bearing by aggreagate 
masses, planning the experimental work 
necessary, and analyzmg the relationships 
indicated by i t . 

APPENDIX 

1. Nomendatvre 
W . Total load on plate, lb. 
r . Radius of plate, f t 
p Resulting uniform pressuie applied to 

surface of structure, lb. per sq f t 
D . Deflection resulting (at any specified 

point, say center of plate), f t . 
kc : Soil compression coefficient, lb per 

cu f t 
h, : Soil sheanng coefficient, lb. per sq. f t . 
m - Housel perimeter shear constant, lb. 

per f t . 
n : Housel pressure constant, lb per sq f t . 
t : Thickness of added structure layer, f t . 
a, h: Constants, dimensionless 

2. Development of a possible strwAwal equation 
through dimensumal analysis 

For the case of a uniform pressure apphed to 
the surface of a homogenous isotropic soil (or 
aggregate mass) of unbmited area and depth 
through a circular (flexible) plate, where the 
soil can be characterized completely (from the 
structural standpoint) by two constants repre
senting its resistance to direct compression 
and shear respectively, five variables are 
involved. These variables can be defined m a 
dimensional system involvmg the funadmental 
imits of mass, length, and time. The table of 
quantities foUowmg lists these variables and 
tiieir dimensions L'^ 

Since there are five arguments (variables 
and/or dimensional constants) and three di
mensional units, from the TT theorem two 
dimensionless products which together mvolve 
all these arguments can be anticipated The 
relationship between these dimensionless 
groups must then be determined from experi
mental data or experience. 

TABLE OF QUANTITIES FOR DIMENSIONAL 
ANALYSIS 

Description Symbol Dunenuons 
Plate radius r (L) 
Plato pressure (uniform) p (ML-«T-») 
Plate deflection O (L) 
Soil pleasure coefficient (ML-T- t ) 
Soil shearing k, (ML-«T-») 
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Dimensionless quantities possible are ( — | 

and I — I . These must be related in some 
V p / 

manner which can only be conclusively estab
lished by experiment 

I f the shearing characteristic alone furnished 
the resistance, the first dimensionless group 
could be set equal to a constant and the re
sulting pressure from the deflection in question 
correspondmgly determined: similarly i f the 
compression characteristic alone acted. The 
simplest and most reasonable relationship to 
be anticipated is that these two effects would 
be additive accordmg to some constant weight
ing. This 18 the same as saying that the most 
likely relationship would be: 

(pr) (p) 

or 

p —— 4- MteD Equation 1 

This is obviously a more general form of 
Housel's^ perimeter area relationship, with 

m = aadn = bkj). I t has the advan
tage that the variables involved are clearly 
portrayed. 

1 Housel, W S.—Proceedings, The Associa
tion of Asphalt Paving Technologists, January, 
1942, Vol. 13, p. 84. 

3. Change of structvral variables iinth (Aange in 
thickness of strvetvre 

The basic equation is assumed to be (for a 
constant deflection) 

or 

m , W 
p = - + n = —, 

W 
— = mr + nr" = r(m + nr) 

Differentiating with respect to the structure 
thickness, we have 

0 = (m -t- nr) 
dr . /dm , dn dr\ 
dt + \ * + ' d F + " d J 

or 
W dr dm , dn , dr 

Consideration of the support given to in
finitely large plates mdicates that n will remtun 
constant regardless of the change in t, i f we 
ignore the mcrement m deflection contributed 
by the direct compression of the layer of thick
ness dt, hence ^ = 0 and 

at 
, V dr , dm 

dr 
dm 

'd* 
dt p -1- n 

Equation 3 




