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SYNOPSIS 

The paper is in two parts. In Part 1 a brief historical outline of the Mohr 
circle diagram is given, together with a summary of its principal applications. 
In the development of the mathematical theory, which is restricted to the most 
important case of combined stress in a plane, such as occurs in the triaxial com­
pression test, expressions giving values of the normal and tangential components 
of stress acting on a general plane in terms of two principal forces acting on mu­
tually perpendicular planes are graphically derived from Mohr's circle of stress 
diagram, and by analytical processes. Theories of failure, including Mohr's 
theory of rupture, are discussed briefly, and Mohr's circle of rupture diagram is 
applied to the analysis of three typical sets of data taken with Hveem's stabi-
lometer in the triaxial compression test for stability. A method of representa­
tion of Hveem's stability formula and the calculation of Hveem stability by 
means of the Mohr diagram is included. 

In Part 2, an independent method of graphical stress analysis, applicable pri­
marily to materials whose properties conform with Coulomb's equation is pre­
sented. This method, which is called the "Stress Triangle Diagram," is 
equivalent in results to the Mohr Circle diagram and other methods in common 
use, but possesses greater simplicity of form and permits greater speed in con­
struction and interpretation than the Mohr diagram. Its correctness is estab­
lished by comparison of e.xpressi(̂ s for the normal and tangential components of 
stress on the plane of failure derived from the geometry of the diagram with 
equivalent expressions resulting from analytical operations. It is shown by 
contrast with the Mohr diagram that this method possesses the additional ad­
vantage of permitting greater facility in the derivation of several useful relations 
between the stresses involved. 

PART 1 general plane through a given point of a body 
THE MOHR CIRCLE DIAGRAM measured values of two principal stresses 

. acting on mutually perpendicular planes 
Bnefiy stated, the Mohr cn-cle diagram is passing through the point, 

one of a number of graphical solutions appli- The development of this excellent graphical 
cable to a variety of problems in statics solution, substantially in its present form, is 
involving stresses m equilibrium, either to Otto C. Mohr (ly, an architectural 
compressive or tensile, in either two or three engineer and professor at the Dresden Poli-
dunensions, and of second moments, such as technikum Institute, about 1868. He also 
nioments of inertia. It may also be applied developed other graphical ami semi-graphical 
m a slightly modified form to the analysis of methods, some of which were later rediscov-
strains. In general it may be used, with gred independently by others (2), such as the 
certain modifications, to find the values of any Area-Moment construction (3) for determin-
two or three variables, whose values with j ^̂ e form of a fiexed beam, the Mohr 
respect to a set of rectihnear co-ordinate axes correction diagram (4) used to correct an 
are known, under a transformation by rota- ^ ^ ^ ^ ^ displacement of the joints of a struc-
tion of the axes. A special case, however, m ^ Mohi-Land 
which the highway research engineer is con- ^ ^ ' 
cerned is that occurring in the triaxial com- i italicized numbers in parentheses refer to a 
pression test, viz., to find the normal and list of explanatory footnotes and references 
tangential components of stress acting on a at the end of the paper. 
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construction '(.5) for moments of inertia, etc., 
which should not be confused with the con­
ventional Mohr stress circle diagram. Closely 
tied in with the Mohr circle construction, 
however, is the Mohr theory of rupture which 
will be discussed briefly in a later section. 

From the available literature it would 
appear that Mohr's graphical methods were 
not used extensively by others for some time 
after their discovery. Mohr's original article 
on the subject was published in Zivilingenieur, 
p. 113, (1882). An account of the Mohr 
circle construction was given by Levy {(>) and 
it was discussed and extended by Canevazzi 
in Italy (7) and by Cuhnan and Ritter in 
Switzerland (<S'). In England, J . J . Guest 
discussed the Mohr circle in connection with 
other graphical methods and Mohr's theory 
of rupture in an article published in 1900 (9). 
Theories of rupture and, incidentally, Mohr 
constructions were treated by W. A. Scobels 
and by von Mises (10) in 1913; also by Wester-
gaard (11) in 1924, and Nadai {12), in 1931. 
The Mohr circle of stress and circle of rupture 
constructions have also been incorporated, 
along with other graphical methods, in a 
number of college texts on statics. 

During the past decade there appears to 
have been a revival in the study of the Mohr 
diagram and in its practical applications in 
various fields of industry. For instance, it 
has been used in the calculation of stresses and 
strains in airplane construction, as indicated 
in articles by J . A. Wise (13), 1940, Niles and 
Newell {14), 1938, H. W. Sibert {lo), 1939, 
and in highway research by several investi­
gators. It has been applied to problems in 
soils research by Terzaghi {10), Casagrande 
{17), Palmer and Barber {IS), Hogentogler 
and Barber {19), J . D. Watson {W), and 
others; and to problems in connection with 
stability of bituminous mi.\tures by such 
investigatois as J . Ph. Pfeiffer {£1) and V. A. 
Endersby {22). 

Theory of the Mohr Circle Diagram—Theo­
retical treatments of the Mohr diagram are 
numerous, but variations in nomenclature and 
method of mathematical derivations render 
it difficult for the average reader to get a 
clear picture of the subject. 

The three dimensional case of the Mohr 
stress circle diagram has received detailed 
treatment by Westergaard {11), Nadai {83), 

and Timoshenko {24); several other writers 
have treated this case in some detail. The 
analytical derivation for the general case of 
plane stress involving initial values of both 
normal and tangential components of stresŝ  
on two mutually perpendicular planes (not 
principal planes) is given in several college 
texts on statics. This problem will be stated 
and the derivation of the fundamental rela­
tions shown under Derivations, 1. The 
highway research engineer is concerned pri­
marily with the special case of plane stress 
occurring in the triaxial compression test, 
in which two mutually perpendicular stresses, 
known as principal stresses, are given, with 
the normal and tangential stress components 
on an oblique plane through their intersection 
required. Deiivation of the equations and 
applications of the Mohr diagram herein will 
be restricted to this case. It can be shown 
by deduction from the general case of three 
dimensional stress (23) that, since the inter­
mediate principal stress equals the minor 
principal stress in the triaxial compression 
test, the plane diagram will correctly represent 
all combinations of stress. Two forms of the 
expressions for the normal and tangential 
stress components will be developed by ana­
lytical processes, and one of these forms will be 
derived by geometrical means from the Mohr 
diagram, for purposes of comparison. The 
values of the angle of shear a for which the 
normal and tangential components are at 
maximum and minimum values will be de­
duced both from the equations and from the 
diagram, and the results compared. 

The analytical derivation of expressions 
for the normal and tangential components of 
stress acting on a general plane through a 
given i)oint of a body in terms of two mutually 
perpendicular principal compressive stresses 
acting on principal planes passing through the 
point are obtained as follows: 

Figure 1 represents an elementary prism 
bounded by the principal planes ACFD and 
FCBE, an oblique plane ABED, and two 
parallel vertical planes DEF and ABC, in 
a body under combined stress from two unit 
compressive principal stresses ai and o-.(. It 
is seen from the assumed conditions of static 

' A list of symbols and definitions of terms 
is given in Appendix A. In most cases the 
symbols are in accordance with ASTM desig­
nation D-653-42T(«5). 
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equilibrium that the total normal and tan­
gential components of reactive stress on the 
oblique plane ABED are given by the equa­
tions 

a dsdz = aidx dz cos a -|- ira dydz sin a (1) 

T da dz = vidx dz sin a — 

<T3 dydz cos a, respectively.... (2) 

\ a 

\ 

Figure 1 

Dividing both sides of equations (1) and 
(2) by the aieadsdz and substituting cos a 

for ^ and sin « for ̂  , they reduce to 
OS OS 

<r = (Ti cos' a -|- 0-3 sin' a (3) 

and T = <ri cos a. sin a — o-j sin a cos a 

= (<ri — ffa) sin a cos a . (4) 
Obviously, the required stresses a and T 

could lie obtained by substitution of given 
values of <ri, aa, and a in equations (3) and (4) 
and subsequent reduction, but the same re­
sults may be obtained more expeditiously in 
most cases by the simple graphical solution 
known as the Mohr stress circle diagram. 

From a point 0 in a straight line OiV (Fig. 2) 
the principal stresses <ri and m (assumed to 
equal 960 psi and 200 psi, respectively, for 
the purpose of illustrating the procedure) are 
laid off to any convenient scale (in a positive 

direction for compressive stress, or in the 
opposite direction for tensile stress). A circle 

with center at distance ^ ""̂  (= 580 psi) 

from 0 is then drawn through the terminals 
of <ri and ffa. The co-ordinates of the inter­
section of this circle with a straight line 
through the terminal of <rs with inclination 
a to OiV, are then the required values of the 
normal component <r and the tangential 
component r of stress on this plane measured 
to the same scale as were ai and a, (i.e., 330 
psi and 285 psi for the particular value of a 
selected). In Figure 2 it is apparent that 
circle APB is the locus of points whose co­
ordinates are values of the normal and tan­
gential components of stress on every plane 
l)erpendicular to the plane of the paper passing 
through a given point of the body. So, for 
any arbitral ily selected value of a (for exam­
ple, for Up- = 60 deg. selected merely for 
illustration), the values of the normal and 
tangential components of stress in the chosen 
units are determined from the stress circle-
to be CTp' = 390 psi and T , ' = 329 psi on this 
particular plane. If <ri = <ra, the stress circle 
cannot l)e constructed, but the physical 
interpretation is obvious: the specimen must 
be a perfect fluid, with zero shear stress on 
every plane, i.e., the stress is hydrostatic. 

On substitution of the trigonometrical 

•J i.-̂ - • sin 2a 
identities sin a cos a = — - — , cos' a = 
1 -f cos 2a , . „ 1 - COS 2 a 

, and sms a = , equa­

tions (3) and (4) reduce to 
(ffi -I- ffa) (<ri — (Ta) 

<7 + cos 2a . (5), 
and 

(ffi — o-a) sin 2a (6) 

forms which are better suited for comparison 
with expressions obtained from the diagram. 

As may be seen by inspection of the right 
triangle CPO' in Figure 2, 

a = 0 0 ' - CO' = ^-^^^ + 

(<ri — <ra) 

T = O'P sin 2a = ^ ^ L _ ^ sin 2a, 

cos 2a, and 
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expressions which are identical with equations 
(5) and (6). 

It may also be noted that, by substitution 
of 960 psi, 200 psi, and 60 deg for ai, a^, and 
o, respectively, in equations (5) and (6) one 
obtains 

a = J(960 -I- 200) -f i(960 - 200) cos 120 
= 390 psi, and 

r = i(960 - 200) sin 120 = 329 psi, which 

results in close agreement with those read 
directly from the diagram. (See P', Fig. 2) 

tion of the resulting equation is substituted 
back in the original equations (5) and (6) to 
find their maximum and minimum values, 
one has, from equation (5) 

da da 

= -(.ri -
and from (6) 

(ffi -I- ffs) , (<ri — ffj) 
H — cos 2a 2 ' 2 

<ra) sin 2a = 0 

dr ^ d^V{ 
da da 

'z) sin 2a 

= (<fi — o-j) cos 2a = 0 

o; (p«) • >eo 
o j " • 200 
lOi*ai)/2 Ipv) • »%o 
0;(p») • 330 
rp * • 2S5 
Op- " • 3*0 
rp. " . 329 
OC (•) • 66 
«p»" 'to 

300 400 SOD 600 

Normal S t r e s s e s — p s i 

Figure 2. Mohr Circle Diagram 
Now, the values of a for which <r and T are 

maxima and minima may be found either 
from equations (5) and (6) using calculus, 
or by inspection of the diagram. Inspection 
of the graph shows that T = 0 when « = 0 or 

90 deg. and is a maximum of in abso-

lute value at 2a = 90 deg or 270 deg (a = 
45 or 135 deg); and that o- is a minimum 
(= (Ts) at a = 90 deg and a maximum (= o-i) 
at a = 0 . 

Employing the standard method in which 
the first derivatives of a and T from equations 
(5) and (6) with respect to a are set equal to 
zero, and the value of a obtained from solu-

from which 
a = i sin-i 0 = 0 or 90 deg 

or 
a = i cos-' 0 = 45 or 135 deg 

Substitution of the first of these values of 
a back into equation (5) gives 

(<ri + "fj) , (ffi — I T S ) 

= tTi (maximum value) and 
(<ri -I- <ri) (<ri — (Ta) . . . , , <7 = — = (Ta (minimum value) 

Also substitution of the values of a obtained 
from the differentiation in equation (6) gives 
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os) (maximum value) 

and 

'3) (minimum value) 

Equations (5) and (6) are merely the para­
metric forms of the equation of a circle called 
Mohr's stress circle (Fig. 2). If a series of 

and tangential components of compressive 
stress acting on the planes referred to. Lay 
off ir„ and (Ti (assuming ay > a,) to scale to the 
right of 0 on ON. At the terminal point C 
of (Tx erect CP perpendicular to ON in a posi­
tive direction, equal in magnitude to T ^ ^ ; 
and, at terminal D of <r„ erect DP perpen­
dicular to OA' equal to T „ I in magnitude but 
in the negative direction. Since the tacitly 

400 900 
Normal Stresses-PSi 

Figure 3. Mohr Circle Diagram 

such circles are plotted from the several simul­
taneous values of principal stresses taken in a 
triaxial compression test on a material which 
conforms with Coulomb's relation, for exam­
ple, their common envelope is the locus of all 
points whose co-ordinates are the normal and 
tangential stress components on a plane 
having a constant state of elasticity and mak­
ing a given angle with the major principal 
plane. 

Solution of the inverse problem of finding 
the principal planes and stresses, having given 
the normal and tangential stress components 
on two mutually perpendicular arbitrary 
planes passing through a given point, is easily 
effected by means of the Mohr diagram as 
follows: 

Let <rx, Txy and <r», T,X (Fig. 3) be the normal 

assumed condition of equilibrhim requires 
that Tx„ = — Tyi, a circle passing through the 

points P and P" w ith center at may 

be constructed. This stress circle so con­
structed is the locus of points whose co­
ordinates are the normal and tangential 
components of stress on planes making angles 
a and 90 -I- a with the given planes (where 
a is half the angle described by the radius 
vector O'P in Fig. 3); and the normal and 
tangential stress components on a plane, 
making an angle P'PO' ( = a ) with the 
given plane, are represented graphically by 
OC and CP', respectively, (see Derivations, 1, 
for proof). The intersections of the stress 
circle with OA'̂  determine the maximum and 
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minimum values of normal stress correspond­
ing to Txy - — T , x = 0. But, by definition, 
these maximum and minimum stresses are 
principal stresses previously denoted by 
<T, and ffs, and the planes are the principal 
planes. Now if the point P (Fig. 2 and 3) 
is located on a plane of failure, then the tan­
gent to the circle at this point will intersect 
OX at the angle <l>, called the angle of internal 
friction, and the relation between the general 
stresses <r„, <TX, and T,„, and the parametric 
constants K and <A may be expressed by the 
equation 

ay + <Jx sin <!> — K cos 0 = 0. (7) 

(See Derivations, 3, for proof.) 

Theories of Failure—Before proceeding to the 
application of the Mohr Circle diagram in the 
analysis of experimental data from the tri­
axial compression test, it will be necessary to 
review briefly the various theories of failure 
in a material under stress and, especially, 
Mohr's theory of rupture. When a body is 
subjected to external stress, it undergoes some 
change in form or volume, (i.e., strain). For 
low values of stress the corresponding strain 
may be temporary; but when the stress 
reaches a certain higher value, depending on 
the nature of the material and the conditions 
of the experiment, including the particular 
combination of stresses acting, the strain may 
become permanent. When this point is 
reached the body is said to have failed. This 
point of failure, or rupture, or yield point, is 
rather indefinite in many instances, both as 
to definition and experimental determination, 
and its selection is subject to some degree of 
arbitrariness. In a sense failure is a pro­
gressive phenomenon, especially in plastic 
and semi-plastic materials (as asphaltic con­
crete) since there is always some relative 
displacement of the ultimate particles of the 
substance in any deformation, however small, 
thus indicating that the internal forces have 
been overcome to some extent, and since re-
coveiy in such materials is never absolutely 
complete. Strictly speaking, however, the 
term failure usually implies a permanent 
break or rupture such as is exhibited by 

brittle materials. In view of the foregoing 
remarks, it is clear that in applying the Mohr 
diagram construction to the analysis of data 
in any specific case it is essential to define 
failure, plane of failure or rupture, and other 
terms used in order that the results may be 
properly interpreted in the light of these 
definitions. 

From experience it appears that failure or 
rupture, in isotropic substances at least, 
nearly always takes place on a fairly definite 
fcet of planes characteristic of the material • 
and of the physical conditions under which it 
is tested. 

Various theories have been advanced as 
to the limiting conditions of stress existing 
in the material at the failure point. Three of 
these earlier theories, wliich have been proven 
incorrect or incomplete, are the maximum 
stress theory {26), the maximum strain 
theory {27), and the maximum shear theory 
{2S). As indicated by the titles these theories 
assume that failure is determined by the maxi­
mum values of the normal stress, of strain, 
and of shear stress, respectively. In Navier's 
theory which is merely an extension of the 
maximum shear (Coulomb's) theory, it is 
assumed that the limiting shear stress is 
affected by the normal component of stress 
on the plane of rupture and is proportional to 
it. Two other cases with limited applications 
are: (1) the theory of constant energy of dis­
tortion {29) (applicable to ductile metals) 
which asserts that the difference between the 
major and minor principal stresses is a con­
stant, i.e., that the maximum shear stress is 
constant at the yielding point for a given 
material; and (2) Brandtzaeg's theory (30) 
(appUcable to concrete) in which failure is 
assumed to occur along planes running in 
various directions rather than along a definite 
direction. 

Mohr's theory, which is an extension of the 
maximum shear theory, makes the hypothesis 
that the limiting shear stress depends on the 
normal stress acting on the plane of failure 
and also that failure is determined by the 
maximum difference in magnitude between 
the principal stresses. Specifically, he as­
sumes that the line of rupture is independent 
of the intermediate principal stress, an as­
sumption partially invalidated by experiments 
of V . Karmdn {31) and R. Boker {32), and 
that the same line of rupture will result from 
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the maximum differences between various 
combinations of principal critical stresses. 
He also assumes that the angle between the 
line of rupture and the axis of shear stress in a 
Mohr diagram is equal to the angle between 
the planes of rupture in the material at failure. 
Graphically and mathematically this means 
that the series of Mohr stress circles con­
structed from various paired values of major 
and minor principal stresses taken at the point 

Mohr circle of rupture. The fact that we are 
dealing with the tangent to the circle rather 
than the secant makes it possible to express 
the relations between stresses and angles in 
more simple and practical forms. 

For the purpose of simplifying the solutions 
as they are usually given, an expression for 
the resultant B of the normal and tangen­
tial components of stress on the plane of 
failure will be derived at this point. 

OrtWl) • HO 
Oi ' •too 
O-tptll • 3tS 
f • -SOT 

ss 

oc , ' • U.S 

(oftOiW 

T85 ioo ' *bo ' Urn Soo T O O " 

Normol StrotMC — p i i 

Figure 4. Mohr Circle Diagram 

of incipient failure (called Mohr's circles of 
rupture) will have a common envelope which 
is the locus of points whose co-ordinates are 
the values of the normal and tangential com­
ponents of stress on the plane of failure. Thus 
Mohr's circle of rupture is merely a special 
case of his circle of stress, viz., that circle of 
stress constructed from limiting or critical 
values of the principal stresses measured 
at the instant of incipient failure, or point of 
plastic yield, of the substance under stress. 

Mohr's Circle of Rupture Diagram—Some 
Important Mathematical Relations—^With 
slight modifications and extensions the mathe­
matical theory of the Mohr circle of stress 
may be used to represent the relations in the 

From the plane geometry theorem, which 
states that a tangent from a point to a circle 
is the mean proportional between the whole 
secant drawn through the same point and its 
external segment, it follows (Fig. 4, Circle 
(2)) that 

MP = R = VMB • MA 

= V (<ri + MO)(<ra + MO) 

= V(.<n + K ctn 0)((ra -I- K ctn 4,) ...(8) 

since MO, (the intrinsic pressure) is 

K 
MO = 

tan 0 

= K ctn 0, (from right triangle MOH).. (9 
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When K =0, this resultant stress reduces to 

R = VoT^j (10) 

If one now starts with the identity (Fig. 4) 
00' = MO' - MO and substitutes the value 
just obtained for MP, and expresses 00', 
MO', and MO in terms of the principal stresses, 
cohesion, and angle of internal friction, the 
result is two equations; 

ffl + (Tl — I 

2 sin 0 
i5:ctn0....(ll) 

and 

<ri + 0-3 + iii:ctn0)((r3 + iiCctn^) 

cos 0 
K ctn 0 (12) 

which express existing relations between the 
factors of cohesion, angle of internal friction, 
and the major and minor principal stresses. 

When K = 0, they reduce to values for the 
sin <t), and cos <t> in terms of the principal 
stresses alone, thus; 

and 

cos <l> = 

ai + ffs 

2-\/ g-i ffa 
<ri + <J3 

(13) 

(14) 

Another useful relation, ai = <rz tan^ a, the 
derivation of which has been attributed to 
Terzaghi {S3), may be obtained from the 
above equations by making use of Mohr's 
assumed relation between the angle of internal 
friction and the angle of shear, <̂  = 2a — 90 
{Derivations, 2). 

A third form of the expressions for <r and T 
in terms of the principal stresses alone (not 
derived or referred to in the literature on the 
subject, so far as can be ascertained) which is 
easily derived from the previously developed 
relations (8), (9), (10), (13), and (14), and 
which is simple in form and susceptible of easy 
computation, may be obtained as follows: 

From right triangle OPC in Figure 2, it is 
seen, from the defining equation for the sine 
and cosine functions, that 

<r = OP cos 4> and r = OP sin 0 

Substituting 

OP = R = VoToi (From(lO)) 

sin 0 = 
<ri + 0-3 

(From(13)) 

_ 2 \ / f f l f f j Qf 
cos 0 

o-i + aj 

in the above equation gives 

2iri<r3 
<r = — - — . . 

ffl + 0-3 

romfU)) 

(15) 

and 

0-1 + ffs 
.(16) 

As is apparent both from the equations 
and from the diagrams, the Mohr circles of 
rupture may be constructed from various given 
pairs of quantities other than the principal 
stresses. Besides the inverse problem, which 
has already been solved, the slope of the com­
mon tangent, or the angle of internal friction, 
and either of the intercepts, furnishes the 
means for construction of the circles of rupture 
whose diameters give the compressive and 
tensile strengths (for which one of the princi­
pal stresses is zero). This same data plus 
one of the principal stresses makes it possible 
to construct the corresponding Mohr circle 
of rupture, and so find the other principal 
stress, the secondary stresses, the other 
intercept, etc. Also, if it can he safely as­
sumed, from supplementary information, that 
no part of the shear stress on the plane of 
failure is independent of the normal stress 
on this plane (e.g., in case of dry sand), then 
one Mohr circle of rupture plotted from a sin­
gle pair of critical principal stresses is suflBcient 
for the complete graphical solution, the line 
of failure in such a case being the tangent to 
the circle through the origin of the diagram 
(Fig. 2). 

Application to Triaxicd Compression Test 
Data—In practical appUcation of the Mohr 
diagram method to the analsrsis of any given 
type of data certain precautions should be 
observed and certain limitations noted. 
Mohr's theory of rupture, on which his 
graphical representation is predicated, is 
applicable primarily to cases of plastic failure 
in isotropic materials whose properties con-
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form to the Coulomb formula. It does not 
hold exactly for brittle substances such as 
marble or concrete (34); but it has been 
found from numerous experiments to be 
fairly consistent with tests on some isotropic 
brittle materials and ductile metals, and on 
such semiplastic materials as soils and as-
phaltic concrete for the combined stresses 
existing in the triaxial compression test under 
ordinary conditions. It should be noted 
that neither Mohr's theory nor any other of 
the several theories of rupture outlined in the 
preceding section takes account of the effect 
of time rate (So) or duration of loading, or of 
possible changes in the crjrstaUine structure of 
the material. 

It may be seen from the derivations of the 
fundamental equations of plastic equilibrium 
(see equations (15) and (16) and Derivations) 
by means of Mohr's diagram, that the validity 
of Coulomb's relation (T = <r tan 4) + K 
where </> and K are constants of the material) 
is tacitly assumed. For materials having 
approximately constant values of cohesion 
and angle of internal friction, such as dry sand 
or asphaltic concrete with flint aggregate, 
this assumption appears to be justified, for the 
Mohr envelope of the circles of rupture is 
found to closely approach a straight line hav­
ing the above equation. However, the 
noticeable departure from the straight line 
common tangent in many instances indicates 
the necessity for extreme care in interpreting 
the results of this graphical method. The 
deviation of the Mohr envelope from the 
straight line relation may be interpreted as 
the effect of a change in cohesion, due to com­
paction of the specimen, or as a consequence 
of changes in structural properties of the mate­
rial due to internal rearrangement of aggregate 
particles in the mix, etc., which is a necessary 
accompaniment of the changing consolidation. 
In effect these alterations constitute a change 
in the nature of the substance and in its 
stability during the course of the test. In 
cases of this type, the magnitude of the devia­
tion of the envelope from the theoretical linear 
form, and its rate of change, or of such other 
mathematically related quantities as shear 
resistance, angle of shear, etc., may have 
significance as a possible means of evaluating 
the results of the triaxial test. Such a method 
of attack is being tentatively investigated 
by this laboratory for the purpose of obtaining 

better correlation between test data and 
practical performance of bituminous mixtures. 
It is quite probable that Mohr's theory, as 
well as the maximum energy theory and 
Brandtzaeg's theory, will have to be revised 
and extended so as to include all the observed 
secondary effects. In fact, two or three 
other more comprehensive theories have 
already been formulated which explain many 
of the observed discrepancies between the 
present theories and e.xperimental results for 
certain types of soils {,36). Coulomb's equa­
tion must certainly be revised in view of the 
experiments by Krey-Tiedemann and Hvor-
slev on cohesive soils, described in Reference 
36 in which it is shown that cohesion is a 
function of preconsolidation pressure and of 
void ratio. From the form of the Mohr 
envelope obtained from triaxial test data on 
most asphaltic concrete specimens, it is also 
obvious that cohesion, and in some cases 
angles of shear and of internal friction, are 
not constants characteristic of the material, 
but are functions of preconsolidation pressure, 
and of applied test pressures, void ratio, etc., 
which may vary in a rather complicated 
fashion throughout a single test. 

Validity of the Mohr Diagram Method as 
Applied to Hveem Stability Test Data—Be­
cause of the lateral pressure always present 
in the triaxial test actual deformation in this 
direction, to any great extent, is prevented; 
but it can be shown that the displacement 
reading in the stability test with Hveem's 
stabilometer is an indication of, and indeed a 
function of a small more or less permanent 
lateral deformation. Displacements taken 
on actual bituminous specimens before and 
after a run gave values which differed by an 
average of 0.56 turns of the displacement 
pump (0.112 cu in.). This means that the 
volume of the space containing the liquid 
within the chamber about the sides of the 
specimen has been reduced by 0.112 cu in. 
due in part to a permanent lateral deforma­
tion produced in the specimen during the test, 
thus proving that a yield point has been 
exceeded. "That this condition of yield or 
incipient failure exists at all pressures used 
in the test, and to approximately the same 
degree, is indicated by the form of the curves 
in Figure 5 (upper branch) showing lateral 
pressure plotted agamst vertical pressure for a 
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similar specimen. The lateral pressure, which 
is obviously due to, and a function of, lateral 
deformation is seen, from the direction of 
curvature of the graph, to increase faster than 
vertical pressure at all values of pressure, 
thus proving the existence of a state of failure 
throughout the entire test. Moreover, the 
fact that the rate of variation in curvature is 
practically constant shows that the extent 
or degree of failure is approximately constant 
throughout the test. 

the deviation between the upper and lower 
branches is also proof of a residual increase 
in diameter of the specimen, the horizontal 
distance between the branches being a measure 
of this retained deformation. 

It appears, therefore, that the use of the 
Mohr circle method for analysis of data taken 
in the Hveem stability test is justified if the 
results are properly interpreted (37). 

Applications of the Mohr diagram to three 
typical sets of test data are exhibited _pn 
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Figure S. Pressure Hysteresis Curve—One Cycle 

As additional proof that the yield point is 
exceeded during the triaxial test, two repre­
sentative sample specimens of asphaltic con­
crete were tested maintaining a constant 
lateral pressure of 60 psi, and subjecting the 
specimens to a series of vertical loads ranging 
from 16 psi to 2300 psi in increments of 40 
to 80 psi, and computing the vertical and 
horizontal volume deformations from readings 
on Ames dials. Load deformation curves 
plotted from the resulting data on log-log 
paper indicated yield points at approximately 
150-200 psi vertical load. 

The position and form of the lower branch 
of the pressure hsrsteresis curve shown in 
Figure 5 merely serves to confirm the con­
clusions already deduced. The direction of 

Figures 6, 7, and 8. In Figure 6 the specimen 
had a low stability (16%); in Figure 7 it was 
high (61%); and in Figure 8 an intermediate 
value of 39 percent was selected. Two 
circles were constructed in each graph in 
accordance with the previously outlined 
procedure for construction of the Mohr stress 
circle: the first, No. (1), having a vertical 
principal stress of 400 psi and the second, 
No. (2), a lateral principal stress of 200 psi. 
The envelope is assumed to be a straight line, 
the common tangent HD. As is obvious 
from inspection of the diagrams, DC in Circle 
No. (1) of each diagram represents the value 
of shear resistance or shear stress in the plane 
of yield at a major principal stress of 400 psi. 
The drawings reveal that it is made up of two 
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parts, one of wliich (DQ in Fig. 7) is propor­
tional to the normal stress a acting on the 
plane of failure; the other component QC or 
OK, being a composite resistance (caused by 
interlocking of mineral particles, viscosity, 
adhesion, surface tension, true cohesion, etc.,) 
which is independent of the normal stress. 
The diameters of the smaller circles, No. (3) 

tangent to the line of rupture to the left and 
right of this point, respectively, may also be 
included in the diagram when used for soil 
analysis. In this connection attention is 
called to a somewhat different treatment of 
Mohr diagram analysis (SS) in which the 
analytical geometry terminology of poles and 
polars is employed. 

•tbi-^ii—75 itr 
Normol S t m M S — p « i 

Figure 6. Mohr Circle Diagram 

and (4), drawn through the origin and tangent 
to the line of yield HD on either side of the 
origin are the values of compressive and 
tensile strength, respectively, since they are 
the values of axial stresses required to produce 
failure at a lateral pressure of zero. The 
intercept of the line of yield on the horizontal 
axis is the intrinsic pressure. 

Two other special circles of rupture, which 
may be called Rankine circles of active and 
passive earth pressure, passing through the 
terminal of the static earth pressure and 

Representation and Measurement of Hveem 
Stability by Means of Mohr Diagram—Hveem's 
stability formula (39), which was apparently 
used to plot the flow curves in the contour 
chart (Fig. 9), used in calculating relative 
stability from data taken with the Hveem 
stabilometer, is 

S = 22.2 
RD 

400 - iJ + 0.222 
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in which S = relative stability (%) 
R = pressure gauge reatling (hori­

zontal stress) at an ai)plied 
load of 400 psi 

D = turns displacement (1 turn = 
0.1 in. = 0.2 cu. in.) 

By deduction it is apparent that D is a 
function of lateral deformation of the .sjjMjci-
men duiing the test; and ai)plication of 
dimension formulae shows that the constant 

plication of both numerator and denominator 

of the right hand member by the factor 
0.222 

and division of both members of the equation 
by 100, into the form 

400 - J ! 

in which S is the relative fractional stability. 
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Figure 7. Mohr Circle Diagram 

0.222 has the dimensions of a displacement, 
which, from its size and position in the equa­
tion, api)ears to be the displacement corre­
sponding to some highly rigid condition 
(hypothetical) of the specimen selected as a 
basis for the calculation of percentage. More 
specifically, it is the value which will give a 
stability of 100 percent when B = 0 in 
Hveem's stability formula. 

This formula may be transformed by multi-

This form of the expression permits greater 
facility in calculation, especially when used 
in conjunction with Table 1 in which the 

function, 1 — is given 
0.222 

for values of 

displacement D, ranging from 0.60-turn to 
2.59-turns displacement. Incidentally, this 
form also lends itself to representation in the 
Mohr diagram. It will be noted that the 
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numerator in the formula is represented by the 
diameter of the Mohr circle of rupture passing 
through a vertical principal stress in of 400 
psi and the corresponding lateral principal 
stress R, (as) (see Circle No. (1) of Fig. 6, 7, 
and 8); and that the denominator may be 
represented by the diameter of another circle 
(No. (5) in Fig. 6, 7, and 8) passing through 
the same vertical principal stress of 400 psi 
and a lateral principal stress given by the 

term R 
0.222)' 

which is readily com­

puted by the use of Table 1. The ratio of 
the diameter of Circle No. (1) to that of 

gram with its base line along the axis of 
abscissae and its center at 0' (center of the 
circle whose diameter is 40Q-R), and the 
angular position on the protractor of the 
point whose rectangular co-ordinates are the 
radii O'F and O'B* with respect to origin 0' 
is noted. Since the protractor scale has been 
calibrated to read the ratio of these co-ordi­
nates corrected for specimen height, the 
corrected value of the required stability in 
percent is thus obtained directly from the 
angular scale. If the point located on the 
rectangular system by the radii of the circles 
falls off the protractor, an arm pivoted at the 

TABLE 1 

GIVING (1 - 0^2)" FUNCTION OF D*" 

D 0 1 2 3 4 5 6 7 8 9 

o.e 1.70 1.76 1.79 1.84 1.88 1.93 1.97 2.02 2.06 2.11 
0.7 2.15 2.20 2.24 2.29 2.33 2.38 2.42 2.47 2.51 2.66 
0.8 2.60 2.65 2.69 2.74 2.78 2.83 2.87 2.92 2.96 3.01 
0.9 3.05 3.10 3.14 3.19 3.23 3.28 3.32 3.37 3.41 3.46 
1.0 3.60 3.55 3.59 3.64 3.68 3.73 3.77 3.82 3.86 3.91 
1.1 3.95 4.00 4.04 4.09 4.14 4.18 4.23 4.27 4.32 4.36 
1.2 4.41 4.45 4.50 4.54 4.59 4.63 4.68 4.72 4.77 4.81 
1.3 4.86 4.90 4.95 4.99 5.04 5.08 5.13 6.17 5.22 6.26 
1.4 5.31 5.35 5.40 5.44 6.49 5.53 5.68 6.62 5.67 6.71 
l.S 5.76 5.80 5.85 5.89 6.94 5.98 6.03 6.07 6.11 6.16 
1.6 6.21 6.25 6.30 6.34 6.39 6.43 6.48 6.52 6.57 6.61 
1.7 6.66 6.70 6.75 6.79 6.84 6.88 6.93 6.97 7.02 7.06 
1.8 7.11 7.16 7.20 7.24 7.29 7.33 7.38 7.42 7.47 7.51 
1.9 7.56 7.60 7.65 7.69 7.74 7.78 7.83 7.87 7.92 7.96 
2.0 8.01 8.05 8.10 8.14 8.19 8.23 8.28 8.32 8.37 8.41 
2.1 8.46 8.50 8.55 8.59 8.64 8.68 8.73 8.77 8.82 8.86 
2.2 8.91 8.95 9.00 9.05 9.09 9.14 9.18 9.23 9.27 9.32 
2.3 9.36 9.41 9.45 9.50 9.54 9.69 9.63 g.6S 9.72 9.77 
2.4 9.81 9.86 9.90 9.95 9.99 10.04 10.08 10.13 10.17 10.22 
2.S 10.26 10.31 10.35 10.40 10.44 10.49 10.53 10.68 10.62 10.67 

; All values u» the table are negative. 
•> 2) = turns displacement; one turn of displacement pump handle is equivalent to 0 

liquid chamber or to 0.1-in. movement of the piston head. 
.2-cu in. change in volume of the 

Circle No. (5), then, is the fractional stability 
which, when multiplied by 100, is the relative 
percent stability sought. 

Tlie computation of thLs ratio may be done 
by any one of three methods. In the first, a 
statistician's ruler (logarithmic scale) may be 
applied to a logarithmic scale printed on the 
margin of graph paper (Fig. 8) in the manner 
of the slide rule process of division. In 
another method which is more rapid and 
convenient, the lower cycle on the fixed scale 
of a slide rule was calibrated and marked so 
as to read values of stability corrected for 
specimen height directly, thus obviating the 
necessity of this extra step in the usual process 
of calculation from charts. By a third 
method, a special protractor calibrated to read 
the corrected stability is applied to the dia-

center of the protractor may be used to locate 
its angular position. The necessary and 
sufficient condition for use of this method is 
that the two rectangular scales be the same. 

Derivations— 
1. Stress Components for the General Case 

of Combined Stress. 
Expressions for the normal and tangential 

components of stress on an arbitrary plane 
will first be derived directly by the analytical 
method, and then shown to be equivalent to 
expressions derived by the geometrical method 
from a Mohr diagram. Referring to Figure 
10, it will be seen that the assumed conditions 
for equilibrium when both tangential and 
normal stress act on planes ACFD and CBEF 
yield the following summations for the total 
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normal and tangential components of stresses and 
on plane ABED: 

<r ds dz = ffi cos adxdz + az sin ady dz + 

Tyz COS ady dz + rxy sm a dx dz (la) 

and 

T ds dz = 0 - 1 sin ctdx dz — 0-3 cos ady dz — 

Tiy cos adx dz + Tyx sin ady dz (2a) 

Figure 10 

Dividing each equation by the area ds dz, and 
collecting terms (after setting | T , , | = | T„X | ) , 
the unit values of normal and tangential stress 
components are obtained, viz., 

ff = iri cos'a + V3 ain'a + S T I , sin a COS a, 
and 
T = 0-1 sin a cos a — 0-3 sin a cos a -f-

T,y (sin^a - cos'a 

sin 2 

T = sin 2a — Txv cos 2a 

It will now be shown from the geometry of 
Figure 3, that <r and T have the above values. 

In the right triangle O'P'C it is seen from 
the definition of the sine and cosine functions 
of an angle, that 

T = cTF' = 0 ^ sin CO'7^' 

+ txy • 

2a — sin~ 

and 

a = OC' = 00' + &C' 

+ rly 

+ 

2a — cos 

After expansion by means of the trigono­
metrical difference formulae, sin {A - B) =^ 
sin .4 cos B — cos A sin B and cos {A — B) = 
cos .4 cos B sin .4 sin B, and algebraic 
simplification these expressions reduce to 

'" '"^' ' ' - l -^ '4^cos2a + r, ,Bin2a 
2 

sin 2a - Txy cos 2a 

But since sin a cos a 

cos* a = — cos 2a and also sin'a = 

which are identical with those derived above, 
2. Derivation of Equation, ai = IT, tan*a 
From the definition of the tangent function, 

it is seen that the tangent of angle a in the 
1 - cos 2o "Sht triangle APC of Figure 3 is 

and sin*« 

, , 1 -(- cos 2a,, 
and coŝ a = ^ *hese expressions may 

be written (using general subscripts x and y)) 

PC PO' sin 2a tan a = -— = AO' sin 2a 

<r» + ffi , <r» 

<r = — 1 • cos 2o + T , , sin 2a, 

AC AO' - CO' AO' + AO' cos 2a 

sin 2a 
1 -H cos 2a 

(canceling the common factor AO') 
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MP/MO' MP or. 
1 - PO'/MO' MO' - PO' 

(from right triangle AfPO') 

+ K ctn 0)(<7s + K ctn 0 ) 

K ctn 0 -I- <Ti + aa <ri — 1T3 

(using'previously derived expressions 
for MP in Equations (8), (9) and (10)) 

- V : 
<ri + K ctn <t> 

Then 

ai + K ctn <t) 

^ , 0-1 - K tan 2a tan'a = 

(by simplification) 

n - K tan 2a 

(substituting ctn 0 = tan (90 — *) = —tan 2a) 

2 tan <x 

1 - tan'. 

- K 
2 tant 

1 - tan' 

( 2 tan a \ 
smee tan 2a = , -— J 

1 - tan' a I 

fg i ( l - tan' a) - 2 g tan a 
"[.rad - tan' a) - 2K tan « 

(by multiplying numerator and 
denomerator by (1 — tan' a)) 

Thenfffi = <rj tan'a -|- 2 f l tan a (solving for 
ai and simplifying) or <ri = tan'a (when 
K = 0 ) . 

3. Derivation of Equation (7) 
• From right triangle CPO' of Figure 3, 

™' = 4/('-^-)'+ 
and, again, from right triangle MPO', and the 
definition of the sine function, one has 

sm 4> 
O' MO + 00' 

JS: ctn 0 -f ITy + Ox 

K sin 0 ctn 0 -f t" "̂^ sin 0 

which, by re-arrangement and reduction, 
becomes 

ir„ -H t f j t . 
sin 0 — K cos 0 = 0 

PABT 2 

T H E STRESS T E I A N G L E DIAGRAM 

As a preliminary to the statistical analysis 
of the properties of asphaltic concrete it was 
necessary to construct several hundred graphs 
from data taken in the triaxial compression 
test, showing the line of rupture, angles of 
shear and of internal friction, and other 
parametric constants of the Coulomb equa­
tion. Due to the considerable time required 
for the construction of these graphs by the 
Mohr diagram, a new method was developed 
in order to facilitate the construction and 
measurement of dimensions in the diagram. 

Several graphical solutions for the analjrsis 
of stress relations at failure of a material under 
combined stress are in common use, but the 
method most widely used at present for 
general purposes is the graphical construction 
known as the Mohr Stress Circle diagram, 
developed by 0 . C. Mohr about 1868 (40).> 
The superiority of the Mohr diagram over 
other methods lies in its simplicity of con­
struction and in the relatively great amount 
of information it reveals concerning physical 
properties of the material under investigation. 
Still greater brevity and simphcity are pos­
sible of attainment, however, by means of a 
different, less complicated, construction in 
which the same results are secured with 
considerably less expenditure of time and 
effort. It is the purpose of Part 2 of this 
report to outline the method and apply it to 

' Italicized figures in parentheses refer to 
references and footnotes at the end of the 
paper. 
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the analysis of a few typical sets of data taken 
in the triaxial compression test. 
Procedure—The method consists in the con­
struction of two right triangles from two 
simultaneous pairs of critical values of prin­
cipal stress,* having the major stress of one 
pair equal in magnitude to the minor stress 
of the other pair. All the magnitudes in­
volved in analysis of the stress conditions at 
failure of the material under test which are 
shown in the Mohr diagram are then repre­
sented by the sides and angles of these two 
triangles. The construction may be described 
briefly in three steps as follows: 

1. Two pairs of simultaneous principal 
stresses acting on a body at failure are selected 
(from the triaxial compression test, for in­
stance) having the major stress of one pair 

Compressive and tensile strengths, although 
not shown directly in the ordinary Mohr 
diagram, may be represented on the Triangle 
diagram by the simple operation of drawing a 
third right triangle with its right angle vertex 
at the intercept K on the axis of shear stress 
and with its sides parallel to those of right 
triangle aaPn. 

In the actual construction of the Triangle 
diagram, as performed in this laboratory, the 
points <n and aj (Fig. 11) are located by pins 
on millimeter cross section paper. A 90 deg 
triangle is then inserted between the pins and 
a third pin passing through a hole at the 
vertex of the right angle of the triangle is 
traced upward along the perpendicular passing 
through the point <r representing the principal 
stress common to the two pairs given until the 
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Figure 11. Stress Triangle Diagram 

equal in magnitude to the minor stress of the 
other pair; and, from a point 0 in a straight 
line (Fig. 11) two distances, and ai, propor­
tional to the arithmetic means of the two 
stresses comprising each pair are laid off to any 
convenient scale {.'4). 

2. On the line o-sai connecting their termi­
nals as a hypotenuse, a right triangle inPai 
is constructed with its right angle vertex at 
the point P on the perpendicular erected 
at the point a which represents the given 
common stress. 

3. A second right triangle IPA is next 
constructed having its right angle vertex 
coinciding with that of the first triangle, with 
its hypotenuse on the same base line and an 
acute angle at the mid point of the hypotenuse 
of the first triangle drawn. 

* Symbols and definitions are given in Ap­
pendix A. In most cases the symbols selected 
are in accordance with ASTM Designation 
D-653-42T(;?5). 

legs of the triangle touch the pins. The 
movable pin is inserted at the point P of the 
graph, and lines are traced along the legs 
PITS and Po-i of the triangle. The pin at <rj 
is then removed and inserted at the mid point 
A of the hj'potenuse of the triangle atPai 
just dra\TO. With the right angle vertex of 
the 90 deg triangle still pinned at P , it is 
rotated about P as a pivot until it lies to the 
left of and having its leg touching the pin at A. 
While in tliis position the legs are traced as 
before giving the right triangle IPA. Since 
the leg Pai of the triangle atPai is not required 
in the solution, it may be omitted from the 
consti-uction. 

As a further convenience in measuring the 
angles <> and a a small protractor, perma­
nently attached to the triangle at its right 
angle vertex, is used to read the angles shown 
on the diagrams at P , the common vertex 
of triangles a^Pai and IPA, while it remains 
in the final position used in the construction. 
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T C 
Construction pf the triangle —K— is most 

2 2 
easily effected by inserting pins at K, <rj, and 
P of Figure 11, and placing the triangular 
ruler so that its legs just touch these pins, 
tracing the leg K — oi the required triangle 

2 
and then with the right angle of the ruler at K 

T C T 
tracing its other leg K—. Segments — and — 2 2 2 
into which the hjrpotenuse of this triangle is 
divided by the altitude KO are half the values 
of compressive and of tensile strengths, 
respectively, since, as a result of the con-

is the locus of all points, such as P, whose 
coordinates <r and T are values of the normal 
and tangential (or shear) components of 
stress acting on the plane of failure for the 
given critical values of principal stress. 
These variable coordinates r and <r are given 
in the diagram (Fig. 12) by the common 
altitude Pa of the two right triangles, and 
by the left hand one of the two segments Oa 
into which the common altitude divides the 
hsrpotenuse OA of triangle OP A (when K = 
0). In the general case, when K ^ Q, the 
normal component <r is merely the distance 
from the origin to the foot of the common 
altitude P<r (Fig. 11). 
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Figure 12. Stress Triangle Diagram 

struction, these distances represent the single 
forces of compression and of tension (i.e., the 
other principal force being zero) required to 
produce failure. 

Interpretation of the Stress Triangle Diagram— 
The acute angles a and /3 of right triangle inPai 
arc the minimum angles of inclination of the 
planes of failure to the major and minor 
principal planes, respectively, and the acute 
angles <t> and y of right triangle IPA are the 
angles of internal friction of the material and 
the minimum angle between the two shear 
planes, respectively. Also, the leg IP of 
triangle IPA (produced through P ) is the 
line of failure, and its intercepts on the axes 
of shear stress and of normal stress, respec­
tively, are measures of the cohesion K and 
intrinsic pressure, / , of tlie material under 
test. 

The line of failure so constructed, whose 
equation is the well known Coulomb relation 

Proof of Correctness of the Triangle Construc­
tion—The correctness of this construction will 
be demonstrated by showing that identical 
relations between the variables and para­
metric constants involved may be deduced 
from the geometry of the diagram, using 
properties of the triangle, and by analytical 
processes. For purposes of mathematical 
simplification a material having no cohesion 
will be assumed (Fig. 12). 

1. Geometrical derivation: From right tri­
angle P i r A in Figure 12 and the definitions 
of the trigonometrical sine and cosine func­
tions, it is seen that 

T = <r tan ^ + K .(17) 

and 

but 

Po- = T = AP sin 7 

0<r = <r = OA - <rA 

AP 
2 ; 

- AP cos 7 

(The mid-point 
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of the hypotenuse of a right triangle is equi­
distant from its vertices.) 
sin 7 = sin 2a (The sine of an angle equals 

the sine of its supplement.) 
and cos 7 = — cos 2a (The cosine of an 
angle is equal in magnitude but opposite in 

sign to the cosine of its supplement.) 
With these substitutions the above equations 
become 

,= ^IL^ sin 2a (18) 

and 

2 

i<ri + ffs) 
2 

(ai -

+ 
r a ) cos 2a (19) 

2. Analytical derivation: In the diagram 
(Fig. 1) which represents an elementary 
prism bounded by the principal planes ACFD 
and FCBE, an oblique plane of failure ABED, 
and two parallel planes DEF and ABC, in 
a body under stress from combined axial and 
radial unit compressive critical stresses a i and 
0-3, respectively, it is evident, from the as­
sumed condition of static equilibrium, that 
the total normal and tangential components 
of the reactive stress on the oblique plane 
ABED are given by the equations 

<r ds dz = (Ti dx dz cos a + dy dz sin a (20) 

and 

T ds dz = 0-1 di dz sin a — as dy dz cos a (21) 

Dividing both sides of equations (20) and 
(21) by the area ds dz and substituting cos a 

for ^ and sin a for ~ , they reduce to cfs as 

a = <ri cos' a -h <r3 sin' a 

(o-i + "i) , ( f f i — <rj) 
- I r COS 2a. 

and 

T = cTi cos a s in a — 0-3 COS a Sin a 
(a 

— Sin 2a 

.(22) 

(23) 

Equations (22) and (23), above, are identical 
with equations (18) and (19) which were 
derived from the geometry of the Triangle 

diagram. Thus the correctness of the stress 
triangle construction is established. 

As a direct consequence of the geometrical 
theorem which states that the midpoint of the 
hypotenuse of a right triangle is equidistant 
from its vertices, it follows that angles a and p 
are also measured by the angles inPA and 
triPA as indicated at the right angle vertex 
of triangle azPai (Fig. 11). Also, since two 
angles are equal if their sides are perpendicu­
lar, each to each, the angle aPA is equal to 
the angle of internal friction <)>. This reloca­
tion of the angles of shear and of internal 
friction will facilitate their measurement, 
since by placing the center of a protractor at 
P, with its base line along PA, both a and ^ 
(the angles usually used in a stress analysis) 
may be I'ead directly from the scale with a 
single application of the protractor. 

The linear dimensions <r, T , o-i, a^, K, I, C 
and T are read directly from the graph, and 
the l esultant IP of the normal and tangential 
components of stress on the plane of failure 
may be measured, if desired for any purpose, 
with a millimeter scale on one leg of the tri­
angular ruler. 

The point on the line of failure correspond­
ing tb any other value of critical stress is 
readily located by finding its intersection with 
a straight line drawn through the point on the 
normal stress axis representing the given 
stress, at an angle a to the right hand direc­
tion, if the given stress is a minor principal 
stress or at an angle (180 — |8) with this direc­
tion for a major principal stress. Also, if 
both major and minor i)rincipal critical stresses 
are given, the two points representing them, 
together with the cori esponding point on the 
line of failure, form a right triangle whose 
sides are parallel to those of triangle asPai. 
Proof of this last statement derives from the 
implied initial assumption of a constant 
angle of shear characteristic of a given mate­
rial whose properties are such that the stress 
relations are in conformity with Coulomb's 
equation. 

Comparison of the Stress Triangle Constrvciion 
with the Mohr Stress Circle Diagram—It will 
be observed that no reference has been made 
in the method here outlined to the Mohr 
diagnim, except incidentally by way of 
introduction; and that no use whatever has 
been made of the Mohr stress circle, or circles 
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of any kind, or of any of the ideas or nomen­
clature of the Mohr diagram or other construc­
tion. Moreover, properties of the triangle 
rather than properties of the circle are em­
ployed in the derivation of mathematical 
relations. It is essential, however, that the 
various methods should be in complete agree­
ment as to the final results achieved. For 
this reason the Triangle diagram and the 
Mohr diagram (selected because it is a general 
method, representative of the,best contem­
porary methods) will be compared in some 
detail, in order to point out by contrast 
certain advantages of the Triangle construc­
tion: 

1. In the first place, equations (22) and (23), 
which have been derived both by analŝ tical 
methods, and, geometrically, from the Tri­
angle diagram, are also derivable from the 
Mohr diagram (40) and (41). 

2. In the second place, it may be shown 
either by measurement of dimensions in the 
two diagrams, or by a combination of the two 
diagrams on a single graph, that line IPN 
in Figure 10 is a common tangent to two Mohr 
stress circles constructed from the original 
pairs of principal stresses whose arithmetic 
means are tn and 0-3. Hence the line IPN, 
which represents the line of failure, is identical 
in the two diagrams and its intercepts on the 
stress axes and its angle of inclination 0 to the 
axis of normal stress have identical meanings 
in the two diagrams. 

3. On the other hand, while the two meth­
ods yield identical mathematical results in all 
cases, some of the standard equations of 
plastic equiUbrium are more easily derived 
from the Triangle diagram, using projjerties 
of the triangle, than from the Mohr diagram 
by utilizing properties of the circle; and some 
other useful relations, apparently unknown or 
unused, as far as can be ascertained, are more 
readily obtained from the Triangle diagram 
for example. 

(a) As an instance of the latter class of 
relations, it may be seen by inspection of right 
triangle trsPai (Fig. 11) that, as a result of the 
geometrical theorem which states that the 
altitude of a right triangle on its hypotenuse 
is the mean proportional between the seg­
ments into which the hypotenuse is divided, 
it follows that 

Pa = T = '\/(ff3<r)(<ri<r) = (a — <r3)(<ri — a) 

or, in other words, the shear stress correspond­
ing to a normal stress common to two simul­
taneous pairs of critical values of principal 
stresses is equal to the geometric mean of the 
half differences between the major and minor 
stresses of each pair, i.e. of the radii of the two 
Mohr circles of failure constructed from the 
given stresses. 

(b) From this corollary it also follows (See 
T C 

Triangle — K - in Fig. 11) that cohesion is 2 2 
equal to one-half the geometric mean of the 
compressive and tensile strengths, or K = 

1/P 2 2 
= hVCT where C and T represent 

compressive and tensile strengths, re­
spectively. 

(c) Similar relations may be derived for 
Rankine's active and passive earth pressures 
occurring in Rankine's earth pressure theory 
(43), since these pressures are measured from 
a common point corresponding to the static 
pressure of a body of earth at rest. Stated 
as a mathematical equation, the relation is 

TB = WDIDP 

Where D A = The diameter of the circle of 
rupture representing the active 
Rankine state of earth pressure 

Dp = The diameter of the circle of 
rupture representing the pas­
sive Rankine state of earth 
pressure 

And Ta = Shear resistance existing on a 
failure plane passing through a 
point of the body of earth when 
it is at rest 

4. Another important advantage of the 
triangle construction over the Mohr diagram 
is its greater ease and speed of construction. 
This statement is best proved by an actual 
trial, but it is more or less apparent from the 
description. One example of the saving 
effected in the Triangle method is that it 
avoids the relatively compUcated geometrical 
problem of constmcting a common tangent 
to two circles. Accurate construction of the 
common tangent involves drawing an auxiliary 
circle with a radius equal to the difference 
between the radii of the given circles, drawing 
a tangent to this differential circle from a 
point, construction of perpendiculars, etc. 
(4^)- This procedure consumes considerable 
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time and further complicates the Mohr 
diagram. 

5. This leads to another contrast between 
the two diagrams, viz., the difference in sim­
plicity of form. The Triangle diagram con­
tains only four straight lines, whereas the 
Mohr diagram requires the same number of 
lines in order to reveal the same amount of 
information, in addition to two Mohr stress 
circles plus other auxiliary circles and lines 
required in construction of the fine of rupture. 

6. Again, as performed in this laboratory, 
the derived dimensions are all read directly 
from the graph paper and from the one instru­
ment used in the construction (a combination 
90 deg triangle, protractor, and linear scale) 
with a single application. Besides an addi­
tional saving of time, the Triangle construc­
tion thus uses fewer tools than does the Mohr 
construction. 

Adaptations of Stress Triangle Constructim 
to Some Cases not Irtdvded in the Preliminary 
Assumptions—Two initial restrictions were 
placed on the materials and data involved 
in the Triangle diagram construction. They 
are as follows: 

1. The phsrsical properties of the material 
at failure are related in accordance with 
Coulomb's formula. 

2. The available data consists of two 
simultaneous pairs of critical values of prin­
cipal stress having one stress in common. 

The first of these assumptions applies with 
equal weight to the Mohr diagram; for it is 
only on this hypothesis that a common tangent 
can be constructed, whose intercepts and 
angles of inclination with respect to the axes 
correctly represent physical properties of the 
material. In many cases both the physical 
properties and the dimensions representing 
them are variables during a test; and, if the 
properties are to be even approximately 
determined from the Mohr diagram, for some 
arbitrary combination of critical stresses, then 
it becomes necessary to construct and use a 
straight line common tangent. This approxi­
mation may also be effected with greater ease 
and speed by the Triangle diagram con­
struction. 

As to the second hypothesis it is just as 
easy, experimentally, to measure two pairs of 
principal stresses having a stress in common 
as without a common stress. But, if the 

latter course has been followed in securing the 
data, one pair of stresses may be transformed 
to a pair having one of its stresses equal to 
one of the other pair by the simple process of 
linear interpolation from the table of data or a 
curve plotted from it. Of course, this pro­
cedure assumes a linear relation between the 
principal stresses over the range of the tabular 
differences used in the interpolation. That 
this assumption is approximately justified in 
practical cases is shown by the fact that curves 
plotted from series of pressures in several 
triaxial tests on asphaltic concrete specimens 
containing calcareous aggregates were found 
to be approximately straight, especially over 
the limited ranges used. However, it is 
usually possible to select two or more pairs of 
stresses from the series of readings ordinarily 
recorded in the triaxial experiment which 
fulfill the conditions of the construction. 

It may be noted here that the results of 
triaxial tests on dry sands and asphaltic con­
crete made from flinty aggregates conform 
almost exactly to the Coulomb relation, while 
asphaltic concrete specimens made with 
calcareous aggregates usually have slightly 
curved envelopes or lines of failure of varying 
curvature and slope depending on the char­
acteristics of the design used. 

Although not of great practical importance, 
the construction of the individual locus (a 
circle) of points whose coordinates are values 
of normal and tangential components of 
stress acting on the general plane through an 
axis of a body can be accomplished even better 
by means of the Triangle construction than 
with the Mohr stress circle. With the legs 
of the triangular ruler held against the pins 
marking the given pair of major and minor 
stresses, a pencil inserted in the hole at the 
right angle vertex of the triangular ruler is 
made to trace the locus as the vertex is moved 
from one pin to the other. 

While critical values of simultaneous 
principle stresses have been assumed for the 
sake of simplifying the discussion, the same 
construction applies to simultaneous principal 
stresses other than critical values, but the 
resulting envelope or common tangent will 
not be the line of failure, and its intercepts 
and angle of inclination to the axis of normal 
stress will not give the cohesion and intrinsic 
pressure of the material and its angle of inter­
nal friction. Besides possessing greater speed 
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and accuracy than the Mohr method, this 
method has the added advantage of dispensing 
with the calculation and location of a center 
for the arc. Also, by a repetition of this 
process, the succession of arcs may be drawn 
from a set of triaxial test data, corresponding 
to a series of Mohr stress circles, incident to 
the construction of the non-linear envelope 
of rupture for materials not conforming to 
Coulomb's relation. 

Summary and Conclusions—An. independent 
method of graphical stress analysis, equivalent 
in results obtained to the Mohr circle diagram 
and other methods in common use, but posses­
sing greater ease and speed of construction 
and interpretation, as well as greater simplicity 
of form than the Mohr diagram, is developed 
and illustrated. 

Comparison of this method with the Mohr 
circle construction also shows that, in addition 
to the economy of time effected, it possesses 
more simplicity of form, requires less tools 
for construction and measurement, and 
permits greater ease in derivation of certain 
fundamental relations in the theory of plastic 
equilibrium. 

While the Stress Triangle diagram, as well 
as the Mohr Circle diagram, applies primarily 
and exactly to materials whose properties are 
related by Coulomb's formula, it is applicable 
approximately (and to the same extent as in 
the Mohr construction) to other road materials 
whose properties show a departure from the 
Coulomb relation. It is shown, however, 
that the construction and measurement of 
dimensions, even in this case, is expedited 
by the use of the Triangle construction, and 
that the resulting diagram is far less compli­
cated than the corresponding Mohr diagram. 

In case the available data does not show a 
common stress for any two simultaneous 
pairs, one set may be adjusted by int^pola-
tion so as to meet this requirement of the 
construction of the Triangle diagram. 
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APPENDIX A 
D E F I N I T I O N S AND SYMBOLS OF T E R M S 

Principal stress: a normal unit stress acting 
on a given plane when the tangential com­
ponent is zero. 

Major principal stress (<ri): the greatest of 
three simultaneous mutually perpendicular 
principal stresses acting on an element of 
the stressed body. 

Minor principal stress ( 0 - 3 ) : the least of three 
simultaneous mutually perpendicular 
stresses acting on an element of the stressed 
body. 

Intermediate principal stress (us): the third 
of the three simultaneous mutually per­
pendicular principal stresses acting on an 
element of the stressed body. 
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Principal plane: a plane on which only normat 
stresses act. 

Major principal plane: the plane on which the 
major principal stress acts. 

Minor principal plane: the plane on which the 
minor principal stress acts. 

Plane of failure, rupture, or yield: that plane 
on which failure, or plastic yield occurs. 

Critical principal stresses: values of the princi­
pal stresses acting at failure. 

Criticcd normal stress {<r): the normal compo­
nent of stress acting on the plane of failure. 

Critical tangential stress ( t ) : the tangential 
component of stress on the plane of failure. 

ResuUant stress on plane of failure (R): the 
square root of the sum of the squares of the 
normal and tangential components of criti­
cal stress on the plane of failure. 

General normal stresses (vx, <r,)- the normal 
stress components on any two mutually 
perpendicular planes. 

General tangential stresses ( t , , , r»,): the tan­
gential stress components on the planes 
upon which try and <rx act. 

Hydrostatic stress: the state of stress existing 
in a material in the liquid condition, in 
which all three principal stresses are equal 
and the shear stress is zero in all directions. 
Hydrostatic stress may be either compres­
sive or tensile, depending on the direction 
of the applied force. 

Line of failure or yield: the locus of points 
whose co-ordinates are the critical values 
of normal and tangential stress components 
on the plane of failure. 

Cohesion (Z)": that part of the tangential 
component of stress on the plane of failure 
which is assumed to be independent of the 
normal component of stress on this plane-
represented graphically by the intercept of 
the line of failure on the axis of shear stress 
(Fig. 3 and 11). 

Intrinsic pressure (I): that internal force 
which binds the molecules of the material 
together—represented on the Mohr and 
stress triangle diagrams by the intercept of 
the line of failure on the axis of normal 
stress (Fig. 3 and 11). It is equal in mag­
nitude to the hydrostatic tensile stress 
required to overcome true cohesion. 

Angle of internal friction (^): the angle be­
tween the line of failure and the axis of 
normal stress, when the line of failure is 
straight. 

Angle of shear (a): the smaller of the two 
angles between the plane of failure and the 
major principal plane. 

Compressive strength (C): that single principal 
stress of compression required to produce 
failure. 

Tensile strength (T): that single principal stress 
of tension required to produce failure. 

"The term "cohesion," as applied to the 
constant term in the Coulomb relation, is a 
misnomer since it is a composite of several 
factors, such as viscosity, surface tension, 
adhesion, and shape of component particles 
of the material, as well as the shear component 
of true cohesion as usually defined. 




