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the wall by minor principal stresses becomes 
oblique instead of horizontal. The farther the 
wall moves from the backfill—within a certain 
limited range, admittedly—the smaller is the 
lateral pressure on the wall since a part of it 
is absorbed (balanced) by horizontal shears. 

CONCLUSIONS 

1. The lateral pressure within an eaith 
mass bounded by a vertical slope is balanced 
by horizontal shearing stresses. The bulk of 
the horizontal shears is concentrated between 
the slope and the first eventual crack. 

2. I n conjunction with horizontal shearing 
stresses, vertical shears develop; and as a 
result of their action, a part of the mass next 
to the slope is overloaded at the expense of the 
rest of the mass that is partly relieved of its 
weight. 

3. The moment created by the vertical 
shears causes tension and Assuring at the upper 
part of the mass. 

4. In an accurate analysis of the stress 
redistribution caused in the earth mass by 
the presence of a vertical slope, special atten­
tion should be paid to the stresses around its 
foot. 

5. The lateral pressure gradually decreases 
toward a non-supported vertical slope or a 
translating retaining wall. 

6. Extreme care should be recommended 
in the interpretation of test results on vertical 
slope or retaining wall models on hard bases. 
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SHEAR F A I L U R E IN ANISOTROPIC MATERIALS POSSESSING ANY 
VALUES OF COHESION AND ANGLE OF INTERNAL 

FRICTION 
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SYNOPSIS 

The radius of a Mohr's circle of failure is obtained in terms of the principal 
shear strengths existing on the principal planes at failure, induced by the stresses 
applied in plane deformation such as occurs in the triaxial compression test, for a 
material possessing any values of cohesion and sliding friction. The required 
radius is first obtained graphically from a modified Mohr stress circle plotted on 
the axis of shear stress, and analytical expressions are then developed in terms of 
cohesion, angle of internal friction, and a principal normal stress, for the radius 
and for the normal and tangential components of stress acting on the plane of 
failure. A number of special cases are deduced from the general solution and a 
Mohr circle of failure is constructed. It is shown that the formula developed 
applies to anisotropic materials possessing either or both components of shear 
resistance, i.e., cohesion and sliding or internal friction, and to isotropic mate­
rials, aa a limiting special case. 

The problem may be stated briefly as fol­
lows: 

From given maximum and minimum values 
of the shear strength existing at failure (e.g., 
at the proportional limit) on two mutually 
perpendicular principal planes during the tri­

axial test {ly and a principal normal stress 
on one of these planes, it is required to find 

' Italicized figures in parentheses refer to 
the explanatory footnotes and list of references 
at the end of the paper. 
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the radius of the corresponding Mohr circle 
of failure (2) and the stress distribution on 
the plane of failure, together with the angles 
of shear and internal friction, and to con­
struct the Mohr circle of failure. Besides the 
usual implicit assumption that the material 
is of such nature as to conform approximately 
with Coulomb's condition of failure (3) and 
Mohr's theory of rupture (.$), it will also be 
assumed that the maximum and minimum 
values of shear strength are in the planes of 
the normal stresses inducing them, i.e., in the 
principal planes.' 

This problem has been solved for the ex­
treme special cases of a purely cohesive sub­
stance and of a substance w t h sliding friction, 
and zero cohesion, by Casagrande and Carillo 
(5); but, so far as is known, the general solu­
tion for a material ppssessing both cohesion 
and sliding friction has not been published. 

I n addition to the complete universality of 
the formula developed in this paper, it is 
believed that the method used is superior to 
that employed in the partial solution by 
Casagrande and Carillo in that it possesses 
greater simplicity and directness and does 
not require the trial and error procedure used 
by them in the derivations. I t also appears 
that the method of construction of the Mohr 
Circle on the shear axis from maximum and 
minimum values of shear strength constitutes 
a new and useful extension of the Mohr 
Circle diagram. 

MATHEMATICAL THEORY AND DEKIVATIONS 

On the assumption of the validity of Cou­
lomb's condition' of failul^, the total shear 
strength or potential resistance to failure on 
the plane of failure for a material possessing 
cohesion and internal friction is defined by 
the well-known formula of Coulomb 

T = <r tan 0 + K (1) 

in which: r = the shear strength component 
in the plane of failure, 

<r = unit normal stress acting per­
pendicular to the plane of 
failure, 

0 = angle of internal friction 

3 The same terms and definitions, as well as 
fundamental assumptions, employed by Casa­
grande and Carillo (Sec Reference No. 6) are 
adopted in the present solution. 

K = all tangential stresses in the 
plane of failure other than 
those due to sliding friction. 
I t is generally called cohe­
sion, and is assumed to be 
independent of the normal 
stress on the plane of failure. 

The same relation with varying values of 
the parameters is also assumed to hold for all 
planes through a given point in the material, 
including the principal planes. 

Now the law of distribution of shear 
strength on planes other than the principal 
planes will be assumed to be the same as that 
giving the stress distribution due to principal 
shear stresses, equivalent to the principal 
strengths, and represented graphically by a 
modified Mohr diagram constructed from 
these stresses (See Appendix 1 and Figure 
1-a) in the following manner: 

Lay off on the vertical or shear axis from 
an origin O distances OA and OB propor­
tional to the given minimum and maximum 
principal shear strengths n and n , respec­
tively, (Fig. 1-a), and construct a circle 
passing through their terminals with center 
at ( T J + Ti)/2. Draw the tangent OP. 

Now it follows from the elementary theory 
of the Mohr Circle (£) and from Figure 1-a, 
that OC and CP represent, graphically, the 
contribution to the normal and tangential 
components of induced strength on the plane 
of failure of the given principal shear strengths 
in the principal planes, as resolved by the 
Mohr diagram method ordinarily used for 
obtaining the stress distribution on the plane 
of failure due to the principal normal stresses; 
and OP is the resultant of these components. 
But this resultant, or vector sum, represented 
graphically by the tangent OP, is equal nu­
merically to the radius of the required Mohr 
Circle of failure, since it is equal to the maxi­
mum value of the shear stress on the plane of 
failure. 

The analytical expression for this radius 
derives directly from the plane geometry 
theorem which states that the tangent from 
a point to a circle is the mean proportional 
between the entire secant through the same 
point and its external segment, thus, 

r,/OP = O P / n or OP = (2) 

I t also follows from right triangle OPC in 
Figure 1-a and from the definitions of the sine 
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and cosine functions, that the normal and 
tangential components of shear strength in­
duced in the plane of failure are given, re­
spectively, by 

CP = OP sin 0' = OPiO'P/0'0) 

= V'nTjCri — T 3 ) / ( T I + Tl) 

and 

OC = OP cos ^' = 0P(0P/00') 

= OPVOO' = 2 T , T 3 / ( r i -f 

I t may also be shown (6) from right tri­
angle ACP and the definition of the tangent 
function that, after making appropriate 

(3) 

(4) 

cally by the geometrical mean of the principal 
shear strengths, thus 

r = Via tan 0, + Ki) (<r, -I- 2r) tan 0i + Ki (6) 

which, when solved for r and rearranged, gives 

r = o-j tan <t>i tan <t>i + Ki tan 

4-
/(<riiBSi<t>i 

\ 4-<ritar 
. tan03-f fetan^i)* (7) 

tan tan 03 -(- K i 0-3 tan 03 
tan0i -l-ifiK3 

As a check on the accuracy of the above 
relation and in order to illustrate its general 
utility, attention is called to the fact that 
substitution of 0i = 03 = 0 in equation (7) 

I 
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C la />'.—' 

o 
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A/orma/ Stresses, psi 
Figure 1. (a) Modified Mohr Stress Circle Constructed from Maximum and Minimum Shea 

Stresses at Failure in a Non-isotropic Material , _ . ^ „ ^ „ . 
(b) Mohr Circle of Rupture for the Same Material, Constructed from Tangent OP to the Moir 

Stress Circle in (a) as radius and the Minor Principle Stress a% 

trigonometric transformations, the angle of 
shear a between the plane of failure and the 
principal plane of maximum shear is defined 
by the equation 

T l = T3 tan' a. or tan a = y/TI/TS (5) 

I t may be noted that, since general shear 
strength symbols n and T J were used in the 
discussions and derivations of relations be­
tween dimensions of the tentative stress circle 
(Fig. 1-a) and the Mohr circle of rupture 
(Fig. 1-b), these relations will apply to all 
possible cases, by substitution of particular 
values for n and T-B. 

As already shown the tangent to the tenta­
tive Mohr circle constructed from the shear 
strengths represents the radius of the required 
Mohr circle of failure and is defined analyti-

gives, for the specific case (a), the result that 
r = V K I / C , . 

Also, if Ki - Ki = 0, one obtains, on mak­
ing this substitution in (7), the special case 
(b), viz., 

r=a3 tan 0 i tan 0 j ( l + y/l + ctn 0 i ctn 0 3 

These expressions are both seen to be 
identical with those derived by Casa'grande 
and Carillo by a different method. 

C O N S T R U C T I O N O F M O H B ' S C I R C L E O F R U P ­

T U R E F O R A N A N I S O T H R O P I C M A T E R I A L 

From the derived value of the radius of 
the Mohr rupture circle and a given value of 
one of the principal normal stresses', the 

' Since shear stress in the plane of failure 
represented by OC in Figure 1 (a) is related to 
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corresponding Mohr's circle of rupture may 
now be constructed as follows: 

Lay off on the axis of normal stress (Fig. 
1-b) a distance proportional to the given 
minor principal stress 0-3 and draw a circle 
with a radius equal to \ / T I T 8 and with center 
at ffj -1- " V ^ T 1 T 3 through the terminal of <r,). 
The circle so constructed is the required cir­
cle of rupture, which is the locus of points 
whose co-ordinates are the critical values of 
stress, existing at the time of failure, on any 
plane of failure passing through a given point 
of the body. 

The critical stress components on the fail­
ure plane defined by 

a = tan-'V^nTn arc T = CP' = OC 

= 2T,TJ/(T, -f T,) 
(8) 

and 

<r = O C = a, -f- 2r,VTir,,/(ri -|- T , ) (9) 40 -1-

which results from solving right triangle 
C ' P ^ ' for CO' and subtracting^it from r = 
VriT, to get A'C = 2 T , V T I T , / ( T I + T , ) . 

The major, or maximum, principal (normal) 
stress is seen to be 

<r, -f- 2 \ / i ^ . 

Substituting the following numerical values 
for the parametric constants in Coulomb's 
formula (assumed for the purpose of illus­
trating the method of computing the radius, 
angle of shear, and critical stress components 
for the critical circle) viz., Kmiit ~ — 
UK) psi, /!Lm„x = Ki = 225 psi. and 0i = 0j = 
0, and assuming the minor principal stress 
0-8 = 40 psi, we obtain the following specific 
values for the dimensions in the Mohr circle 
of rupture: 

r = = V k ^ ^ = V('i00K225) = 
150 psi, with co-ordinates of its center at 
Tc = 0 and 

= <r3 + V K I K , 
40 -f ^22500 = 190 psi. 

the normal stress by Coulomb's relation T = 
a tan 4> -\- K the Mohr circle of rupture may be 
constructed without given values of either of 
the principal stresses for the special cases 
treated by Casagrandc and Carillo, viz., K — 
Oand« = 0. 

The critical shear stress is 

2 T I T 3 / ( T I -I- Tj) 

= 2K,K,/{K, + K,) = 138 Psi 

and the critical normal stress is 

„ 200(160) 

Also, a = tan-'-s/n/Ta = idJi-^s/K^/K, = 
tan-'V'225/100 = tan-^ 1.5000 = 57°.2 

For the case represented by Figure 1, ra = 
29 psi and n = 64 i)si so that r = 
\ /(29)(64) = 43.1 psi. The critical shear 

stress in the plane of failuie is T = ^^f^^^^t,^ 
64-1-29 

= 39.9 psi. and the critical normal stress a is 
2(29)\/(29K64) , 

= 66.9 psi; a = tan ' 

64 
29 

29 4- 64 

56° and 0 = 2a - 90° = 22°. 

Also, by substituting these values for <r, 0, 
and T in Coulomb's relation one finds that 
the "cohesion" K is 39.9 - 66.9 tan 22° = 
12.9 psi. 

Reference to Figure 1-b shows these values 
calculated from the derived analytical for­
mula are in approximate agreement with those 
obtained from the geometrical construction. 

As a further graphical check on the con­
structions it is seen that OC and CP in Figure 
2-a are approximately equivalent to P'C and 
CO" in Figure 1-b and that the angle of 
internal friction 0 is approximately the same 
in the two circles. 

ADDITONAL SPECIAL CASES 

Other special cases easily derived by simple 
deduction from the general solution are: 

Cose (c) A material for which Ki = Ka = 
0 and 01 = 03 = 0 ?̂  0, in which case the 
radius of the circle of rupture reduces to 

r = o-j tan* 0 (1 4- esc 0). 

Case (d) A material for which 0, = 03 = 
0, and Ki = K3 = K 9^ 0, giving a Mohr 
Circle of rupture of radius r = -s/K^ = K. 

Case (e) A material for which Ki = K3 = 
K and 0i = 03 = 0 5^ 0. Substitution of 
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these values in equation (7) gives, after 
simplification, 

r = (ffj tan 0 + K) (tun 0 -f sec 0). 

These three cases (c, d, and e) represent 
isotropic materials. 

I t is obvious that the Mohr Circles of 
rupture might just as easily have been con­
structed from a given value of the major 
principal stress, <ri, instead of a, by plotting 
the tentative stress circle from T , = o-i tan 
0 + Ki, and n = (,ai — 2r) tan 03 + Kt, 
and then passing the Mohr circle of rupture, 
with center at (<ri — r) through the terminal 
of 0-1. The Mohr diagram may also be 
constructed from given values of n , T, , and 
K. 

The graphical solution here developed for 
obtaining the value of the radius of the Mohr 
circle of failure, as well as the angles of shear 
and internal friction and the normal and 
tangential components of stress on the plane 
of failure, is obviously superior to the analyt­
ical method because of its far greater sim­
plicity and speed of construction and evalua­
tion of the quantities obtained in a stress 
analysis. 

Incidentally, the graphical solution may 
also be effected for the case in which the 
given shear strengths are not in the principal 
planes but in two mutually perpendicular 
phines making an angle B with the principal 
planes by the following sim]5le modification 
of the method here used: 

1. Lay off on the axis of shear stress from 
the origin of a diagram such as that shown in 
Figure l-(a) distances equal to the given 
shear strengths. 

2. At the mid-point between their terminals 
construct an angle 2B with the shear stress 
a.vis. 

.3. Erect a perpendicular at the terminal 
of the major shear strength. 

4. Constract a circle with its center at 
the mid-point of the shear strength terminals 
passing thi-ough the point of intersection of the 
perpendicular referred to in Step 3 and the 
terminal line of angle 2B. This circle is the 
required tentative circle which represents the 
shear strength distribution on all planes 
through a given point of the material. 

5. Draw a tangent from the origin to this 
circle for the radius of the required Mohr 

circle of failure and i)roceed as in the other 
case. 

CONCLUSIONS 

The foregoing simple procedure for deter­
mining the radius and other elements of 
Mohi's circle of failure from known values 
of the principal shear strengths may be 
summed up in the following brief and simi)le 
rule: 

1. Graphically, the radius of the Mohr 
circle of failure is given by the length of the 
tangent from the origin of a Mohr diagram 
to a Mohr stress circle constmcted by plotting 
the principal shear strengths on the shear 
stress axis. 

2. Analytically, it is the geometrical mean 
of the given i)rincipal shear strengths. 

Since the solution is valid for all finite 
values of n and ra, these rules are applicable 
to materials with induced anisotropy, pos­
sessing either or both components of shear 
resistance, i.e., cohesion and internal sliding 
friction, or to isotropic materials in which 
shear stress is equal in all directions about a 
point of the body under stress. 

Inasmuch as shear stress in a given plane 
is a function of void ratio and consolidation, 
which in turn are functions of applied stress 
in the j)lane, it is reasonable to suppose that 
the degree of anistropy is changed under the 
unequal applied stresses occurring during the 
triaxial test and that a body which is initially 
isotropic may become anisotropic during the 
test. Hence, it appears that, while the 
present discussion, like that of Casagrande 
and Carillo ineviously referred to, is limited 
to a theoretical treatment of the subject, the 
results may not be devoid of practical value 
in soil mechanics, and other fields as stated 
in that paper, (7) and in the analysis of tri­
axial test results on some specimens of ini­
tially isotropic asphalt road materials which 
acquire anisotropy induced by unsymmetrieal 
compaction during the test. 

I n concluding, the writers wish to acknowl­
edge the aid given by Dr. Dana Young, 
Professor, University of Texas, and Mr. F . H . 
Scrivner, Senior Research Engineer, Texas 
Highway Department, in readmg the manu­
script and making helpful suggestions. 

EXPL.A.XATORY FOOTNOTES AND 
R E F E R E N C E S 

(1) It can be shown by deduction from the gen­
eral case of three dimensional stress that 
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since the intermediate principal stress 
equals the minor principal stress in the tri-
axial compression test, the plane diagram 
will correctly represent all combinations of 
stress. (Nadai, Plasticity, Chap. 7, pp. 39-
47.) 

(2) The Mohr Circle diagram, as ordinarily de­
fined and used, is a graphical method, de­
vised by O. C. Mohr, for determining the 
stress distribution on an oblique plane 
passing through a point of a body in 
equilibrium under stress from two (or 
three) known principal (normal) stresses 
acting on mutually perpendicular planes 
(principal planes) through the same point. 
If two given principal stresses be plotted, 
from a common origin on the axis of abscis­
sae, in directions determined by their signs 
(opposite for compressive and tensile 
forces) and the conventions of analytic 
geometry, then the circle drawn through 
their terminals with center at the point 
representing their arithmetic mean, is 
called a Mohr stress circle; and it is the 
locus of points whose co-ordinates are 
values of the normal and tangential com­
ponents of induced stress on all planes pass­
ing through the intersection of the princi­
pal planes. If the given principal stresses 
are the critical values existing at the time 
of failure of the material, the Mohr stress 
circle constructed from them is known as 
the Mohr circle of failure or of rupture. 

For further details on the subject the reader 
is referred to engineering texts on statics by 

Timoshenko, Seely, and others, and to such 
articles as that by Hvorslev mentioned in the 
footnote which follows: 
(3) and (4) 

(a) Plummer and Dore, Soils Mechanics and 
Foundations, Chap. 9. 

(b) M. Juul Hvorslev, Shearing Resistance of 
Remolded Cohesive Soils, Proceedings 
Soils and Foundations Conference of U. 
S. Engineer Department, 1938. 

(c) Timoshenko, Strength of Materials. 
(5) Shear Failure of Anisotropic Materials, 

Journal, Boston Society of Civil Engineers, 
April 1944. 

(6) L . E . McCarty: Applications of Mohr 
Circle and Stress Triangle Diagrams to Test 
Data Taken with the Hveem Stabilom-
eter, Proceedings, Highway Research 
Board, Vol. 26, pp. 100-123, Section 2 of 
Derivations (1946). 

(7) On page 75, the purpose of the article under 
reference (5) above is stated as follows: 
"The purpose of this paper is to present an 
extension of Mohr's theory for non-iso-
tropic materials. The subject of this 
presentation was suggested by the behavior 
of soil samples, and the paper is primarily 
intended as a contribution in the field of 
soil mechanics, although it is expected that 
certain phenomena observed in the failure 
of such materials as steel and concrete, and 
the faulting of rocks, may also be explained 
in the light of the following considera­
tions." 

A P P E N D I X 1 

A N A L Y T I C A L D E R I V A T I O N O F E X P R E S S I O N S F O R T H E S H E A R S T R E N G T H D I S T R I B U T I O N ON P L A N E S 
O T H E R T H A N T H E P R I N C I P A L P L A N E S I N T E R M S O F P R I N C I P A L S H E A R S T R E N G T H S E X I S T I N G 

I N T H E P R I N C I P A L P L A N E S A T F A I L U R E 

Consider an elementary prism from a non-
isotropic body bounded on its non parallel 
sides by the two principal planes and the 
surface of failure and held in static equilibrium 
by the potential critical shear stresses TI and 
T3 equivalent to the given "shear strengths" 
acting at failure in the principal planes and 
resisting stresses Tjf and T g developed on the 
surface of failure (See figure 2). 

From the definition of stress and the 
geometry of the figure it is seen that 

Tf, dsdz = T i sin a dxdz - T , cos a dydz (1) 

Ts dsdz = n cos a dxdz + sin a dydz (2) Figure 2 
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Dividing both members of these equations 
by the area dsdz, there results 

Tjvr = r i sin a cos a — T, sin a COS a (3) 

Tg = T i COS= a + Ti sin' a (4) 

for the normal and tangential critical shear 
strength components developed on the sur­
face of failure inclined at an angle a (the angle 
of shear) to the major principal plane, n and 
Ts being drawn in a conraion direction for the 
purpose of comparing these expressions with 
similar results derived from the Mohr diagram 
in which the shear strengths are both meas­
ured in the positive direction. 

On substitution of the trigonometrical 
sin 2a 

identities sm o cos « = — - — , cos' a = 

1 COS 2a . . . 1 -cos 2a 
— and sm* a = equations 

2 2t 
(3) and (4) are transformed into 

T I — T3 . 

T.v = — - — sm2a 

T l - I - TJ T l 
ts = — z — + COS 2a 

(5) 

(6) 

These forms are easily recognized as the 
dimensions C P and OC in the tentative Mohr 
diagram Figure 1(a) and CO" and C P ' in 
the conventional Mohr circle of failure shown 
in Figure 1(b), and their resultant 

•<• = Vxiy" Ts» = V C P ' -h 

= y/c'O"' -1- CP'' 

is seen to be equal to the maximum shear 
C P ' (at a = 45°) which is the required radius 
of the Mohr circle of failure. 

Equations (3), (4), (5) and (6) express cor­
rectly the law of strength distribution on 
planes other than the principal planes. 

Equivalence of C O " to C P and of 0" P ' 
to OP in Figure 1-a and b depends on the 
equivalence between right triangles 0 " C P ' 
and OCP which is established by the following 
construction of the Mohr circle of failure: 

At the terminal A' of the given minor 
principal stress a% construct an angle a equal 
to the angle of shear which is defined by 
equations (3), (4), (5) and (6) and by the 
construction in Figure 1-a. Draw a line 
P ' L parallel to the axis of normal stresses and 
at a distance from it equal to OC, which repre­
sents the critical shear stress in the plane of 
failure. From the intersection of this line 
with the terminal side of angle drop a per­
pendicular P ' C to the axis of normal stresses. 
Next construct a circle thru A' and P ' with 
its center 0" on the axis of normal stress. 
The circle so constructed is the Mohr Circle 
of failure. Draw P'O", the radius r of the 
Mohr circle, thus forming the right triangle 
C'P'O". Now <C'0"P' = 180° - 2« 
= <CO'P. But <CPO = <CO'P since 
their sides are mutually perpendicular. Then 
the right triangles 0"C'P' and OCP are equiva­
lent because one leg and an acute angle of one 
equals a leg and acute angle of the other. 
Hence r equals the radius of the Mohr circle 
of faUure = 0"P' = OP, and C O " = C P be­
cause they are corresponding sides of equiva­
lent triangles. 

D I S C U S S I O N 

E . S. B A B B E K , Associoie Professor of Civil 
Engineering, University of Maryland—This 
paper has a valuable contribution in Equa­
tion 7. The derivation, as presented, is ob­
scure; for instance Figure 2 in the Appendix 
is not in equilibrium as stated. While a 
graphical method is given for constructing a 
circle of rapture assuming both principal 
strengths, these would generally not be known 
unless both principal stresses at failure were 
also known. I t seems desirable to have a 
graphical solution of Equation 7; i.e. find the 
radius of the circle of rupture given one 

principal stress and 0i, Ki , th, and Kj . Fol­
lowing is the way I see it: 

Given: T I = o-i tan <̂)i -I- Ki and u = at tan 
<l>3 + Ki and r for intermediate planes is 
assumed to vary linearly with a- as shown in 
Figure A . The circle of rupture is tangent 
to A C . Then A B = and B C = n, the 
radius O B is the altitude of a right triangle 
on its hypotenuse and equals A / A B - B C or 

Substituting the given expressions for n 
and T8 Equations 6 and 7 and their corollaries 
are obtained. 



456 SOILS 

One way to solve Equation 7 graphically 
(not Euclidian) is as follows: In Figure B , 
T3 is determined from 0-3, î s and K 3 ; but T I 
and the location of C and 0 are not known. 
A piece of tracing paper with two perpen­
dicular lines, m and n, is placed over the 

Figure A 

Figure B 

figure; at a point on m at a distance rs to 
the left of the intersection of m and n the 
paper is pinned through A. A right triangle 
placed against the pin with the right angle 
at the intersection O' of n with the horizontal 
axis, cuts m at C . C should be on T I = <ri tan 

1̂ + Ki . This is accomplished by rotating 
the transparent paper while keeping the right 
angle at the intei-section of n with the hori­
zontal axis. 
R. J . H A N K AXD L . E . M C C A R T Y , Closure— 
The authors wish to express thanks to Mr. 
Barber for his constructive criticisms anil 
suggestions. Inasmuch as we received Mr. 
Barber's discussion after this Volume of 
"Proceedings" had gone to press, time does 
not permit a formal and extended closure. 
However, certain brief explanations can be 
made. 

The original paper included in an appendix 
two graphical derivations which were om-
mitted due to space limitations. These deri­
vations were about the same as those suggested 
by Mr. Barber. The device suggested by 
Mr. Barber and illustrated in his Figure B is 
a little different from those used by the authora 
and it appears to be all right. Regarding Mr. 
Barber's reference to lack of equilibrium in 
Figure 2 of the appendix, it is believed that 
careful study of definitions and assump­
tions will justify use of this figure. 

I t is recommended that the article by 
Casagrande and Carillo (reference 5 in the 
appendix) be studied before the present 
derivations are read. The vectors T M T S in 
Figure 2 are not drawn to scale which prevents 
testing graphically for equilibrium. Con­
cerning Mr. Barber's statement that the two 
principle strengths "would generally not be 
known unless both principal stresses at failure 
were also known," it was the intention of the 
authors that these strengths would be deter­
mined experimentally in a direct shear test. 




