weight; soil engineers have set the arbitrary, although convenient, definition of dry weight as that obtained at 105 C.

Drying to 105 C. removes some of the adsorbed water which is part of the effective soil grain. This effect is of more importance in soils whose grains are colloidal or expanding in behavior. Due to the removal of part of the soil particle, one tends to obtain natural water contents, Atterberg Limit values, void ratios and specific gravities that are too high.

The above error in absolute value of soil properties does not appear to be as important as the scatter one may obtain by not carefully maintaining the arbitrary standard drying procedure.

A STUDY OF BITUMINOUS-SOIL STABILIZATION BY METHODS OF PHYSICAL CHEMISTRY¹

A. C. ANDREWS, Kansas State College AND G. G. NOBLE, State Highway Commission of Kansas

SYNOPSIS

This report describes laboratory studies of several phases of bituminous-soil stabilization

The work described was carried out with two general aims in mind:

Phase 1 To develop laboratory tests that would permit evaluation of some of the physical, physical chemical and surface properties of the materials being studied

Phase 2. To make studies that would lead to the development of methods and (or) treatments which would allow bituminous stabilization of a wider range of soils than is practical at the present time

The two general phases of the work were carried out simultaneously so that information obtained as the work progressed could be utilized in later experiments

The first phase of the work was carried out by using techniques standard to physical chemistry but foreign to the field of bituminous-soil stabilization These techniques were used for the measurement of physico-chemical and surface properties of soils and asphalts The ability of soils and asphalt to imbibe and retain moisture was also examined

The second phase consisted of studying the effect of approximately 85 different substances added to soil-water-asphalt systems The effect of the additives was evaluated by obtaining the compressive strength of small briquettes before and after immersion in water.

The results are not conclusive; however valuable data were collected and are presented here to serve as a guide for future investigations

A study of the literature pertaining to soil stabilization in general reveals that the past ten years has been a period of rapid advancement in this field. This is also true in the more specialized field of bituminous stabilization.

Mills (1)² gives charts and tables showing the mileage of different types of stabilized roads constructed in the United States in the

¹ A report of a project sponsored by Skelly Oil Company, Kansas City, Mo and performed cooperatively by the Engineering Experiment Station of Kansas State College and the State Highway Commission of Kansas.

³ Italicized figures in parentheses refer to the list of references at the end of this paper. period 1925 to 1939 by State and Federal agencies. It is interesting to note the years in which the first 100 miles of road stabilized with various stabilizing agents were completed They are: 1931 for cutback asphalt, 1933 for chemical stabilization, 1935 for tar, and 1937 for portland cement and for asphalt emulsion. As a comparison, there were about 600 miles of soil-aggregate stabilization in 1929 and 4000 miles in 1936.

The bibliographies attached to articles on soil stabilization published in the last ten years are very revealing. They show that there has been a definite movement from "rule of thumb" methods to methods attempting to use all available knowledge in the fields of

496

physics, chemistry, physical chemistry and soil mechanics. There have been many notable contributions to the knowledge of basic factors and their utilization in the construction of stabilized soil roadways and airport surfaces.

The use of asphaltic materials in soil stabilization work has been prominent in both research and construction work during this period of development. This is logical because asphalt has long been used as a binder and water-proofing agent in highway construction.

Benson and Becker (2) identify two procedures for bituminous soil stabilization The first is based on the establishment of a definite soil-water-bitumen system This method utilizes an intermediate moisture content known as the "fluff point" and produces a system consisting of soil-water aggregations which are in turn coated with films of bitumen. The writers point out the following advantages of this procedure over those based on the theory of intimate mix

1. Relatively small bitumen contents required.

2 A minimum of mixer work and time required.

3. Economy because of the intermediate moisture content required.

4 The more complete utilization of soils "in situ" due to the greater range of soils which may be successfully treated

The second method discussed by Benson and Becker is that utilizing supplementary admixtures. Their findings on the use of heavy metallic salts lead to the conclusion that such salts affect soils only slightly at the concentrations used (three percent and less) and that use of such salts is economically prohibitive They continue by saying that the use of portland cement and lime in connection with bituminous stabilization has beneficial effects and is economically feasible.

Endersby (3) concludes that it is possible to improve soil stabilization with liquid oils several fold over normal previous practice by attention to the following items:

1. Proper relation between oil and water content.

2. The significance of phase mixing.

3. Proper curing.

4 Improvement of and (or) proper selection of stabilizer

5 Proper selection of stabilizer content.

Winterkorn and Eckert (4) make the statement that the success of bituminous-soil stabilization is a function of the general character of the soil and its exchange cations, and of the character of the bituminous material employed. In their very interesting article they discuss the classification of bituminous material by a series of tests as well as the evaluation of the effect of various exchange ions on a series of soils mixed with different bitumens.

Preece (5) while not primarily concerned with bituminous stabilization of soils, gives a very interesting discussion of atomic and molecular structures as applied to soils. He continues with a description of the lattice structure of the various clay minerals, ionic exchange, preferential adsorption and surface energies His discussion of these subjects as well as of electrokinetics is very interesting and pertinent to any study of soil stabilization.

While the papers mentioned, together with many more, show that much progress has been made, it is obvious that soil stabilization is far from an exact science. That much more work is needed and is being carried out is illustrated by the assignments made to committees under the Department of Soils Investigation of the Highway Research Board in 1947 (θ). A partial list follows:

1. Construction of experimental roads containing both calcium chloride treated and untreated sections.

2. Studies of the use of small amounts of portland cement to modify subgrade soils and to increase the stability of soil road materials.

3. Study of the use of bituminous materials in relatively small amounts to modify or waterproof either subgrade soils or soil roads.

4. Study of the effect of resin admixtures as reducers of frost damage in subgrade soils and soil roads.

5. The compilation, correlation and report of the effect of all chemical admixtures not covered by other committees

6. Stabilization of fine grained foundation soils by means of electrical current.

The Kansas Highway Commission has been active in research work pertaining to soil stabilization and has constructed a very considerable mileage of highway embodying the various theories of stabilization. There are large areas in the State, however, where suitable granular materials are not available for stabilization purposes. To a large extent these areas coincide with areas of comparatively light traffic and rainfall. It was with the needs of this area particularly in mind that the work herein described was started.

This research was conducted jointly by the Engineering Experiment Station of Kansas State College and the Kansas Highway Commission with the Skelly Oil Company of Kansas City, Missouri acting as sponsor. All the work except the extensive investigation of the effect of aniline hydrochloride was performed in 1944 and 1945.

The research was divided into two general phases:

1. An attempt to find methods that would permit evaluation of soil and (or) asphalts as to their suitability for bituminous stabilization.

2. Development of methods and (or) treatments that would make bituminous stabilization practical with soils now considered unsuitable for bituminous stabilization. In general, it was thought that this end could be attained by better dispersion of asphalt through the soils. With better dispersion, increased percentages of asphalt might be used with resultant improvement in waterproofness and consequent retention of stability when wet.

MATERIALS USED

The physical properties of the six Kansas soils used in this research are shown in Figure 1. They were selected to give a wide variation in physical properties and yet be more or less representative of Kansas soils. The samples were secured by Kansas Highway Commission personnel by the methods used in regular sampling operations

Soils AA 3326-1 and AA 5187-1 are heavy clays from Shawnee County. The two samples were secured at locations approximately eight miles apart. They are both found in the B horizon of the Summit Series and are residual soils resulting from the decomposition of shale.

Soils AA 3131-1C1 and AA 3131-1C2 are found in Jewell County where they occur in the Colby Series Soil 1C1 is from a loessial C horizon approximately three feet thick while sample 1C2 is from a buried B horizon from an earlier deposit. Soil 1C2 occurs directly below 1C1 in a stratum approximately three and one half feet thick.

Soil AA 3133-3C was secured in Thomas County, approximately 150 miles west of the samples described above. It is also a loessial soil occurring in the C horizon of the Colby Series.

The remaining soil used (AA 3149-51) is from Edwards County. It is typical of sandy soils occurring along the Arkansas River. This soil is from the Pratt Series and is a mixture of the loessial and alluvial soils common in this area.

Soil AA 3326-1 was used for most of the investigations of chemical admixtures Three other soils were used in the work with amiline hydrochloride.

Three MC-2 cutback asphalts, made by two refiners, were used in this investigation All were refined from Mid-continent crudes by Kansas refiners and met requirements of the Kansas Highway Specifications. Test results are shown in Table 1.

The first two cutbacks were used for all the work except the extensive work on the effect

	TAB	LIG 1		
PROPERTIES OF	MC-2	CUTBACKS	USED	IN
STABILI	ZATIO	N RESEARC	H	

Lab no Sp gr 60 F 60 F Viscosity (Saybolt furol)	47901 0 9548	AU-X 1 0313	ED-352 0 9567
140 F, sec, flash point (tag open cup) deg. F	187	140 170	178 180
Flash point (Cleveland open cup) deg F	190+		
Distillation Initial boiling point deg F Total to 437 F (percent) Total to 500 F (percent) Total to 600 F (percent) Total to 680 F (percent) Volume of residue (percent)	415 1 1 38 5 83 5 100 77 3	450 21 72 100 83 5	440 39 5 84 5 100 79
Characteristics of Residue from Distillation Penetration 77 F, 100 g, 5 sec Soluble in CCl4 (percent) Ductility at 77 F, cms Ductility at 60 F, cms Oliensus spot test	152 99 75 124 Neg	161 99 74 100+ Pos	268 99 78 130 Neg

of anilne hydrochloride when ED 352 was used On all the investigational work with the different admixes the first MC-2 (Lab. No. 47901) was used

PHASE 1—EVALUATION OF MATERIALS FOR BITUMINOUS STABILIZATION

One phase of the study was an attempt to evaluate various properties of the materials used through the methods of physical chemistry.

The approaches used in this phase were as follows:

1 A study of the capacity of asphalt to imbibe and retain moisture under various conditions

2. A study of the practicability of the use of contact angle measurements to determine the suitability of various materials and to measure the effect of pretreatment

3. Surface pressure determinations to evaluate the effect of various media on the spreading ability of asphalt.

4 Investigation of the use of the principles of electrophoresis to determine the suitability of various asphalts and soils and to measure the effect of pretreatment

Hydration and Dehydration Studies—At the start of the investigation, it seemed pertinent to study the ability of asphaltic oils to imbibe and retain moisture. Accordingly, nine series of two samples each were started. Small beakers containing MC-2 (Lab. No. 47901)

 TABLE 2

 RESULTS OF EXPOSING MC-2 (LAB NO. 47001) TO

 VARIOUS AGENTS IN SEALED SYSTEMS

Exposed to	Temp	Time	Change in Weight Per- cent Original
Aur H-O Aur H-O CaCla H-SO P-O.s Aur H-O H-O H-O	deg. C. 4 4 26 26 26 26 26 37 37 37 37 37	days 270 270 270 270 270 270 270 270 270 229 270 229	$ \begin{array}{c} -10\\ +07\\ -36\\ +10\\ -32\\ -49\\ -30\\ -58\\ -58\\ -38\\ -58\\ -58\\ -58\\ -58\\ -58\\ -58\\ -58\\ -5$

^a Both samples showed sudden, unexplainable loss of weight after about 40 days

were placed on supports in two-liter widemouthed jars equipped with plastic caps A second substance (water or a dehydrating agent) was placed on the bottom of the jar below the beaker.

The sealed jars were kept in constant temperature rooms. At intervals the beakers were removed from the jars, carefully weighed and the percentage change in weight determined.

The details of these series are shown in Table 2. The exposure to air was carried on in a manner identical to the others except that no second substance was placed in the jar.

After about forty days, the MC-2 exposed to water and to air in the 37 C. room showed a sudden unexplainable loss in weight. Eight more jars were prepared as checks. Four of these contained MC-2 and water arranged in the same manner as the original and four contained MC-2 only.

The second run exposed to water at 37 C. lost a small amount of weight during the third week of exposure but recovered and showed a gain for the rest of the period The second run of samples exposed to air at 37 C. showed a uniform loss for the entire period.

The data given in Table 2 leads to the following conclusions, most of which are in accord with common knowledge and practice. These results seem to be borne out by the work of Anderson and Wright (12), and by Beckman, Badger, Gullekson, and Stevenson (13). The latter found a small but definite diffusion constant for water through asphalt.

1. Loss of the lighter portions of cutbacks when they are exposed to air varies directly with temperature.

2. Exposure to a moist atmosphere reduces the loss or more than compensates for loss of volatiles by addition of moisture.

3. Exposure to a very dry atmosphere as in the presence of dehydrating agents increases the amount of loss from cutback asphalt.

TABLE 3	
RESULTS OF EXPOSING OVEN DRY CLAY 3326-1) TO "WET" MC-2 AND TO AIR IN SEALED SYSTEMS	(AA

Exposed to	Temp.	Time	Change in Weight Per- cent Original
"Wet" MC-2 Aır	deg C 37 37	days 259 259	+4 8

In connection with this study, oven dry clay (AA 3326-1) was exposed to "wet" MC-2 and to air at 37 C. by the same method shown above The "wet" MC-2 was prepared by placing distilled water and the cutback in the same container for 48 hr. at 37 C then draining off the water.

The results of this study are shown in Table 3. It will be noted that the clay exposed to the treated MC-2 gained slightly more weight than that exposed to air It is doubtful if there is enough difference between the gain in weight of the clay under the two sets of conditions to be significant

Contact Angle Studies—The coating of the surface of soil particles with asphaltic material is the major consideration in bituminous-soil stabilization. This is true whether an attempt is made to coat individual particles or aggregations. For a material like asphalt to spread and coat soil surfaces, the adhesion of soil for asphalt must be sufficient to overcome all other forces in the system For optimum conditions, the asphalt should be spread in a thin uniform film on all exposed surfaces For asphalt to spread, it must advance along the soil surface. The degree of spreading or wetting is indicated by a determination of the contact angle between the solid and hourd phase.

From the above, it appeared logical that the magnitude of the contact angle between a given soil surface and asphalt could be used as a measure of the suitability of the materials for bituminous stabilization. It also appeared probable that measurement of contact angles could be used to evaluate the effect of pretreatment of the soil and (or) asphalt.

The contact angle is the angle measured from the surface of the solid through the liquid to the tangent to the drop's surface at the point of contact of the two phases As

TABLE 4 CONTACT ANGLES FORMED BETWEEN DROPS OF MC-2 (LAB NO 47901) AND VARIOUS SURFACES

No of Deter- mina- tions	Contact Surface	Moist	Ave Con- tact Angle	Range of Angles
	· · · · · · · · · · · · · · · · · · ·	%	deg	deg
6 3	Soil AA 3326-1	0 5 10	102 0 82 1	74 5-132 7 69 2-106 2
6 3 42 35	" Soil AA 3326-1+	10 15	43 1 30 9	30 5- 50 4 19 3- 66 9
18	5% ethyl silicate Soil AA 3326-1+	15	271	20 6- 38 9
15	3 5% oleic acid Soil AA 3326-1+	15	29 3	20 2- 38 7
19	3 5% olec acid + 5% ethyl silicate Activated alumina	15 0	28 0 139 7	21 1- 33 8 110 3-167 3
80 12	Glass plate Polished steel	0 0	29 0 40 1	18 1- 40 8 32 0- 53 7

the wetting becomes more complete, this angle approaches zero. The more incomplete the wetting, the nearer this angle is to 180 deg.

In the contact angle studies, small drops of asphalt were placed on the end of carefully prepared soil briquettes and an actual size photograph taken The developed plate was placed in a slide projector and the necessary measurements made on the projected image.

The briquettes were formed in a 1-in diameter cylindrical mold using steel pistons with carefully polished ends. The briquettes were molded under a load of 2500 lb. held for 2 min

The drops of asphalt were placed by means of a small hypodermic syringe fitted with a 24 gauge needle from which the point had been ground. It was found that very uniform, small drops could be placed after considerable practice. In making the photographic exposures, the light source was placed behind the briquettes, so that the image on the plate was a silhouette showing the line of the surface and the shape of the drop

Using the developed plate as a slide, the image was projected on a piece of rough textured drawing paper This paper was mounted on a sketch board that could be adjusted to orient the image with the guides. The necessary lines were drawn on the paper which was then removed for measurements and calculations.

The kind of calculations necessary to obtain the numerical value of a contact angle is dependent upon whether the angle is acute or obtuse For acute angles, the calculations used were described by Mack (7). The measurements and calculations for acute angles were relatively simple.

The calculations used to determine the magnitude of an obtuse contact angle are described by Mack and Lee (8). Supplemental material from Dorsey (9) and Sugden (10) was also used These calculations, while more involved than those for acute angles, could readily be used in routine laboratory work

A summary of the data obtained in the contact angle studies is shown in Table 4. It will be noted that there is a rather wide variation in the values obtained on a given surface. This is due in part to the non-uniform character of the surfaces In the case of acute angles, more consistent results might have been obtained by measuring the radius and volume of the drop as suggested by Mack (7) rather than the radius and height.

A number of trends are evident in the data in Table 4. The decrease in contact angle with an increase in moisture content is very evident. This fact is compatible with field experience which has indicated that moist soil is easier to coat than dry soil.

The addition of Ethyl Silicate to the solwater mixture apparently decreased the contact angle between asphalt and soil slightly. This would indicate that treatment with Ethyl Silicate might decrease the work necessary to coat soil with asphalt

It should be pointed out that ease of coating is but one factor that need be considered in evaluating the effect of admixes in the soilwater-asphalt system. As will be shown later, the addition of Ethyl Silicate has more effect on the physical properties of a soil and the stability of compression specimens after immersion than is indicated by its effect on the contact angle.

Since the effect of the admixes on the contact angle was not large, it was decided to check the contact angle between the MC-2 and other substances to make doubly sure the method being used was capable of measuring widely different values. The values obtained on activated alumina, glass and polished steel indicate that a wide range of contact angles can be measured by the system employed.

It will be noted that the contact angle between MC-2 and soil did not approach zero or 180 deg closely. The positive finite values obtained show that asphalt is not completely non-wetting, but spreads on soil with difficulty.

It appears possible that contact angle determination is one of several approaches that might be used to study the suitability of materials for bituminous stabilization in a qualitative manner at least Additional investigation and work on techniques and methods probably would develop a method that would have value of a much more definite, quantitative nature.

Details of the methods and calculations used in the contact angle studies are shown in the appendix.

Surface Pressure Studies—As mentioned in the section on contact angles, spreading of asphalt is a major consideration in bituminous-soil-stabilization.

In order to study the spreading of asphalt by a method entirely different from that used in the contact angle studies, it was decided to use the surface pressure balance method. This method utilizes measurement of film pressure to determine the film forming characteristics of oils or investigate the area of monomolecular films floating upon an immiscible hquid.

The surface pressure balance used in this work was the "Hydrophyll Balance" as sold by the Central Scientific Company. It consists essentially of a long, shallow trough which holds the substrate liquid. It is equipped with an adjustable barrier across one end and a movable float near the other end. The float is attached to a torsion wire fitted with a vernier at one end.

In use, a known amount of the material being studied is placed on the surface of the substrate liquid between the barrier and the float. If the material added is polar to the substrate liquid, it will spontaneously spread over the entire surface. The final film thickness of this spread layer in perfect spreading is monomolecular. The movable barrier is advanced by increments to force the film into a smaller area. For each movement of the barrier, the movable float is returned to its original position and the force in dynes required to move it determined by the vermer.

Knowing the molecular weight of the substance being studied, it is possible to compute the area occupied by each molecule in the film. The vernier readings, when converted to dynes per centimeter of float length, are plotted against the area of each molecule in the surface under compression. The curve that is obtained starts at low pressures and large areas and remains fairly constant for these successive large areas. Then it begins to rise very rapidly as small decreases in area cause rapid changes in pressure. Suddenly the curves become nearly horizontal again, while the pressure remains constant with decreasing area The curves so obtained are in the shape of an elongated reversed S. The portion of the rapidly rising curve is extrapolated to zero pressure; and the extrapolated area so obtained is the cross sectional area of the molecules on the surface. Such values check satisfactorily with similar data from independent sources

The three different portions of the reversed S curve are accounted for in the following manner. The first flat portion obtained at low pressures and large areas corresponds to the process of pushing the film's molecules closer together from a very sparse population to a more dense one. When the curve begins to rise, the surface molecules are beginning to touch each other, and as pressure is applied these molecules pack into a closely meshed arrangement and become ever closer together. The second break in the curve is due to the inability of the molecules to further adjust themselves to packing Suddenly they begin to fly out of a monolayer and become deposited upon others, producing polymolecular layers of irregular thickness.

In these calculations, a value of 2000 was used as the molecular weight of asphalt. This value seems to be suggested as about an average according to Traxler (11).

The asphalt was applied to the substrate hquid in two ways. Usually it was applied in a benzene solution, but direct application was found to work equally well. The weighing of the asphalt and its controlled dropping on the surface was done by use of a small hypodermic syringe with a short blunt needle. The substrate liquids were prepared in large quantities and then used in the trough as needed.

The results of this investigation are shown in Table 5. The two asphalts were spread on the substrates indicated in the third column. The molecular areas determined are in the fourth column. It is seen that on water the extrapolated area for one MC-2 cutback (47901) is eight square A°, while the value for the other (Au-X) is about three and one half square A° These areas are much too small to be correlated with any dimensions

 TABLE 5

 RESULTS OF SURFACE PRESSURE BALANCE

 EXPERIMENTS ASPHALTS ON WATER AND

 WATER SOLUTIONS

Num- ber of Deter- mina- tions	Substance Spread	Substrate	Area ^a per Molecula
			8q. A°
6 3	MC-2 47901	0 13N HCl 0 13N HCl	15 16 (curves urregular)
1		0 325N HCl	10.5 (poor curve)
5		Water	8
Ř	MC-2 AU-X	Water	8.5
Ă	MC-2 47901	1% NaCl	7
ž		1% NaCl	7
ž	MC-2 AU-X	1% NaCl 1% CaCls	35
5 5 8 3 3 3	" 47901	1% AlCl.	12 (curves irregular)
8	" AU-X	1% AlCla	5

^a Values are extrapolated from force-area curves to zero pressure. 1 $A^{\circ} = 10^{-3}$ centumeter.

of molecules of the type known to be present in asphalt. The explanation of the small area obtained must lie in the fact that these asphalts do not spread on water as monomolecular layers. They probably spread, incompletely and imperfectly, many molecules deep in certain areas and leave other areas nearly bare.

The extrapolated areas on acid substrates were about twice the value on pure water. These areas of 16 square A° approach areas of the paraffin hydrocarbons However, the film is imperfect and probably to some extent polymolecular. The values seem conclusively to point to much better spreading on acid media than on neutral water.

Salts dissolved in the substrate produced very little, if any, effect. The results obtained while using aluminum chloride were erratic and discordant. The best spreading seemed to be obtained on dilute acid (0.13 N HCl) with stronger acid medi showing less effect.

At best, asphalt spreads poorly on aqueous substrates. It spreads very slowly as compared to substances like stearic acid. Usually, the spreading can be followed visually and the film is noticeably sluggish in its movement. The film on the substrate is nonuniform, being composed of areas that are dark, some that are irridescent, and others that appear to be uncoated.

Apparently all fractions of asphalt do not spread with equal ease, some showing very little tendency to spread at all.

Electrophoresis Studies—In order to obtain a better understanding of the factors involved in spreading of asphalt and in coating soil with asphalt films, it was decided to investigate the particle charge on soil and asphalt. It was felt that a study of the effect of admixtures could be carried out by the same methods.

Use of electrophoretic methods was the obvious approach to a problem of this nature. In electrophoresis, which is similar to electrolysis, colloidal particles are subjected to the field of a direct current (12). The particles then move in a direction that carries them toward the electrode of opposite sign. Knowing the sign of the electrodes, the sign of the particle charge is easily determined.

A U-tube about $\frac{1}{2}$ in. in diameter with 4-in. arms was filled with a suspension containing the material to be studied and a platinum electrode immersed in each arm. The electrodes were then connected to a carefully controlled source of direct current. A potential of from 28 to 29.5 volts was found to be most satisfactory.

At first no attempt was made to form an initial boundary. Under this method, the material collected in the arm of the U-tube containing the electrode of sign opposite to the charge on the particles As migration due to electrophoresis continued, definite boundaries became noticeable as concentration layers formed around or below the electrode.

Later, the results were obtained in less time by forming initial boundaries. To form these boundaries, the pure solvent was introduced into the bottom of the U-tube. The suspension of the material to be studied was introduced carefully into the bottom of the U-tube by means of a hypodermic syringe equipped with a seven-inch needle. The pure solvent and the liquid used to suspend the material being studied were identical. When the direct current was applied to the liquid, the boundaries between the suspension and pure solution moved toward the electrode tion. However, settlement of the soil particles was so rapid that it completely overcame the effect of the electric current. After considerable experimentation, it was found that a soil suspension of ample stability could be prepared by use of sodium hydroxide and oleic acid. The soil was agitated with N/50sodium hydroxide and allowed to settle. Then

No of Trials	Material Suspended	Solvent	Addıtıvə	Remarks	Particl
1	MC-2-47901	H ₁ O	Oleic acid—trace	Emulsion set overnight before placing in	Neg.
1	66 61	**	Oless acid emul	U-tube Emulsion set overnight before placing in	
1	MC-2 AU-X	5-6	44 41 HE	U-tube Emulsion set overnight before placing in	
8	Soil AA 3326-1	64	Na: 810:	U-tube Supernatant fluid from std soil hydro-	Neg.
2	E1 E1		-	meter sol After standing 2 hours Soil shaken with 0 4% NaOH. Washed	Neg
8	16 16	N/50 NaOH	Oleic acid 5 drops	with ethanol and water	Neg.
2	"	N/500 NaOH			Neg.
6	at 61	N/50 NaOH	Oleic acid	2 to 22 drops of oleic acid used in different	Neg
1			Oleic acid 5 drops	Soil containing 15% moisture dehy-	Neg
	64 68			drated by excess SiCl4 Identical to above except for strong agi-	Pos.
1	66 14	N/500 NaOH		tation before test Soil containing 15% moisture dehy-	Neg.
1	** **	N/50 NaOH		drated by excess SiCl4 Dry soil pretreated with 5% ethyl sili-	Neg
1	66 IB	M/50 NaOH		cate Identical to above except for strong agi-	Neg
1		** **		tation before test Wet soil pretreated with 5% ethyl sili-	Neg.
1				cate Identical to above except for strong agi-	Nez
1	66 68			tation before test Wet soil dehydrated with SiCl4 & treated	Nez
1	** **			with 5% ethyl alloate Identical to one before except for strong	Pos
-				agitation before test	FOS
2	** **	44 44		11% MC-2(47901) incorporated in soil be- fore suspending	Neg
2	Soul AA 3131-101			tore suspending ,	Neg.
1		N/500 NaOH	44 44 44 44		Neg
1	Soil AA 3131-102	N/500 NaOH			Neg
2		N/50 NaOH	44 44 44 44 44 44 44 44		Neg.
1	" AA 3132-2C " AA 3133-3C			D	Neg
2	" AA 3133-30			Results inconclusive	Pos
î	ee 14 46 66	N/500 NaOH	11 11 11 11	Results inconclusive	Pos
î	** ** ** **	4 4			Neg
i				Results indefinite	1 2
1	" AA 3149-1	N/50 NaOH	66 66 16 66		Neg
1	Oleic acid	N/50 NaOH	None	1	Neg
1	** **	Distilled H ₂ O	44		Neg.

TABLE 6 RESULTS OF ELECTROPHORESIS STUDIES

having a sign opposite to the charge on the particles in suspension. The mobility was followed by photographing the U-tube assembly at various intervals of time to record the position of the boundaries.

The most difficult obstacle to overcome in this work was the tendency of soil suspensions to settle and of emulsions made with asphalt to "break". At first, it was attempted to suspend soil in distilled water by violent agitaa small amount of oleic acid was added and the suspension agitated again. The coarse particles settled out rapidly, but the supernatant liquid retained the finer soil particles in suspension. The use of sodium hydroxide solutions of different concentrations and of different amounts of oleic acid affected the stability of the suspensions but had no apparent effect on the direction of boundary movement during electrophoresis. Fairly stable emulsions of the cut-back asphalts being used were prepared by use of oleic acid. A small amount of oleic acid was emulsified in water and then the cutback added to this emulsion. The emulsions were made by repeatedly forcing the mixture through a small laboratory homogenizer.

The results of the electrophoretic tests are shown in Table 6. It will be noted that the majority of the results show the suspended particles to be carrying a negative charge.

It is of interest to note that of the two MC-2 cutbacks used, one had a positive and the other a negative Olienses spot. The cracked and uncracked asphalts both had negative particle charges.

Soil AA 3131-3C apparently does not carry a very definite charge Of the six tests run using this soil, three clearly indicated the particles to carry a negative charge, two gave results that were doubtful but indicated a positive charge and the sixth gave indefinite results.

The only other tests that indicated the particles had a positive charge were on suspensions of soil AA 3326-1 treated with silicon tetrachloride (SiCl₄) that was shaken for 45 minutes immediately before the test. This change of charge may have been due to a combination of the treatment with silicon tetrachloride and the agitation. Identical suspensions on which the agitation was stopped two hours before testing showed negative particle charges. Suspensions of the same soil containing no silicon tetrachloride showed negative particle charges even when agitated immediately before testing.

Silicon tetrachloride and Ethyl Silicate were chosen for soil treatment because they have a very marked effect on the grain size and plasticity characteristics of soil AA 3326-1. This will be discussed in a later section. In spite of the radical effect of these two substances on the physical properties of the soil, they did not change the particle charge of the material in suspension.

The fact that the soils and asphalts tested have like (negative) particle charges explains, in part at least, the results obtained in the contact angle studies In the discussion of the results of contact angle measurements it was pointed out that asphalt spreads on soil with difficulty.

It is felt that further work on the deter-

mination of particle charges on soils and asphalts would be well worth while in more detailed studies of bituminous-soil stabilization. If methods or materials can be found that will economically change the particle charge of one material it probably would make the covering of soil particles with asphalt much easier and more permanent.

PHASE 2—INVESTIGATION OF ADMIXTURES AND TREATMENTS

The second phase of this project was concerned with the development of methods or treatments that would make bituminous stabilization more practical and extend the range of soils that can be treated successfully with bituminous materials.

The major portion of the work in this second phase consisted of the study of the effect of various additives on soil-water-asphalt systems. However, some work was done to determine the effect of various substances on the physical properties of the soil AA 3326-1 which was a heavy clay with a plastic index of 38. Some work was also performed to study the effect of silicon tetrachloride on asphalt.

Effect of Silicon Tetrachloride on Asphalt— Asphalt, when mixed with silicon tetrachloride, reacted to form a rubbery mass having quite spongy properties. If this asphalt was refluxed with silicon tetrachloride, either hot or cold, it passed through this rubbery stage and became hard and brittle. The peculiar products thus formed when used as admixture agents showed no value. These products were soluble in carbon bisulfide but not appreciably soluble in Skellysolve.

Effect of Chemical Treatment of Soil AA 3326-1 on Soil Texture and Plasticity—The results of chemical treatment on the physical propertues of soil AA 3326-1 are shown on Figure 2 This soil was chosen for this phase of the investigation because its high plastic index and clay content made it the most undesirable of the ones being used for highway purposes.

Curve No. 1 on Figure 2 shows the untreated soil It is identical to curve No 2 on Figure 1 and is repeated so the effect of chemical treatment may be more plainly seen.

Curve and line No 2 in the tabulation, Figure 2, show the effect of adding 15 percent of water to the dry soil and then treating the moist soil with an amount of silicon tetrachloride (SiCl₄) equal to 72 percent of the dry soil by weight. This amount of silicon tetrachloride is slightly in excess of that required to react with the water present. The silicon tetrachloride reacts with the water to form silicon dioxide and hydrochloric acid

then adding five percent of Ethyl Silicate is shown by curve and line No. 4.

The material treated with subcon tetrachloride flocculated so that it was impossible to run a hydrometer analysis. Consequently, the portion of curves Nos. 2 and 4 shown is for sieve analysis only. A comparison of the curves and physical properties shown for Nos.

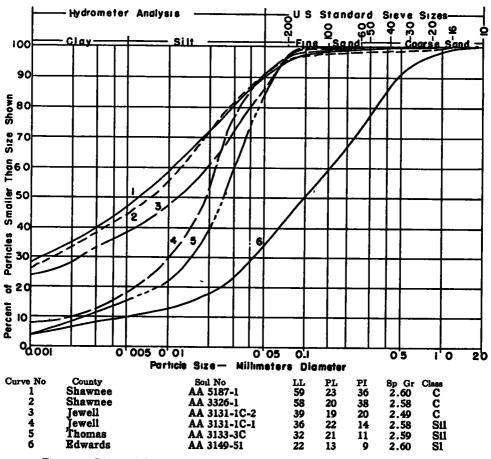
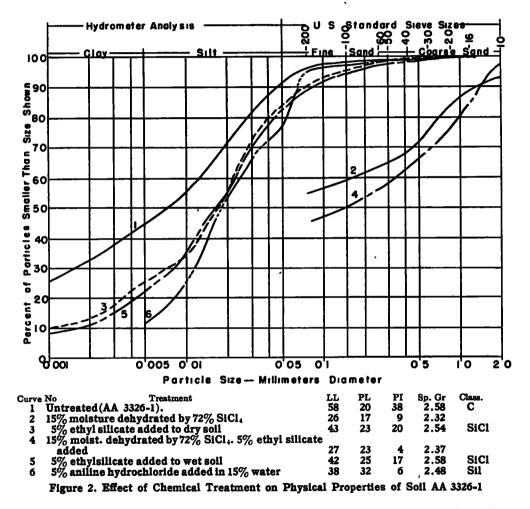


Figure 1. Physical Properties of Kansas Soils Used in Stabilization Research

The reaction is violent and produces enough heat to vaporize and drive off hydrochloric acid formed. The silicon dioxide formed is deposited on the soil particles, cementing them together and giving the mass a sandy texture. When sufficient silicon tetrachloride is used to react with all moisture present, the treated soil is completely dry.


The effect of treating the soil as above and

1, 2 and 4 gives a clear picture of the effect of treatment with silicon tetrachloride with or without the addition of Ethyl Silicate.

Curves and lines numbered 3 and 5 show the effect of adding Ethyl Silicate to the soil. In case No. 3, the Ethyl Silicate was added to the dry soil while in No. 5 it was added to soil containing 15 percent moisture. While the textural properties were not so radically changed as with silicon tetrachloride, the plasticity characteristics were greatly altered. The amount of moisture in the soil at the time the Ethyl Silicate is added does not appear to be an important factor in the treatment.

In order to assure complete dispersion of the Ethyl Silicate, it was mixed with twice dry soil by weight was dissolved in three times its weight of water and the combination added to the dry soil. The effect of aniline hydrochloride on the plasticity and textural grading of the soil is considerably more marked than that of Ethyl Silicate.

While aniline hydrochloride reduced the

its weight of Skellysolve B and the mixture added to the soil. After mixing, the Skellysolve was allowed to evaporate. Skellysolve B is a light petroleum solvent manufactured for use as an extraction solvent.

The effect of adding aniline hydrochloride to the soil is shown by curve and line No. 6. Aniline hydrochloride equal to 5 percent of the plastic index of the soil more than silicon tetrachloride and almost as much as silicon tetrachloride and Ethyl Silicate combined, its effect on the grain size was not as great. The soil treated with silicon tetrachloride was granular and harsh appearing while that treated with aniline hydrochloride was smooth and fine grained in appearance. The effect of these chemicals on soil-waterasphalt systems as determined by compression tests will be discussed in the next section.

Compression Tests to Evaluate the Effect of Chemical Admixtures—The evaluation of the effect of approximately 85 admixtures on soilwater-asphalt systems was the largest single undertaking of the project. In this work, approximately 400 lots of 1-in. diameter by 1in long briquettes were made and broken. A lot consisted of either four or six identical briquettes molded from material mixed at one time.

The choice of a method to evaluate the effect of chemical admixtures on soil-waterasphalt systems was made after considerable study. The use of a simple compression test on small briquettes was chosen as being the most expedient.

The materials for each lot of briquettes were mixed by hand using a mortar and pestle. Enough soil was used to make the desired number (four or six) of briquettes containing 25 g. of dry soil each. Some variation was used in the order of addition of ingredients, but with a majority of the additives the substance being studied was added to and thoroughly mixed with the dry soil. The desired amount of water was then incorporated. Finally the MC-2 was added and mixing continued until a mixture of uniform consistency was obtained

The mixture was then divided into portions of a suitable size (containing approximately 25 g. of dry soil) and molded. Molding was performed in a 1-in. diameter cylindrical mold fitted with double pistons so that load was applied to both ends of the specimen. A total load of 2500 lb (3183 psi.) held for 2 min. was used for molding.

After removal from the mold, each briquette was weighed and measured so that the density could be determined. Measurements were made by means of an Ames dial equipped with a bearing plate and mounted in a jig that allowed direct measurement of diameter and length. The density in pounds per cubic foot of the dry soil and admix in each briquette was determined. It was felt that the density of the dry soil plus admix would be better for comparative purposes than the usual density of the dry soil only.

After the measurements were taken, the

briquettes were placed in a stoppered Erlenmeyer flask and allowed to cure 24 hr. at room temperature. After curing, they were removed and half of the lot broken in compression. The other half of the lot was immersed in distilled water for 24 hr., then broken in compression. The compression strength of each briquette was computed.

The breaking load of the briquettes was determined by means of a converted small double beam platform scale. The load was applied by means of a mechanical screw mounted in a yoke above the platform. During the load application the beam was kept balanced by discharging shot into a container suspended on the end of the beam. After failure of the briquette, the shot in the container was weighed to determine total load.

In addition to the compressive strength of the briquettes, an index called the saturation factor was determined. The saturation factor is the ratio of the average strength of the immersed briquettes to the average strength of the unimmersed briquettes in one lot. The saturation factor shows the effect of saturation on briquettes made from a given mixture, but does not evaluate the strength of either the immersed or unimmersed briquettes. Taken alone, the saturation factor is not a satusfactory index to the desirability of a given admixture. It is of value, however when used in connection with the compressive strength of the briquettes

Most of the briquettes were made from soil AA 3326-1 which is the heavy clay used in the investigation of chemical treatments described in the preceding section. However, five other soils were used in exploratory work and for detailed study of the effect of a few substances.

The percentage of water and MC-2 used with each soil was held constant in most of the investigations of the effect of various admixtures. The amount of moisture was chosen from the results of tests to determine the fluff point as described by Benson and Becker (\mathscr{B}). The amount of MC-2 to be used was chosen from the results of compaction tests using different percentages of the asphalt. The amount of MC-2 and moisture was varied in some instances, but the majority of the briquettes made used the quantities shown in the following tabulation.

Soil	Water Percent	MC-2 Percent
AA 3149-51	10	7 & 11
AA 3133-3C	9	9
AA 3131-1C1	8	11
AA 3131-1C2	12	11
AA 5187-1	20	11
AA 3326-1	15	11

Note: The percentages shown are based on dry weight of soil

Four of the chemical admixtures studied were used with more than one soil. For convenience, the effect of these substances will remarkable. The briquettes made using Ethyl Silicate had a brown color and a smooth, glazed surface.

The effect of 5 percent of Ethyl Silicate on the compressive strength of the three soils is shown in Table 7. The strength of the same soil-water-asphalt mixture without Ethyl Silicate is shown for comparative purposes.

It will be noted that Ethyl Silicate is much more effective against the weakening effect of water when it is added to the dry soil than when it is added to the wet soil.

TABLE 7 SUMMARY OF COMPRESSIVE STRENGTHS OF BRIQUETTES TO SHOW EFFECT OF ADMIXTURES OF DIFFERENT SOILS

Soil		ню	Admixture Used			MC-2		ressive ngth	Satura-
Lab No	Class		Kind	A- mount	How Added		Unim- mersed	Im- mersed	Factor
AA 3149-51	Sandy loam	% 10 10 10	Ethyl sulicate	% 5 5	To dry soil To wet soil	% 11 11 11	251 251 120 174	ря 22 100 43	0 71 0 83 0 25
AA 8131-1C1 " "	Silty loam """" """	8 9 8 8	Ethyl silicate Hydrated lime Aluminum sulfate	5 5 1 0 5	To dry soil To wet soil In water In water	11 11 11 11 11	132 174 40 123 137	16 146 28 15 19	0 12 0 84 0 70 0 12 0 14
AA 3326-1	Clay " " "	15 15 15 15 15 15	Ethyl silicate Anilne hydrochloride Hydrated lime Aluminum sulfate	5 5 5 1 0'5	To dry soil To wet soil To dry soil In water In water	11 11 11 11 11 11	43 83 13 64 50 38	17 60 11 53 12 14	0 46 0 72 0 85 0 83 0 24 0 37
AA 3133-3C	Silty loam	9 9	Aniline hydrochloride	5	To dry soil	9 9	182 66	41 52	023 079
AA 3131-1C2	Clay	12 12	Anılıne hydrochloride	5	To dry soil	11 11	90 44	12 42	0 13 0 96
AA 5187-1	Clay	20 20	Anılıne hydrochloride	5	To dry soil	11 11	87 34	8 24	022 070

be discussed first. A tabulation of all the briquettes made is shown in the appendix and may be consulted for more detailed information.

Ethyl Silicate—Ethyl Silicate, which is a tetraethyl-ortho-silicate, was chosen because of its molecular structure. It was felt that it would anchor to the siliceous soil particles and also have large groups soluble enough to dissolve in the asphalt and act as a tie-in between soil and asphalt.

Ethyl Silicate was used with a sandy loam (AA 3149-51), a silty loam (AA 3131-1C1) and a clay (AA 3326-1) Its effect on the molding characteristics of the mixtures was

To check the effect of the amount of moisture in the soil before the addition of the Ethyl Sihcate, a series of briquettes were made with soil AA 3326-1, five percent of Ethyl Sihcate and eleven percent of MC-2 In the series, part of the moisture was added before the Ethyl Sihcate. After the Ethyl Silicate was incorporated, enough water was added to bring the total moisture content to 15 percent. The initial moisture was varied from 2 to 14 percent in 2 percent increments. The compressive strength of the immersed briquettes varied inversely with the amount of initial moisture. When 2 percent of initial moisture was used, the immersed briquettes had an average compressive strength of 70 psi. When 14 percent of initial moisture was used, the comparative strength was 30 psi.

Aniline Hydrochloride—A rather extensive investigation of the effect of aniline hydrochloride was undertaken because it was found in some exploratory work that its use increased the ability of briquettes made of soil AA 3326-1 to withstand the effect of water. It was used with silty loam (AA 3133-3C) and three clays (AA 3131-1C2, AA 3326-1 and AA 5187-1).

 TABLE 8

 TABULATION OF ADMIXTURES WHICH GAVE

 IMMERSED
 COMPRESSIVE

 MORE
 THAN 35 PSI TO BRIQUETTES MADE OF

 SOIL AA 3326-1

(15 percent	water and	11 nercent	MC.2 used in	all specimens)
(10 Dercente	WAKET AUG	TI Dercen		

Admixture, Kind	Amount	Umm-	Im-		lon
		mersed	mersed	Fa	ctor
1	%	ps1	psi		
-		43	17	0	40
Chlorinated starch Ethylene diamine	5	54	56	1	04
	Exces		54	0	25
	B5 4 (110	41	0	37
Ethyl silicate p-Phenylene-diamine-hy-	50 17	124	41	0	33
drochloride	4	83	62	0	75
p-Aminobenzoic acid	5	59 74	37	0	63
p-Aminophenol	5	74	39	0	53
o-Aminophenol	-	63	40	0	63
p-Dimethylaminobenzal-					
	5	62	37		60
Sulfamic acid	5 5 5 5 5 5 5	70	44		63
o-Phenylenediamine	5	72	44		61
p-Phenylenediamine	5	43 72	41		95
p-Nitroaniline	5	72	40	0	56
Phenylhydrazine hydro-					
	5	50	37	0	74
p-Dimethylaminophenol					
Oxalate	5	78	61		78
Une acid	5 5 5	89	48		54
Isatın	5	73	37	0	51

The effect of 5 percent of anilne hydrochloride on the compressive strength of the four soils is shown in Table 7. It will be noted that the strength of the immersed briquettes was increased by the use of anilne hydrochloride in each case.

Five percent of anilne hydrochloride gave values of the saturation factor at or near the maximum obtained with each soil. In some cases, however, smaller amounts of aniline hydrochloride gave higher strength on the immersed briquettes.

In the case of soil AA 5187-1, immersed strengths of briquettes containing 6 percent aniline hydrochloride and no asphalt were higher than corresponding strengths on briquettes containing 6 percent aniline hydrochloride and 11 percent asphalt. All other percentages of aniline hydrochloride with this soil gave better immersed strengths when asphalt was used.

Hydrated Lime—The effect of hydrated lime on soil-water-asphalt systems was investigated to a limited extent using a silty loam (AA 3131-1C1) and a clay (AA 3326-1). The results of this investigation are also shown in Table 7. While the use of 1 percent of hydrated lime had no apparent effect on the mixture, work by other investigators indicates that the use of 3 to 5 percent might have been effective.

Aluminum Sulfate—A small amount (0.5 percent) of aluminum sulfate was used in briquettes made of the same soils used in the work on hydrated lime As seen in the results shown in Table 7, the use of small quantities of this material had no apparent effect on the strength of briquettes either before or after soaking.

All the chemical admixtures not shown in Table 7 were used with soil AA 3326-1 only.

It was shown in Table 7 that the use of soil AA 3326-1 mixed with 15 percent water and 11 percent MC-2 resulted in briquettes having an average immersed compressive strength of 17 psi. A majority of the admixtures used with soil AA 3326-1 gave immersed strengths at least as good as the untreated soil-water-asphalt briquettes.

An immersed compressive strength of more than 35 ps. was chosen as a criterion for separating the more effective chemical admixtures. This figure would indicate that the admix used had more than doubled the strength of the saturated briquettes.

Table 8 is a tabulation showing all admixtures which gave immersed strengths meeting the above criterion. All lots of briquettes shown in Table 8 were made with soil AA 3326-1 using 15 percent water and 11 percent MC-2.

Table 8 reveals that a majority of the substances which at least doubled the strength of immersed briquettes when added to soilwater-asphalt mixtures were amines. This general class of substances is derived from ammonia by replacement of hydrogen by one or more hydrocarbon radicals The good results obtained with the amines in the preliminary work discussed in this paper indicate that they are well worthy of more extensive and detailed study.

It will be noted in the tables in the appendix that briquettes containing only soil and water were made from each soil. These briquettes had high compressive strengths when unimmersed but were totally without strength after saturation.

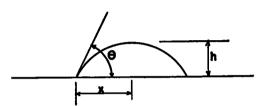
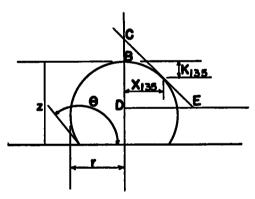
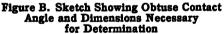




Figure A. Sketch Showing Acute Contact Angle and Dimensions Necessary for Determination

SUMMARY AND CONCLUSIONS

The results obtained from the work described in this paper may be summarized as follows:

Phase 1-Methods of Study

Four methods were used to investigate improvements made in the wetting ability of asphaltic products and to study the behavior of these materials under various conditions.

1. Investigation of the contact angles between soil surfaces and drops of asphalt indicated that asphalt is not completely nonwetting in regard to soil but that it spreads on soil with difficulty. Measurement of contact angles is believed to be of value in bituminous-soil stabilization at least in a qualitative sense.

2. Surface pressure studies, while not leading to consistent measurements of molecular crosssectional areas, indicated that asphalt spreads more readily on acid media.

Figure C. Drops of MC-2 on Soil AA 3326-1 Containing 15 Percent Moisture

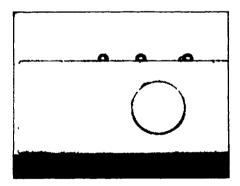


Figure D. Drops of Water on a Paraffined Glass Surface

3 Electrophoretic measurements showed that the soils and asphalts studied have the same electric particle charge This would indicate a possible repulsion between the two materials. While attempts to change the sign of the particle charge were not successful, it is felt that further work toward this end is very desirable

4. Hydration and dehydration studies showed that the loss of volatiles from cutback asphaltic materials is strongly influenced by variations of temperature and humidity.

Phase 2-Soil Treatments

It is believed that the future of bituminoussoil stabilization depends upon the development of economical admixtures for soil-water-

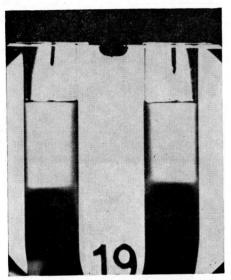


Figure E. View of U Tube Showing Boundaries Between Soil Suspension and Buffer Solution Before Start of Electrophoresis

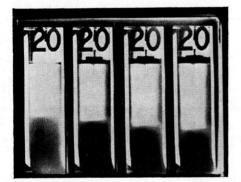


Figure F. Sequence of Views of Negative Leg of U Tube Showing Boundary Moving Away from Electrode

asphalt systems, and it is felt that the work performed here shows the most likely field and some of the additives which apparently are ineffective.

1. The amines seem to be rather effective, as a group, in increasing the water resisting properties of soil-water-asphalt systems. One of these, aniline hydrochloride, altered the physical properties of a heavy clay very radically. Ethyl Silicate also changed the physical

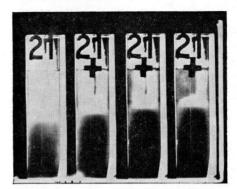


Figure G. Sequence of Views of Positive Leg of U Tube Showing Boundary Moving Toward Electrode

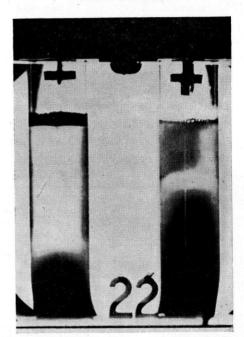


Figure H. U Tube Forty-eight Minutes After Start of Current, Showing Movement Toward Positive Electrode

properties of the soil. However in the stability tests, it was found that Ethyl Silicate was not so successful when added to wet soil. Silicon tetrachloride was very effective in altering the physical properties of a heavy

	Admixture		H.O	NC-2	Density	Comp Stre	Satura- tion	
Kind	%	How Added				Unım- mersed	Im- mersed	Factor
			%	%	pcf.	pa.	par	
			10 10 0 2			161	0	0
			10	11 11 11	115	30 6 49.0	220 90	072
			2	ii	117	58 9	13 5 23 2	0 23
			4	11	112	45 6	22 2	0 49
			0	1 7	109 118	51 2 63 5	74	0 14 0 86
	1		4	7	110	106	38 4	0 36
			6	7	110	115	587	0 51
			8	7	117	Not L	roken	
Ethyl allcate	50	To dry soil	8 10 10 10	1	114	120 NOT E	roken 100	0.04
44 64 64	50 50	To wet soil	10			174	42.9	084

TABLE B

Admi	H:O	NC-2	Density	Comp Stre	Satura- tion				
Kınd	%	How Added				Unım- mersed	Im- mersed	Factor	
Aniline hydrochloride	$ \begin{array}{r} 1 5 \\ 2 5 \\ 4 0 \\ 5 0 \\ 10 0 \\ 1 5 \\ 2 5 \\ 4 0 \\ 5 0 \\ 6 0 \\ 10 0 \\ \end{array} $	To dry soil " " " " " " " " " " " " " " To dry soil " " " " " " " " " " " " " " " " " "	% 999999999999999	% 9 9 9 9 9 9 9 9 9 9 9 9 9 9	pcf 119 121 121 121 121 121 121 121	245 528 487 572 429 347 263 112 182 88 4 124 76 5 66 0 80 8 36 0	psi 0 0 0 0 0 0 0 40 5 28 5 50 8 43 2 35 5 0 0	0 0 0 0 0 0 22 0 32 0 41 0 56 0 79 0 58 0	

TABLE C

Admıxturə		H ₁ O	MC-2	Den-	Compressive Strength		Satura-	Remarks			
Kind	%	How Added			sity	Unim- mersed	Im- mersed	Factor			
Alummum sulfate	05	In water	% 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	% 11 11 11 11	þ cj	ps: 421+ 429+ 132 115 139 124 117	<i>pss.</i> 0 0 12 4 14.4 18.9 15 3 18.0	0 0 0 0 09 0 13 0 14 0 12 0 15	HsO added 24 hrs before MC-2 HsO added 24 hrs before MC-2		
Aluminum sulfate Hydrated lime Ethyl silicate	0.5 0.5 1 0 1.0 5 0 5 0	In water """ "" To dry soil To wet soil	0 2 4 6 8 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	11 11 11 11 11 11 11 11 11 11 11 11	102 104 105 106 104 104	181 196 180 202 160 169 141 133 129 116 174 40	0 0 11 0 16 9 28 3 18.5 20.1 14 5 14.5 14.5 14.5 28 4	0 0 0 05 0 11 0.17 0.18 0.15 0 11 0 13 0 84 0 71	, HrO added 24 hrs before MC-2 HrO added 24 hrs before MC-3		

.

clay but was not as effective as the amines in increasing the water resisting properties of the soil-water-asphalt briquettes.

ACKNOWLEDGEMENTS

The authors wish to acknowledge with sincere thanks the high purpose with which personal appreciation to Dean R A. Seaton, Dr H H King (deceased) and Miss Sarah Seaton of the College and to W J Arndt and C R Fricke of the Kansas Highway Commission who helped in large measure in making this diversified study possible

Acknowledgement and thanks are given to the Carbide and Carbon Chemicals Corpora-

Ad	H ₂ O	MC-2	Density	Comp Stre	Saturation				
Kınd	%	How Added			2011010	Unım- mersed	Im- mersed	Factor	
Aniline hydrochloride """" """" Aniline hydrochloride """" """ """" ""	$ \begin{array}{c} 1 5 \\ 2 5 \\ 4 0 \\ 5 0 \\ 6 0 \\ 10 0 \\ 1 5 \\ 2 5 \\ 4 0 \\ 0 0 \\ 6 0 \\ 10 0 \end{array} $	To dry soil () () () () () () () () () () () () () (% 12	% 11 11 11 11 11 11	pcf 123 121 120 123 120 123 100 100 100 99 100 99	psi 723 728 515 268 419 454 192 90 3 86 9 76 2 74 8 43 7 60 0 66 9	2981 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

TABLE D

Admu	Admixture		H ₁ O	MC-2	MC-2 Den-	Compressive Strength		Satura-	Remarks
Kınd	%	How Added			sity	Unim- mersed	Im- mersed	Factor	
Anline hydrochloride	$ \begin{array}{r} 1 5 \\ 2 5 \\ 4 0 \\ 5 0 \\ 6 0 \\ 10 0 \\ 10 0 \\ \end{array} $	To dry soil """" """ "" " " " "	% 20 20 20 20 20 20 20 20	%	pcf 109 105 117 104 109 102 87	ps 285 406 263 307 232 244 127 16 0	7281 0 8 0 17 7 17 5 39 1 19 0 4 5	0 0 03 0 06 0 08 0 16 0 15 0 28	Asphalt added to soil before water
Anline hydrochloride """ " " " " " " " "	$ \begin{array}{r} 1 5 \\ 2 5 \\ 2 5 \\ 4 0 \\ 5 0 \\ 6 0 \\ 10 0 \\ 10 0 \\ \end{array} $	To dry soil 	20 20 20 20 20 20 20 20 20	11 11 11 11 11 11 11 11	91 92 89 89 92 86 92 86	36 9 48 2 72 8 58 0 55 3 33 9 48 1 38 8	8 1 15 2 24 2 28 2 28 8 24 1 32 2 27 7	0 22 0 32 0 38 0 49 0 52 0 71 0 67 0 71	Water Oven dry aniline hydro- chloride used

the sponsor of this work, the Skelly Oil Company of Kansas City, Missouri, undertook to finance this project Their interest was wholly for the advancement of engineering procedures without selfish motives Personal thanks are given to Mr. Rollin J. Smith, representative of the sponsor company, who took a vital, personal interest in the entire project. Much credit is also given to the Kansas State Engineering Experiment Station, the Kansas State College Department of Chemistry and the Kansas State Highway Commission with tion who donated the silicon tetraethyl used in this work.

APPENDIX

Contact Angle Determination

The determination of acute contact angles was based on a figure similar to Figure A The base line on which the circular arc rests represents the top of the briquette and the circular line represents the silhouette of the asphalt drop The dimensions x and h are determined

TABLE	F
-------	---

.

Admixture			ню	MC-2	Den -		oressive ongth	Satura- tion	Remarks
Kind	%	How Added			sity	Unim- mersed	Im- mersed	Factor	remarks
Kojie acid Aluminum sulfate	02	In water	% 20 15 15 0 15 20 15	%	<i>pcf</i> 121	7983 168 405+ 404+ 185 527 167 418+	ps: 6 8 0 0 0 12 4 0	0 04 0 0 0 0 0 0 0 0 7 0	
thyl sulcate niline hydrochloride """" """" """"	5 0 5 0 1 5 2 5 4 0 5 0 6 0 10 0	To dry soil """"""""""""""""""""""""""""""""""""	0 15 15 15 15 15 15 15 0 0	7 53 7 53	118 118 117 117 106 111	198 209 526 373 366 303 232 225 398 358	0 39 4 0 26 2 0 18 8 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
			0 0 3 6 9 10 10 12 15	11 15 05 15 05 11 11 11 7 53 15 05 11 11	107 105 103 101	193 186 99 5 75 7 162 95 5 83 2 169 19 5 37 4 53 4	0 0 0 0 2 2 5 4 5 4 5 14 5	0 0 0 0 0 0 0 0 0 17 0 23 0 17 0 27	
			15 15 15	11 11 11		379 360 287	83 59 54	0 22 0 16 0 19	Water added 24 hrs. befor MC-2 Water added 24 hrs befor
			15 15 15	11 11 11		29 7 38 7 35 8	14 3 16 3 9 0	0 49 0 42 0 25	MC-2 Cured 48 hrs at 37 C befor
			15	11		41 8	98	0 23	molding Cured 48 hrs at 37 C afte
			15 15 15	11 11 11		49 7 43 7 36 9	21 6 11 2 9 8	0 43 0 26 0.27	molding Cured 48 hrs at 53 C befor molding Cured 48 hrs at 53 C afte
Cojic acid 11	022022022	In water 41 61 41 616	15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	11 11 11 11 11 11 11 11 11 11	97 95 96 97 98 97 98 96 96 96 96 96 96 96 96 95 97 95 97 95 97 98 98	$\begin{array}{c} 26 & 9 \\ 26 & 1 \\ 35 & 3 \\ 50 & 3 \\ 48 & 3 \\ 46 & 0 \\ 49 & 3 \\ 46 & 0 \\ 49 & 3 \\ 46 & 0 \\ 87 & 1 \\ 48 & 3 \\ 40 & 5 \\ 87 & 1 \\ 42 & 8 \\ 40 & 5 \\ 87 & 1 \\ 42 & 8 \\ 44 & 1 \\ 48 & 1 \\ 42 & 8 \\ 44 & 1 \\ 48 & 1 \\ 42 & 8 \\ 44 & 1 \\ 48 & 1 \\ 42 & 8 \\ 49 & 6 \\ 70 & 9 \\ 70 & $	$\begin{array}{c} 6 \\ 7 \\ 6 \\ 7 \\ 11 \\ 0 \\ 23 \\ 8 \\ 26 \\ 0 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 $	$\begin{array}{c} 0.27\\ 0.26\\ 0.19\\ 0.22\\ 0.47\\ 0.66\\ 0.57\\ 0.48\\ 0.57\\ 0.48\\ 0.57\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.39\\ 0.50\\ 0.31\\ 0.25\\ 0.35\\ 0.27\\ 0.34\\ 0.25\\ 0.35\\$	molding MC-2 ED-352 Oven dried before MC-
" " " " " " uminum sulfate	02 02 05 05	64 64 64 64 64 66 64 66 64 66	10 20 10 15 15	7 53 15 05 15 05 11 11		363 70 2 76 8 45 3 31 0	0 0 18 3 10 1	0 0 0 40 0 33	added """ """ Water added 24 hrs befor MC-2

•

١

Admixture		H ₂ O		MC-2	Den-	Compi Stree		Satura- taon	Remarks
Kind	%	How Added	AN.	mc-s	sıty	Unim- mersed	Im- mersed	Factor	
				%	pcf	ps 1			
Iydrated lime	10 10	In water	15 15	11 11		52 0 48 9	10 6 13 0	020 027	Water added 24 hours be fore MC-2
Cthyl silicate	50	In MC-2	0	11		123	.0.	0	
4 4 4 4	50 50	66 66 66 64	15 15	11 11		11 0 25 3	12 5 17 9	1 14 0 71	Cured 48 hrs at 37 C be fore molding
	50	48 88 61 88	15	11		13 7 14 6	128 113	093 077	a a
68 66 66 66	50		15 15	11 11		24 7	22 1	0 89	Cured 48 hrs at 53 C be fore molding
"	50		15	11		26 2	24 0	0 92	
66 LG 68 LG	50	To dry soil		11	109	112 123	65	0 05	
46 46	50	11 11 11 11 11 11	0	11	1	188	l o	0	
66 65 66 66	50		8	11 11	109	136 121	0 243	0 20	
4 4	50		ĬŬ	lii	106	120	538	0 45	
"	50		12	11	102	103	83 6 95.9	0 81 0 87	
a a a a	5.0		15 15	11	98	110	62 1	0 56	
"	50		15	11		130	58 9	0 45	
4 4	5.0		15	11	96	87 7 57 0	78 5 58 0	0 90	
u u u u	50		15 15	11	94 96	106	79.4	0 75	
a u	5.0		15	11	94	80 7	86.9	1 08	l
ee 44 44 44	50		15	11		111	54 5 52 4	0 49	
"	50		15 15	11		62 2 45 7	87 5 28 3	0 82	
11 II	50		15	11		46 2 43 8	28 3	0 61	
66 64 66 64	50		15 15	11	95	438	80 9 84 0	0.71	
u u	2020	ee es es	15	11	96	70 1 85 2	84 0 80 0	0 85	
66 66 66 66	80		15	11	95 96	83 1 95 5	46 8	0.56	
	40		15 15	ii	94	86 0	46 8 64 8 74 6	0 87	
u 4	6.0		15	11	94	91.7	790	0 86	
16 68 16 68	80		15	11	94 93	81 3 52 3	78 0 57 1	0 96	
4 4	80		15	11	98	678	78 5	1.16	
66 66 66 66	10 0	4 16 16 4 16 16	15	11	94	61.7 33.3	785 473	1.27	
	12 0 14 0		15	lii	90	21.6 22 8	254	1 18	
"	16 0		15	111	91	22 8	27 5	1 21	
66 66 66 66	5.0 5 0	To wet soil	8	11	110 108	80 9 59 9	11 4 21 5	0 14 0 36	
	50		9	11	105	20 9	18.7	0 89	
u u u u	50		12	11	101	16 1 11.3	15 1	0 94	1
u u u u	5.0		15	lii	99	13 4	80	0.60	
cs (s	5 0		15	11		10 5	78	0 74	Cured 18 hrs, before MC
48 88 66 68	5.0		15	11 11	86	14 4	23 3	0 85	Cured 48 hrs. before MC added
66 66 66 66	50 50	To soil at 2% moist	15 15	ii	94	55 8	69 5	1 25	
ea ea	50	To soil at 4%	15	11	94	38 7	48.0	1 24	1
u u u u	50	To soil at 6% moist To soil at 8%	15	11	95 94	26 0 22 8	37 8 33 4	1 45	
	50	moist		l ii	92	12 8	29.5	2 40	Results doubtful
	50	To soil at 12%	15	11	94	21 7	81.7	1 46	
"	50	To soil at 14%	15	11	94	18 1	26 1	1 44	
u u	2.0	moist To wet soil	15	11	95	32 5	16 4	0 50	
** **	40	To wet soil	15	11	95	198	12 2	0 62	
	60	u a a	15	11	94	14 7	11 2 8 2	0 76	
""" Aniline hydrochlor	ide 50		15	11	94	90	0	0	
66 66	15		15	11	98	76.5	83 8	0 44	MC-2 ED 852
66 r 68 66 68	2.5		15	11	97	86 8	52 9	0 61	MC-2 ED 352 MC-2 ED 352
"	4.0	1	15	lii	98 98	79.5	56 7	0 71	MC-2 ED 352

TABLE F-Continued

SOILS

TABLE	F-Ca	minued
-------	------	--------

			TAI	BLE F-	-Contu	rued			
Adm	ixture	<u> </u>	H ₂ O	MC-2	Den-	Stre	oressive	Satura- tion Factor	Remarks
Kınd	%	How Added				Unim- mersed	Im- mersed	Factor	
Aniune Hydrochloride """" "Lignin " Urea	50 50 60 100 150 25 50 100 25 50	To dry soil In water To dry soil " " " " " " " " " " " In water " "	% 15 15 15 15 15 15 15 15 15 15 15 15	% 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	pcf 95 94 94 90 97 95 97 96 97	ps1. 49 2 85 0 54 3 54 2 37 6 67 0 92 5 166 39 3 27 9	ps: 48 9 70 7 46 7 42 5 23 9 10 4 10 8 7 8 11 2 6 4	0 99 0 83 0 86 0 78 0 64 0 16 0 12 0 05 0 28 0 23	MC-2 ED 352 MC-2 ED 352
" Chlorinated starch	10 0 2 0 5 0	"" To dry soil	15 15	11 11	96 97	21 5 35 7	57 142	027 040	
""" Ethylene diamine See remarks	50 50 50	u u u In water	15 } 15 10	11 11 12	101 98	66 7 54 0 45 3	18 4 56 3 16 5	028 104 036	MC-2 refluxed with ethyl sulcate & surplus evap-
Thymol By product of T-SD-5 Chlornated lime """ MC-2 refluxed with SiCla	20 40 50 10 30 50 69	To dry soil """"""""""""""""""""""""""""""""""""	15 15 15 15 15 15 15 15	11 11 11 11 11 11 12	99 97 96 95 96 98	51 7 49 8 41 2 46 4 73 6 60 8 66 5	13 8 9 5 7 5 9 9 25.3 18 8 11 5	0 27 0 19 0 18 0 21 0 34 0 31 0 17	orated
See remarks			15	11		139	58 0	042	MC-2 refluxed with SiCle & surplus evaporated
Silicon tetrachloride	Exc.	66 66 66	15	11		220	53 6	024	SiCla & MC-2 combined before adding to soil
65 65	u	To dry soil	0	11		294	0	0	SiCl4 & MC-2 combined before adding to soil Surplus SiCl4 evapo- rated
er 64 65 66	35 4 73	To wet soil To soil at 15% moist	15 2.5	11 11		110 104	40 9 37 4	037 036	Orig moist hydrolyzed by SiCl4
"""" """ """ Ethyl sılıcate	708 73 708 708 50 17	Mixed-to soil at 15%	5 7.5 10 15 •	11 11 11 11 11		58 0 59 0 36 0 42 0 124	42 5 30 5 22 6 22 2 40 7	0 78 0 52 0 63 0 53 0 33	Amount of moisture after treatment not known*
Silicon tetrachloride	Exc	To soil at 15% moist	0	11		111	502	0 45	Orig moist hydrolyzed by SiCl ₄
Ethyl silicate Silicon tetrachloride Ethyl silicate	Exc 17	After SiCl ₄ To soil at 15% moist After SiCl ₄	} 5	11		101	598	0 59	cc 64
Silicon tetrachloride Ethyl silicate	720 50	To soil at 15% moist After SiCl4	} 0	15		93 1	38 3	0 41	66 66
Silicon tetrachloride Ethyl silicate Silicon tetrachloride	720 50 720	To soil at 15% moist After SiCl ₄ To soil at 15%	25	11		62 7	21 8	0 35	ct të
Ethyl sılıcate Sılıcon tetrachlorıde	50 720	moist After SiCle To soil at 15%	8	11		49 5	16 1	0 83	66 66
Ethyl silicate Silicon tetrachloride	50 720	moist After SiCle To soil at 15%	10	11		48 2	19 6	0 41	68 68
Ethyl silicate Silicon tetrachloride	50 720	moist After SiCla To soil at 15%	15	11		46 4	14 6	0 31	
Aniline hydrochloride Silicon tetrachloride	50 720	moist After SiCla To soil at 15%	} 0 {	11	Ì	186	100 3	0 54	
Anılınə hydrochloride Silicon tetrachloride	50 354	moist In water Mixed—to soil	} 15	11		32 7	20 6	0 63	LC CC
Ölsic acid Silicon tetrachloride Ölsic acid	50 200 50	at 15% moist Mixed—to soil at 15% moist	•	11 11		115 39 0	25 1 15 2	022 039	Amount of moisture after treatment not known Amount of moisture after treatment not known
					<u>`</u>				· · · · ·

•

Admixture		H.O	MC-2	Den-	Comp Stree	ngth	Satura-	Remarks	
Kind	%	How Added			sity	Unim- mersed	Im- mersed	Factor	
			%	%	pcf	pei	psı		
Silicon tetrachloride Palmaitic acid	Exc 5.0	Mixed-to soil at 15% moist	0	11		71 7	23 0	0 32	Orig moist hydrolyzed by SiCl4
Oleic acid Silicone stopcock	50 •50	To wet soil	15 15	11 11		16 0 22 7	0 14 2	0 63	High vacuum type*
grease " " p-Phenylene-diamine	*50 50	""" To dry soil	15 15	11 11		24 5 78 1	11 1 53 8	0 45	Ordinary type*
Anılıne oil Sulfanılamıde p-Phenylene diamine	50 50 40	To wet soil To dry soil In water	15 15 15	11 11 11		372 458 827	0 15 0 62 3	0 0 33 0 75	
hydrochloride Roccall	50	To dry soil	10	11		74 1 57 8	42 3 45 8	0 57	
0 3246 N hydrochloric	22 0 15		!	lii		40 5	24 5	0 60	Soil wet with HCl*
acid 0 322 N Potassium hy- droxide	15		•	11		56 0	18 0	0 32	Soil wet with KOH•
Ortho-nitro-biphenyl dl-Alanine	50 50	To wet soil To dry soil	15 15	11 11	94	23 4 26 7		043 0 -083	
p-Aminobenzoic acid	15 0		15	11	92 91 92	92 3 59 3 86 4	77 366 288	0 62	
p-Aminophenol	15 0		15 15 15	11 11 11	94 92	74 1 91 0	39 3 36 7	0 53	
1-Amino-2-naphthol-4- sulfonic acid	15 0		15	11	98	74 4	32 7	0 44	
p-Bromoacetanılıde	15 5	44 44 44 44 44 44	15 15		96 97	114 66 2	33 7 31 4 30 0	0 30 0 47 0 46	
p-Bromophenocyl bro-	15 5		15 15		95 97	65 8 59 7	32 9	0 55	
Benzamide	15 50 150	66 66 66 66 66 66 66 66 66	15 15 15	11 11 11	97 94 91	73 3 51 7 72 6	36 7 25 2 25 9	0 50 0 49 0 36	
p-Dimethylaminoben- zaldehyde	50		15	ii	93	61 6	36 9	0 60	
p-Dimethylaminoazo	15 0 5 0	a a a	15 15	11	90 93	679 591	24 6 20 2	0 36 0 34	
benzene " Dıphenylcarbamıne	15 0 • 5 0	u u u	15 15	11 11	89 95	107 69 6	44 2 32 9	0 41 0 47	
chloride "	15 0	u u u u u u	15 15	11	91 92	72 6	30 5 22 1	0 42	
Diphenylamine	15 0	4 4 4 4 4	15		90 94	74 0	27 6 30 5	0 37	
Diazo aminobenzene	5 0 15 0 5 0	u u u	15 15 15	ii	90	103 53 3	37 5 21 0	0 36	
Hydroxilamine hydro- chloride "	15 0	u u a	15	11	90	17 9	<3	<0 17	
Sulfamic acid	15 0	u u u	15 15	11	97	70 1 77 3	43 8 39 1	062 051	
o-Phenylenediamine	50		15 15	10 11	94 89	72 3	43 8 45 5	0 61 0 64	
Metanilic acid	50	4 4 4 11 14 14	15 15	11	96	37 4 52 5	14 4	0 39 0 21	
m-Nitroaniline	5 0 15 0	4 4 4 4 4	15 15	11	95 92	62 0 86 9	34 8 39 9	056	
Ammonium benzoate	5 0	4 4 4 4 4 4	15 15		95 92	58 3 66 3	24 3 12 9	0 42 0 19	
Acetanilide	5 0	4 4 4 4 4	15 15		95	50 2 79 5	26 8 24 5	0 53 0 31	
Anthranilic acid	50		15	ii	93	66 1 67 7	33 9 30 3	0 51	
o-Amino phenol	15 0	a a a a a a	15 15	11 11 11	95 90	62 7 54 1	897	0 63	
p-Nitroaniline	15 0	66 68 68 68 68 68	15 15	1	96 92	71 5	17 8 39 7 34 3	056	1
b-Naphthylamıne	15 0	66 66 66 66 66 66	15	11 11 11 11 11	94 90	69 8 71 1	34 3 34 4 34 8	0 49	
Triethanolamine	15 0		15 15 15	11	93	60 2 19 4	34 8 32 4 <5 5	1 0 54	1
s-Diphenylthio ures	15 0	es 46 64	10 15 15		94 91	51 0 68 5	24 6 26 0	<0 28 0 48 0 38	
Phenylhydrazine by- drochloride	15 0 5 0 15 0	<i>a a a</i>	15		93 89	50 2 61 2	37 1 32 9	0 74	

TABLE F-Continued

,

TABLE F-Cond	uded
--------------	------

Admixture				ню	NG 0	Den-	Compressive Strength		Satura-		
Kınd	%	н	low 1	Added		MC-2	sity	Unim- mersed		tion Factor	Remarks
			"		%	%	pcf	pen	psı		
p-Aminoasobensene	50 150	"	"	"	15 15	11 11	98 89	51 2 77.9	27 0 23 9	053	
Methyl orange	5.0 15 0	a	"	66 66	15		95 92	532 741	0	0	
1-Amino-8-Naphthol- 3,6-disulfonio acid	5.0	"	"	"	15	11	96	27 2	10 6	0 39	
-Chloro-2-amino-phe- nol	15 0 5.0	"	"	14 14	15 15	11 11	95 95	52 0 57 2	12 8 27 1	025 047	
44 44	15 0 5 0	4	64 66	66 66	15 15	11 11	93 96	96 0	28 0	0 29	
2,4-Dinitroaniline " p-Dimethylamino	15.0	"	44 46	u 4	15	11	93	66 8 55 5	34 2 32 5	0 51 0 59	
phenol oxalate	50 150	u	a	"	15 15	11 11	94 90	78.3 27 0	61 2 18 7	078	
Diphenylethylene-di- amine "	5.0	a	"	"	15	ii	94	55 2	16 7 81 8	0 62 0 58	
Diglycol stearate	15 0 5.0	68 68	44 44	66 66	15 15	11	91 91	20 8 18.7	14 4 10 6	0.71 0 57	
Here methylene.tetre.	150 50	66 68	"	66 68	15 15	11 11	87 94	25.1 82 9	178 75	0 69 0 23	
mine " "	15 0	u	"	u	15	ii l	91	25 2	0	0	
a-Naphthylamine	50 150	44 64	64 64	"	15 15	ii 11	92	36 2 52 1	16 6 16.3	046	
Phthalimide	5.0 15 0	u u	4 11	u u	15 15	11	88 95 92	62.5 55 7	27.5 27.7	0.44	
p-Phenylenediamine	5 Ö 15.0	u	66 68	66 64	15 15	11 11 11 11 11	94 89	430	40 8	0.95	
p-Toluidine "	5.0 15 0	66 66	66 66	u u	15 15	ii	94	48.7 61.8	19.9 15.6	0.41	
Acid pyrogallic	50 150	44 44	66 66	u u	15 15	11 [94 88 93 93 93	14.7	92	0.68	
Benzidine	50 15.0	"	66 66	66 66	15	11 11	98	29.9 68 0 137	9.0 28.5	0.30	
Di-ethylene glycol mono ethyl ether	50	**	"	"	15 15	11 11	90 93	29.9	46 8 12.4	0 84 0.41	
Adipie acid	15.0 50	а а	u	a u	15 15	11	87 94	16.0 40.2	0 12.7	00.82	
Benzil	15.0 50	а 4	66 66	и и	15 15	11 11 11 11	89 93	36.7 418	10.4 20 2	0 28 0 48	
" Eydrogumone	15.0 50	"	66 66	"	15 15	11 11	91 95	54.4 86 7	18.0 12 6	0.83	•
Rosin	15.0 5.0	66 66	" "	u u	15 15	11 11	92 95	44.9 40 3	14.1 23.7	0 81 0.59	
" Resorcinol	15.0	66 66	66 66	"	15 15	11	91 92	64 3 88 4	81.7 12 0	0 49 0 86	
" Tnoxymetbylene	15 0 5 0	66 66	"	а а	15 15		91 95	16.6 54.8	0 18.0	0.83	
Acid tannic	15 0 5 0	u u	"	u u	15 15		93 97	78 9 87.7	23.0 21.7	0.29	
Friphenyl carbinol	15 0 5 0	66 64	44 64	a u	15 15	ii	93 97	626 I	27.7 15 3	0 44 0.32	
Kylose	15.0	u	12 62	u u	15 15		89 95	48 3 57.7 26.1	28.6 10 1	0 41 0 39	
Uric seid	15.0	46 66	61 61	и и	15 15		93 96	19 2 88 5	8.0 47 8	0 42 0 54	
	15.0 5.0	66 66	и и	66 66	15 15	11 11	96 96	90 7 46 9	508	0 56 0.28	
laponin " Permutit	15 0 5 0	66 66	66 66	68 66	15 15 ·		90 91 97	20 9 21 8 77 2	13 3 0 32 6	0 42	
Sulfanilio acid	15 0 5 0	66 66	66 16	"	15	11	94	896	62	0.07	
" "	15.0	"	"	"	15 15	11	95 93	39 9 55 4	13 1 9.3	0 33 0 17	
Gallic acid	50 150	"	"	и и	15 15 15	ii	96 94 94	41 2 60 8	18 8 24 9	0 46 0 41	
aurio acid	50 150 50 150 50 150	"	44 44	и и	15 15	11 11 11 11 11 11	94 88	26 4 31 3 27 0	85 113 76	0 32 0 36	
actose	50 150	"	"	и и	15 15 15 15 15	11	88 95 93 96 92	27 0 42 0	91	028	
satın	50 150	"	"	"	15 15	11	96 92	42 0 72 5 78 0 43 5 42 0	36 6 35 8 17 1	0 32 0 36 0 28 0 22 0 51 0 46	
Dextrine	15 0	"	" "	и и	15 15	11	95 92	43 5 42 0	17 1 12 2	0 89 0 29 0 43	
Asein	50 150 50 150	"	66 66	и 4	15 15	11	94 89	55 0 46 6 44 5 50 2 62 2 55 3	12 2 23 6 0	0 1	
Senzoic acid	50 150	66 61	** **	" 4	15 15	ii 11	94 89 95 90 98	44 5 50 2	18 5 1	0 87 0 40	
ulfur sublimed	5 Ö 15 O	11 11	44 64	"	15 15	ii 11	98 95	62 2	19.9 24 0 25 3	0 89 0 46	

•

from the projected image The contact angle, θ is given by the formula.

$$\theta = 2 \tan^{-1} \frac{h}{\pi}$$

When the contact angle is obtuse, the projected image from which the dimensions are determined is similar to that shown in Figure B. Here again, the base line on which the partial circle rests represents the top of the briquette and the circular arc represents the silhouette of the asphalt drop E is any point on the tangent drawn at 45 deg to the base line The dimensions r, z, DE and DB are determined directly from the projected image.

The value of θ , the contact angle, is determined by use of formulae from Dorsey (θ) and Mack and Lee (θ) as well as tables from Sugden (10) and Mack and Lee.

Figure C is a reproduction of a typical plate from which acute contact angles were determined. The drops are of MC-2 and the briquettes are of soil AA 3326-1 containing 15 percent moisture The average contact angle is 29 6 deg.

Figure D is a reproduction of a typical plate from which obtuse contact angles were determined. The drops were of distilled water. The surface is the edge of a glass microscope slide that had been coated with paraffin The average contact angle is 109 6 deg.

Electrophoresis Studies

Figures E, F, G and H show the movement of the boundaries between a suspension of soil AA 3326-1 and the buffer solution due to electrophoretic action. Figure E shows both legs of the U tube before the current was turned on The electrodes may be seen above the top of the solution. In Figure F are four views of the left (negative) leg The left view is identical to the left leg in Figure E. The second view from the left shows the position of the boundary 18 min after the electrodes were lowered into place and the current started The third view was taken 7 min. after the second and the right hand one 9 min. after the third. It will be noted that the boundary moves downward away from the negative electrode

Figure G shows four views of the right leg containing the positive electrode The left view was taken before the current was started and the other three were taken at approximately the same time intervals as the ones in Figure F. It will be noted that the boundary moves toward the positive electrode

Figure H shows both legs of the U tube 48 min after the current was started It will be noted that the boundaries have moved away from the negative and toward the positive electrode This movement indicates that the soil particles are carrying a negative electrical charge

Compressive Tests on Briquettes

Tables A through F give the details of all the 1-in diameter briquettes made and broken during the investigation of the effect of admixtures on the compressive strength of soilwater-asphalt systems.

Each table contains the data obtained with one soil as follows

MC-2
1 47901
C ED-352
C1 47901
C2 ED-352
ED-352
47901*

Exceptions marked.

REFERENCES

- Mills, W H, Jr, "Status of Soil Stabilization in the United States," Proceedings, Highway Research Board, Vol. 19, pp 491-497 (1939).
 Benson, J R., and Becker, C. J., "Explora-
- Benson, J. R., and Becker, C. J., "Exploratory Research in Bituminous Soil Stabilization," *Proceedings*, Association of Asphalt Paving Technologists, January, 1942.
- Endersby, V. A, "Fundamental Research in Bituminous Stabilization," *Proceedings*, Highway Research Board, Vol. 22, pp. 442-459 (1942).
- Winterkorn, Hans F, and Eckert, George W., "Physico-Chemical Factors of Importance in Bituminous Soil Stabilization," *Proceedings*, Association of Asphalt Paving Technologists, Vol. 11, pp. 204-257 (1940).
- Preece, Edmund F, "Geotechnics and Geotechnical Research," Proceedings, Highway Research Board, Vol. 27, pp. 384-417 (1947).
- 6 Minutes of the annual business meeting, Highway Research Board, Dec. 5, 1947. Proceedings, Highway Research Board, Vol 27, pp 510-521 (1947)
- Mack, "The Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops" I. The Spheroidal Segment Method. Journal of Physical Chemistry, Vol. 40, No. 2, pp 159, Feb 1936
- Mack and Lee, "Determination of Contact Angles from Measurements of the Dimensions of Small Bubbles and Drops." II. The Sessile Drop Method for Obtuse Angles Journal of Physical Chemistry, Vol 40, No. 2, pp 169, Feb 1936

- 9 Dorsey, "A New Equation for the Determination of Surface Tension from the Form of a Sessile Drop or Bubble," Journal, Washington Academy of Science Vol. 18, No 19, November 19, 1928
- 10 Sugden, "The Determination of Surface Tension from the Rise in Capillary Tubes" Journal Chem. Soc, Vol. 119, pp 1483 (1921)
- raxler, "Physical Chemistry of As-phaltic Bitumen," Chemical Reviews, 11 Traxler, Vol 19, No. 2, pp 119-143, October, 1936
- 12 Hartman, R J, "Colloidal Chemistry,"

Second Edition, Houghton Mifflin Co.

- Chicago, Ill (1947) 13. Anderson, A P, and Wright, K A., "Per-meability and Absorption Properties of Bituminous Coating," Industrial and Engineering Chemistry, Vol 33, pp 991 (1941).
- 14. Beckman, A O, Badger, R M, Gullekson, E E and Stevenson, D P, "Bituminous Coatings, Factors Which May Influence Corrosion of Metal Surfaces Protected by Bituminous Coatings," Industrial and Engineering Chemistry, Vol 33, pp 984 (1941)

SOME CAPILLARY PHENOMENA IN SANDY MATERIALS

D P KRYNINE, University of California

SYNOPSIS

The study of the physical principles on which the accumulation of moisture under pavements is based is an engineering problem of major importance. This paper should be considered as an attempt to disclose some of these principles from a few laboratory tests on sandy materials (Ottawa sand and two California sands) Emphasis is laid on the items not sufficiently clarified in the highway and runway literature such as. (a) horizontal capillarity, as in the case of movement of moisture from the edges of a pavement toward its center, and (b) the boundary effect when the moving moisture reaches an outflow face or some obstacle handicapping its further movement. Some consideration is also given to the phenomenon of condensation of water vapor

Variation in moisture content of the base and subgrade of a pavement is a subject matter worthy of detailed study. Considerable factual material collected by highway and runway engineers, most of which has been published in the Proceedings of the annual meetings of the Highway Research Board of the past ten years (1, 2), shows that the moisture content of a subgrade built at an optimum moisture content may become appreciably different some time later. Some cases of destruction of pavements due to accumulation of moisture under the pavements, even in desert regions, have been reported (3)

Assuming that water does not penetrate through a pavement, the sources from which additional moisture may come to a subgrade (or the sink toward which it moves from the subgrade) are (a) the water table, and (b) the edges of the pavement In both cases, capil-

larity is a predominant factor, though some horizontal movement from the edges of a pavement under the action of a hydraulic head, however small, also should be considered. Again, capillarity has to be studied in conjunction with its sister phenomenon, condensation of water vapor, since capillary moisture moves in both liquid and gaseous phases. and a source of moisture at the edges of a pavement from a saturated atmosphere is quite a possibility

If a program of the study of accumulation of moisture under pavement should be prepared, the beforementioned items such as capillarity, both vertical and horizontal, and condensation should be included in it. The obscure phenomenon of splitting of the capillary moisture into a fluid phase and a gaseous phase and the estimation of the quantity of the latter, are worthy of consideration. Finally, the provenance (or location of the original sources of supply) of water or water vapor that causes increase of the moisture content

¹ Italicized figures in parentheses refer to list of references at the end of this paper