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S Y N O P S I S 

Reference is made to the current difFerence of opinioD that appears to exist con­
cerning the significance of the Coulomb equation, the Mohr diagram, and the re­
lationship between them. The paper reviews the simplest case, the stressing of 
certain soils or similar materials for which the Coulomb, principal stress, and 
Mohr envelopes are straight lines. Two principal conclusions are presented. The 
Coulomb envelope resulting from direct shear test data, and the Mohr envelope 
obtained from triaxial data will be identical for a given material, provided that 
identical samples of the material are subjected to identical conditions during both 
tests. Theories of stability for these materials that are based exclusively on 
either the principal stresses, or on relationships between normal stress, shear­
ing stress, and shearing resistance, or on the angle of internal friction, or on 
the angles between the plane of failure and the major or minor principal planes, 
or on combinations of two or more of these, are actually supplementary theories 
that provide identical solutions to any stability problem concerning these 
materials. 

Because of the increasing interest in the use of the triaxial test for the solution 
of highway and airport engineering problems, it is important that agreement 
should be reached regarding the significance of the Mohr diagram for the analysis 
of triaxial data, and concerning the nature of the relationship between the 
Coulomb and Mohr diagrams. The paper is intended to promote discussion having 
these objectives in view. 

I n spite of the many references to the Cou­
lomb equation and Mohr diagram that occur 
in the technical literature on soil mechanics, 
and to the relationships between the two that 
have been pointed out, there does not yet 
seem to be complete agreement concerning 
their significance (1).^ 

The increasing application of the triaxial 
test to the solution of problems in subgrade, 
base course, and fle.xible pavement design in 
the fields of highway and airport engineering 
in particular, and in soil mechanics in general, 
has attracted much attention to the utility 
of the Mohr diagram for the analysis of 
triaxial data. Consequently, it is highly de­
sirable that agreement should be reached re­
garding the significance of the Mohr diagram 
for this purpose, and concerning the relation­
ships between corresponding ]\Iohr and Cou­
lomb diagrams. I t is the principal intention of 
this paper to promote discussion having these 
objectives in mind. 

To initiate this discussion, the writer will 
present a brief outline of his own understand-

' Italicized figures in parentheses refer to the 
references listed at the end of the paper. 

ing of several important fundamentals per­
taining to the Coulomb equation, the Mohr 
diagram, and the relationships between them, 
based largely upon several different sources 
of information (2, S, 4, B, 6). 

This presentation will be limited to the 
simplest case, and it pertains to the stressing 
of certain soils or similar materials for which 
it is assumed that: 

1. The relationships between the stresses 
on the various planes through a point 
conform with the laws of engineering 
mechanics; 

2. The stress data for failure conditions 
can be represented by straight line Cou­
lomb, principal stress, and Mohr en­
velopes; 

3. The materials possess both cohesion and 
internal friction; 

4. The values determined for c and 4> are 
the same for every plane through the 
point, or through a loaded element of 
the material; 

5. The values determined for c and ^ are 
independent of any state of stress to 
which the material may have been sub­
jected before being loaded to failure. 
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Unless the assumptions on which it is to be 
based are clearly defined, rational debate con­
cerning the significance of the Coulomb and 
Mohr diagrams and the relationships between 
tliem is likely to be difficult, because of the 
lack of any common basis for comparing and 
evaluating the different points of view. 

The first assumption above L<« made in text­
books on engineering mechanics, and merely 
states, for example, that there is a definite 

Lcos-e-

Figure 1. Principal, Shear and 
Stresses in a Loaded Element 

Normal 

problenLs. While the Mohr theory of failure 
is also based on the internal friction concept, 
it is more general than the Coulomb theory 
I t leaves the nature of the relationship be­
tween shear and normal stress to be deter­
mined experimentally, and does not specify 
that the Mohr envelope must necessarily be a 
straight line, as required by the Coulomb 
equation, s = c + n tan <i>. Nevertheless, 
carefully obtained shear and normal stress 
data for many soils do seem to plot as straight 
lines, and for these the assumption of straight 
line Coulomb, principal stress, and Mohr en­
velopes appears to be justified. 

Cei-tain cohesive soils lack internal friction, 
and have Coulomb or Mohr envelopes that 
ai e parallel to the abscissa. Cohesionless soils, 
such as sands and gravels, possess internal 
friction, and when they are completely lacking 
in cohesion, their Coulomb or Mohr envelopes 
tend to pass through the origin. A great many 
of the soils and flexible base and pavement 
materials with which the highway and airport 
engineer is concerned possess both cohesive 
and interna] friction properties. These latter 
materials are considered in this paper to 
represent the general case. 

I t should be emphasized again, that the 
subject matter of this paper is limited to a 
discussion of the Coulomb and Mohr dia­
grams and the relationships between them for 
the simplest case of comparison, which is 
confined to stressed soil or similar materials 
to which the five listed assumptions apply. 

Throughout the text and diagrams, all forces 
are considered to be unit stresses in pounds 
per square inch or similar strength units. 

relationship between the principal stresses 
acting on the principal planes through a point, 
and the shear and normal stress on any other 
plane through the point. 

While several theories, e.g. maximum nor­
mal stress theory, maximum normal strain 
theoiy, maximum shearing stress theory, etc., 
have been proposed to explain the failure of 
different substances under load, textbooks on 
soil mechanics seem to generally agree that 
the Coulomb internal friction theory provides 
the best explanation for the failure of soil 
materials. Even when the shear and normal 
stress data plot as a curved line, the best 
straight line is frequently drawn through the 
pohits to facilitate the solution of practical 

S T R E S S E S I N A LOADED E L E M E N T 

While the term "stresses at a point" is 
frequently employed in textbooks on mechanics, 
it is usual practice to enlarge the "point" to a 
small two or three dimensional element. Re­
lationships between stresses on planes through 
this small element can be more easily visu­
alized than on planes through a point. 

Figure 1 represents a small element of soil 
subjected to principal stresses V and L. If 
the lateral pressure L is maintained constant 
while the vertical load V is gradually in­
creased, failure will eventually occur along 
one of the planes through the element. If the 
angles between various planes through the 
element and the vertical are designated by 
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cifferent values of e, then from the Coulomb 
theory of failure, it follows that the particular 
value of 8 for the plane of failure is given by 

t) = 45 — ^, where <t> is the angle of internal 

friction for the material. 
Application of the principal stresses V and 

L develop shearing stresses s, and normal 
stresses n on all planes through the element. 
The shearing and normal stresses developed 
on the plane of failure are shown in Figure 1. 

I t is clear from Figure 1 that the shear 
stress s, acting along any plane through the 
element is the algebraic sum of the compo­
nents of the principal stresses T' and L acting 
along that plane. Similarly, the normal stress 
n acting on any plane through the element is 

D I R E C T SHEAR T E S T AND COULOMB E N V E L O P E 

The small rectangular box around a portion 
of the plane of failure in Figure 2 (a) attracts 
attention to the fact that although the stresses 
applied to the loaded specimen during a direct 
shear test are the shearing stress s, and the 
normal stress n on the plane of failure, they 
are closely related to the corresponding prin­
cipal stresses V and L. 

Figure 2 (b) illustrates the principle of the 
direct shear test. One of its most common 
forms is the shear box in which the material 
to be tested is placed. The top lialf of the 
shear box is displaced relative to the Iwttom 
half, subjecting the specimen to shear along 
the plane between the two halves of the box. 
A normal stress n of some given magnitude is 

| V y-e-«45-| 

NORMAL STRESS 

( B ) (C) 
Figure 2. Direct Shear Test and Coulomb Envelope 

the algebraic sum of the components of 7 and 
L acting at right angles to that plane. Conse­
quently, there is a very close relationship 
l)etween the principal stresses acting on an 
element, and the ^ear and nornuil stresses 
developed on any plane through the element, 
and vice versa. Therefore, from triaxial data 
which provide corresponding values of T' and 
L for the condition of incipient failure of the 
element, the values of the corresponding com­
ponent shear and normal stresses s, and n 
developed on the plane of failure can be 
calculated. Conversely, from direct shear test 
data which provide corresponding values of 
s, and n for incipient failure conditions along 
the plane of failure through the material, the 
coiresponding principal stresses T' and L can 
be calculated. 

Chronologically, the direct shear test is 
much older than the triaxial test, and it will 
be discussed first. 

applied as shown, and the shear stress s, that 
causes failure is determined. The test is re­
peated on other similar specimens of the same 
material to each of which a different normal 
stress is applied. The resulting normal and 
shear stress data for the failure condition are 
plotted as shown in Figure 2(c). The straight 
line through the data is called the Coulomb 
envelope. Its intercept with the ordinate 
axis is known as cohesion c, while the angle 
between the Coulomb envelope and the hori­
zontal is the angle of internal friction 
The Coulomb envelope, therefore, is a graphi­
cal representation of the Coulomb equation, 

Sr = c -I- n tan * (1) 

where Sr = shearing resistance of the 
material, and the other symbols have the 
significance aheadj' explained for them. 
I t should be apparent that for equilibrium 
(incipient failure) conditions, for any given 
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normal stress n, the maximum shearing stress 
Si that can be applied on the plane of failure 
must be equal to the shearing resistance of 
the material that can be developed on that 
plane. 

Incidentally, much of the debate concerning 
the significance of the intercept made by the 
Coulomb envelope with the ordinsite axis, 
which has come to be known as cohesion c, 
might be simplified if it were always kept in 
mind that this intercept actually represents 
the maximum shearing resistance that can be 
developed by the material under the condi­
tion of zero normal stress, as the Coulomb 
diagram Fig. 2(c) indicates. 

For many soil materials, a plot of s, versus 
n from direct shear test data results in a 
curved Une rather than the straight line en­
velope shown in Figure 2(c). However, as 
emphasized in the introduction, this paper is 
concerned with only the latter case. 

The portion of the Coulomb envelope to 
the right of the ordinate axis in Figure 2(c) 
can be easily determined by direct shear test 
data, because the applied normal stresses n 
are acting in compression. The smallest normal 
stress that can ordinarily be applied to a soil 
specimen during a laboratory direct shear 
test is n =0 . This is indicated by the ordinate 
axis in Figure 2(c). 

Because of the nature of soil materials, it 
would be difficult to apply uniform tensile 
stresses to them in the labo^atorJ^ For this 
reason, it is not possible to check the position 
of the Coulomb envelope to the left of the 
ordinate axis, since this would require the 
application of negative uniform normal pres­
sure during the direct shear test, that is, nor­
mal stress acting in tension. Consequently, 
the portion of the Coulomb envelope to the 
left of the ordinate axis in Figure 2(c) and in 
subsequent diagrams has been shown as a 
broken line, to emphasize that its exact posi­
tion has not been experimentally verified by 
actual data on soil materials. This left-hand 
broken line portion has been shown as a con­
tinuous projection of the part of the Coulomb 
envelope on the right of the ordinate axis, 
merely because for materials such as concrete 
and steel, to which tensile stresses can be 
applied, the position of the Coulomb envelope 
on each side of the ordinate axis has been 
established by actual test data (Fig. 6). I t is 
to be emphasized that our inability to check 
the position of the portion of the Coulomb 

envelope to the left of the origin for soil ma­
terials, is due to our being unable to devise 
suitable laboratory apparatus for this pur­
pose. It does not mean that normal stresses 
acting in tension do not occur in nature, or in 
actual engineering structures in the field, under 
certain conditions. 

Having obtained the straight line Coulomb 
envelope of Figure 2(c), the next step is to 
locate the position of the principal stresses V 
and L on this diagram, if possible. 

Figure 3 emphasizes the fact that s. and n 
are components of the principal stresses V 
and L, and that although only the shear 
stress Ss and normal stress n are actually 
applied to the specimen and measured in a 
direct shear test, the existence of the corre­
sponding principal stresses V and L is implied, 
when this test is made. 

The loaded elements in Figure 3(a), (d), 
(g), and (j), show the principal, normal, and 
shear stresses acting under each of four sepa­
rate conditions of stress. The direct shear test 
diagrams of Figure 3(b), (e), (h), and (k) 
illustrate the shear stress s, and normal stress 
n acting in each of these four cases, and also 
the directions in which the implied correspond­
ing principal stresses V and L are acting. 
The direct shear test diagrams m Figure 
3(b), (e), (h), and (k) have been drawn in an 
oblique position parallel to the direction of 
the planes of failure in Figure 3(a), (d), (g), 
and (j), respectively. This places the principal, 
shear, and normal stresses in parallel positions 
and directions in both sets of diagrams, and 
makes them easier to follow. 

About seventy years ago, Mohr (7) demon­
strated a method whereby the magnitude and 
direction of the corresponding principal 
stresses V and L can be obtained, if the shear 
stress s, and normal stress n have been de­
termined for equilibrium (incipient failure) 
conditions. A point representing the co­
ordinates of any given combination of shear 
and normal stress is marked on the Coulomb 
envelope, e.g. point P in Figure 3(c). Through 
this point a semi-circle is drawn to which the 
Coulomb envelope is tangent, and that has its 
diameter along the normal stress axis. The 
points of intersection of the semi-circle with 
the normal stress axis represent the values 
of the principal stresses V and L corresponding 
to the shear and normal stresses indicated by 
the point P. No assumptions are involved in 
this graphical procedure, and the proof that 
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it gives precisely the same relationships con­
cerning principal, shear, and normal stresses, 
angle of failure B, etc., that can be derived 
from a consideration of the stresses acting on 
the loaded element of Figure 1 or Figure 3(a), 
etc., will be given later in connection with 
Figure3l2. 

illustrated by Figure 3 (g), (h), and (i), in 
which the shear stress s„ and major principal 
stress V are positive, but the minor principal 
stress L is negative. That is, L acts in tension. 
Figure 3(j), (k), and (1) pertain to Case (4), 
which represents the tensile strength condi­
tion. The shear stress s, is positive and 7 = 0 , 

GENERAL 

n-0 

SH
Ei

 

.-ii 1 a { \ 
L V NORMAL 

(4) V-0 

NORMAL 
( J ) (K) (L) 

Figure 3. Derivation of Principal Stresses f rom Direct Shear Test Data 

Figure 3(c), therefore, provides a graphical 
representation of the magnitude of, and rela­
tionships between the principal, shear, and 
normal stresses acting in Figure 3(a) and (b) 
for Case (1), where s„ n, 7 , and L are all 
positive. Figure 3(d), (e), and (f) relate to the 
stress conditions in Case (2), which pertain to 
unconfined compression, where s„ n, and 7 
are positive, but L = 0. Case (3), covering the 
condition where the normal stress n = 0, is 

while both n and L are negative, that is, 
acting in tension. 

I t should be carefully observed again that 
due to the limitations of present laboratory 
equipment, the stress conditions represented 
by Case (4) cannot be experimentally verified 
for soil materials, because of the tensile normal 
stress involved. However, direct shear tests 
covering Cases (1), (2), and (3) of Figure 3 
can be quite readily conducted in the labora-
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tory. Of particular interest is Case (3), in 
which the normal stress n = 0, and for which 
the corresponding minor principal stress L is 
negative, and, therefore, acts in tension. 

T R I A X I A L T E S T AND MOHK DIAGRAM 

I n the triaxial test, shown diagramatically 
in Figure 4(a), a cylindrical specimen, to 
which a lateral pressure L is applied, is sub­
jected to increasing vertical load T' until it 
fails. Similar specimens are tested in like 
manner at other magnitudes of lateral pressure 

be selected. When a large number of these 
are taken and plotted on a Mohr diagiam, the 
Mohr circles of Figure 4(d) result. When an 
infinite number of these corresponding values 
of V and L are selected, the resulting Mohr 
circles are so close together that the Mohr 
diagram of Figure 4(e) is obtained. The top 
boundary provided by the Mohr circles of 
Figiu-e 4(e) forms a straight line known as the 
Mohr envelope, which is obviously tangent 
to each of the Mohr circles. 

I t will be observed that the left-hand ex-

mBMm 

Figure 4. Principal Stress and Mohr Diagrams 

L. The resulting corresponding values of V 
and L can be plotted in the form of a principal 
stress diagram. Figure 4(b). For this paper, 
only those soil and flexible pavement materials 
are considered that provide the straight line 
relationship between V and L that is illus­
trated in Figure 4(b). 

Using the V and L values either provide<l 
directly by the triaxial tests, or taken fiom 
the straight line relationship of Figure 4(b), 
Mohr circles can be drawn as shown in Figure 
4(e). For this purpose, the corresponding 
values of V and L in each ease are laid off 
along the normal stress axis, and the differ­
ence between them, T' — L , forms the di­
ameter of a semi-circle known as a Mohr 
circle. 

I t is apparent from the straight line rela­
tionship of Figure 4(b), that an infinite num­
ber of corresponding values of V and L could 

tremity of the Mohr envelope m Figures 
4(d) and (e) is marked by its point of tangency 
with the Mohr circle repi-esenting the un-
confined compressive strength, for which the 
lateral pres.<5ure L = 0. One should be on his 
guard, however, against any interiMetation 
that the Mohr envelope either terminates or 
changes its <lirection at this ])oint. I t merely 
means that with present tria.xial equipment it 
is not possi))le to explore the i)osition of the 
^lohr envelojje toward the left beyond its 
point of tangency with the Mohr circle re))re-
senting the unconfined comi)res.sive strength. 
This is due to our present inability to i»pi)ly 
uniform negative lateral pressures L (that is, 
L acting in tension), to soil .'.|iecimens in the 
triaxial test. To establish experimentally the 
position of the Mohr envelope to the left 
of its point of tangency with the Mohr circle 
representing the uii'-onfincd compressive 
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strength, by means of the triaxial test, it is 
apparent that Mohr circles farther to the left 
would be required, and the experimental data 
needed for these could only be obtained if 
uniform negative lateral pressures L could be 
applied. 

Soil stresses in nature are not subject to the 
limitations of the triaxial test, and stress 
conditions undoubtedly occur sometimes in 
the field that correspond to those represented 
by extending the Mohr envelope of Figure 
4(e) toward the left. The justification for this 
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Figure 6. Mohr Diagrams for Different Con­

ditions of Loading 

can be more clearly understood from a study 
of the four cases portrayed diagrammatically 
in Figure 5. 

Case (1) of Figure 5 covers the general con­
dition where both vertical stress V and lateral 
pressure L are acting in compression. Case (2) 
portrays the nature of the stresses involved 
for unconfined compression, when the minor 
principal stress L = 0. Case (3) pertains to a 
condition of loading that would be difficult to 
obtain in the triaxial testing of soils, because 
it requires that the minor principal stress L 
must act in tension. The Y and L stresses are 
so selected that the normal pressure n on the 
plane of failure is zero (n = 0 ) , as Figure 5(f) 
indicates. While Case (3) of Figure 5 would be 
very difficult to approximate with triaxial 

equipment, it will be recalled from Case (3) 
of Figure 3 that the stress conditions involved 
can be attained quite easily by means of the 
direct shear test. This justifies the extension 
of the Mohr envelope to at least the point of its 
intersection with the ordinate axis. Case (4) 
of Figure 5 illustrates the tensile strength 
condition. The stress conditions represented 
by Case (4) cannot be checked experimentally 
for soil materials, because present triaxial 
laboratory equipment cannot uniformly apply 
the tensile stresses required. Therefore, the 
portion of the Mohr envelope to the left of 
the ordinate axis in Figure 5 and m subse-
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(B) 
Figure 6. Mohr Diagrams for Concrete and Steel 

quent diagrams has been shown as a broken 
line. 

While it cannot be checked for soil materials, 
the Mohr diagram of Case (4) has been estab­
lished for certain other substances such as 
concrete, cast iron, metals, etc., when tested 
in simple tension. This is illustrated by the 
Mohr diagrams of Figure 6 for concrete and 
steel. The Mohr circle on the right-hand side 
of the origin in each case in Figure 6 repi-e-
sents the compressive strength of the material, 
while that on the left-hand side is for the 
tensile strength condition. I n Figure 6(b), a 
Mohr circle is shown that corresponds to the 
shearing resistance of steel at zero normal 
stress obtained from a direct shear test. Con­
sequently, in Figure 6(b), Mohr circle (1) 
was derived from the compressive strength of 
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steel, Mohr circle (2) from its shearing strength 
and Mohr circle (3) from its tensile strength. 

As shown in Figure 5(b), (d), (f), and (h), the 
Mohr envelope makes an intercept with the 
ordinate axis known as cohesion c, while the 
angle between the Mohr envelope and the 
horizontal is the angle of internal friction 0. 
The similarity between the Mohr envelopes 
and the diagrams of Figure 5(b), (d), (f), and 
(h), and the Coulomb envelopes and the dia­
grams of Figure 3(c), (f), (i), and (1), is quite 
apparent. 

to the shearing resistance s, for the given 
sample of material, and for the particular 
normal stress n applied. The Coulomb enve­
lope is obtained by plotting the shear stress 
at failure for similar specunens of the same 
material tested at other normal pressures, 
and drawing a straight line throtigh the points 
so obtained. IJi 

I n Case (2) of Figure 7, the specimen is 
subjected to a constant lateral support L in 
triaxial equipment, and vertical stress V is 
appUed in increments, or as a gradually in-

(I) DIRECT SHEAR 

(2) TRIAXIAL 

NORMAL 

Figure 7. Illustrating the Derivation of Coulomb and Mohr Envelopes for a Given Soil 
Material 

COMPAHISON OF COULOMB 
AND MOHK ENVELOPES 

Figure 7 illustrates the manner in which 
actual data are obtained for both direct shear 
and triaxial tests. I n Case (1) for the direct 
shear test, the specimen is subjected to a 
constant normal stress n, while shear stress 
s, is applied in increments or as a gradually 
increased load until the shearing resistance 
of the material at that normal pressure is 
reached, when shear failure occurs. This is 
illustrated by the vertical line in Figure 7(c). 
The intersection of this vertical line with the 
Coulomb envelope represents the point where 
the applied shearing stress s, is just equal 

creased load, until failure of the specimen 
occurs. This procedure is illustrated by the 
successively larger Mohr circles in Figure 
7(e), in which Vt represents the largest value 
of vertical load that the specimen can carry 
without failure for the particular magnitude 
of lateral support L shown. Similar specimens 
under different values of lateral pressure L 
can be tested to determine other combinations 
of V and L that just represent failure condi­
tions. Mohr circles can be drawn using the 
different corresponding values of V — L as 
diameters. The Mohr envelope is drawn tan­
gent to the Mohr circles for the values of V 
and L that represent failure conditions. 
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The question arises as to whether or not, 
for any given material, the Coulomb envelope 
obtained from direct shear test data is identi­
cal with the Mohr envelope derived from tri-
axial data (Fig. 7). I t was pointed out in con­
nection with Figure 1 that the shear stress s, 
and normal stress n acting on the plane of 
failure are components of the principal stresses 
V and L. I t was also pointed out that shear 
stress s, and normal stress n are applied when 
performing the direct shear test on a given 
material, whereas the triaxial test makes use 
of the principal stresses V and L. Since the 
shear and normal stresses on the plane of 
failure are components of the principal stresses, 
it follows from the laws of mechanics that the 
Coulomb envelope for any given material 
must be identical with the Mohr envelope 
(Fig. 8(b)) provided that identical specimens 
of the material are tested under identical con­
ditions in both the direct shear and triaxial 
tests. 

Data obtained by Taylor (8) for several 
sands indicate that reasonably good agree­
ment between the Coulomb and Mohr enve­
lopes derived from direct shear and triaxial 
tests, respectively, can be obtained. 

Whenever the Coulomb envelope derived 
from direct shear tests on a given material 
is different from the Mohr envelope obtained 
from triaxial tests on the same material (Fig. 
8(a)) it is evidence that either the material 
has not been subjected to identical conditions 
in both tests, or the specimens of the material 
employed for each test are not identical in 
every respect. 

I t is believed that the laws of thermody­
namics also require the Coulomb envelope and 
Mohr envelope to coincide, when identically 
prepared specimens are subjected to identical 
conditions in both direct shear and triaxial 
tests. If , as illustrated in Figure 9, they do not 
coincide, it would be possible to shear the 
given material in one direction by means of 
shear and normal stresses (direct shear), and 
by tilting the specimen to shear it in the re­
verse direction along the same plane to its 
initial position by means of principal stresses 
(triaxial shear), and repeat the process indefi­
nitely. Since, for example, the principal 
stresses corresponding to the applied shear 
and normal stresses acting on the plane of 
failure in one direction would not necessarily 
be equal to the principal stresses employed 
for shearing the material in the reverse di­

rection along the same plane to its initial 
position, such a system would lead to per­
petual motion created and maintained by the 
difference between the two sets of principal 

The laws of thermodynamics indicate that 
perpetual motion is impossible, and that con­
clusions regardmg any system are untenable 
if they imply that perpetual motion would 
result. Consequently, identically prepared 
specimens tested under identical conditions 
in both direct shear and triaxial tests could 
not have the different planes of failure Si and 
92 shown in Figures 9(a) and (c), nor the dif­
ferent Coulomb and Mohr envelopes illus-

NORMAL STRESS 

NORMAL STRESS 

Figure 8. Relationship between Mohr and 
Coulomb Envelopes 

trated in Figures 9(b) and (d). That is, for 
the conditions concerning specimens and tests 
specified in the previous sentence, the planes 
of failiu'e and the Coulomb and Mohr enve­
lopes indicated by direct shear and triaxial 
tests on the given material must coincide. 

Conversely, if the direct shear and triaxial 
data indicate that the planes of failure given 
by the two tests are different, and that the 
Coulomb and Mohr envelopes do not coincide, 
it is proof that either identical specimens have 
not been employed for each test, or that the 
specimens have been subjected to different 
conditions during the two tests. 
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SIGNIFICANCE OF THE MOHR DIAGRAM 

I n Figure 10(a), planes of shear numbered 
1, 2, 3, 4, 5, and 6, througli an element of 
material subjected to principal stresses V and 
L under equilibrium conditions, have been 
indicated. The angle e between each of these 
planes and the vertical is shown. Figure 10(b) 
is a Mohr diagram indicating corresponding 

CASE I-CONSTANT 
SHEAR AND NORMAL 

STRESSES 

for point 5 is twice the angle 9 between plane 
Xo. 5 and the vertical in Figure 10(a). 

Of particular interest in Figure 10(b) is 
point No. 3, at which the Mohr envelope is 
tangent to the Mohr circle. Point 3, repre-

senting the plane for which e = 4 5 — -z, 

indicates that the shearing stress on plane 

(A) \ k 

(C) \ K 

CASE 2-CONSTANT 
PRINCIPAL STRESSES 

V! 1V2 
NORMAL 

NORMAL 

Figure 9. Illustrating the Significance of the Relationships between the Mohr and Coulomb 
Envelopes for a Given Material 

shearing stress s„ shearing resistance Sr, and 
normal stress n on each of these six planes. 
Thus, point 5, for example, on the Mohr circle 
of Figure 10(6) indicates that the normal stress 
n on shear plane No. 5 of Figure 10(a) is 
equal to O E , and that the shearing sti-ess s, on 
this plane is equal to E J . For normal pressure 
O E , the corresponding shearing resistance s, on 
plane Xo. 5 is shown by the Mohr envelope 
to be E X . Consequently, the shearing re­
sistance Sr on plane No. 5 through the ma­
terial is greater than the shearing stress Ss and 
it could not, therefore, he. the plane of failure. 
The position of point 5 on the Mohr circle is 
obtained by turning off the angle 2 9 at the 
center as shown in Figure 10(b), where 2 9 

No. 3 is just equal to the shearing resistance 
Sr on this plane. Both shearing stress and 
shearing resistance on this plane are repre­
sented by C H in Figure 10(b), and the normal 
pressure n is indicated by OC. Figure 10(b) 
demonstrates that on every other plane 
through the loaded element of Figure 10(a), 
the shearing stress s. is less than the shearing 
resistance represented by the Mohr enve­
lope for the same normal pressure n. Conse-

quently, plane Xo. 3 for which 9 = 45 
2' 

and for which shearing stress is just equal to 
shearing resistance Sr, is the critical plane or 
plane of failure. Any increa.se in the shear 



McLEOD-MOHR DIAGRAM AND COULOMB EQUATION 445 

stress «, on this critical plane, with the shearing 
resistance s, remaining constant, would result 
in failure, since the shearing stress Ss would 
then exceed the shearing resistance s, of the 
material. 

I t should be appaient that if planes of shear 
were also drawn through the other two quad­
rants of Figure 10(a), the shear and normal 
stresses on these planes would be indicated 
on the Mohr diagram of Figure 10(b), by 

NORMAL STRESS 
(b) 

Figure 10. Illustrating the Interpretation of 
the Mohr Diagram 

points on the circumference of a semi-circle 
below the abscissa. That is, the semi-circle 
of Figure 10(b) would become a full circle. 
For the half of the Mohr circle below the 
abscissa, points on its circumference would 
be coordinates of positive values of normal 
stress n, but negative values of shearing stress 
Ss. This is due to the fact that if the direction 
of shearing stress along the planes shown 
through two quadrants in Figure 10(a) is 
positive, then the direction of the shearing 
stress along planes through the other two 
quadrants of Figure 10(a) must be negative. 

CRITERIA o r FAILURE IN TRIAXIAL LOADING 

In a triaxial test, the specimen is subjected 
to both shear and normal, and to principal 
stresses. I t is of value to determine whether 
or not failure occurs due to the difference 
between the principal stiesses V and L applied 
at the time of failure, or because the shearing 
stress s, exceeds the shearing resistance 8, of 
the material on the plane of failure. 

Figure 11 illustrates three different condi­
tions of stress that can be considered for a 
specimen of a given soil material tested in 
triaxial compression, when the lateral pressure 
L is maintained constant and the vertical 

20 40 GO 80 100 eo 140 ISO 
WORMtL STRESS IN PS I 

Figure 11. Mohr Circles Illustrating Stable, 
Equilibrium and Failure Conditions 

pressure V is gradually increased. Mohr Circle 
(1) represents a very stable combination of 
loading that is materially less than the failure 
point. Its circumference is well below the 
Mohr envelope, indicating that the particulai-
combination of principal stresses, T'l and L, 
that it represents would be quite safe. Accord­
ing to the Coulomb theorj', when failure oc­
curs, it takes place on a plane making an 

angle fl = 45 - ^ with the vertical. Mohr 

Circle (1) indicates that the shearing stress A B 
generated on the plane of failure is appre­
ciably less than the shearing resistance of the 
material on this plane, represented by A G . 
Consequently, neither the shearing stress de­
veloped on the plane of failure, nor the dif­
ference between the principal stresses 7 i and L 
would cause failure of the specimen under the 
conditions of loading represented by Mohr 
Circle (1). 

Mohr Circle (2) of Figure 11 just touches 
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the Mohr envelope. Therefore, Vi represents 
the largest vertical load the specimen can 
carry without failure for the lateral support L 
being supplied. Mohr Circle (2) also demon­
strates that the shearing stress C D developed 
on the plane of failure is just equal to the 
maximum shearing resistance C D that can be 
mobilized on this plane. It is quite clear from 
Mohr Circle (2), therefore, that the maximum 
shearing stress 8> on the plane of failure and 
the maximum vertical load V that the speci­
men can sustain without failure, both develop 
at exactly the same time. 

Mohr Circle (3) of Figure 11 represents an 
impossible condition of stress, and could not 
be developed in a test specimen. j\Iohr Circle 
(3) cuts through the Mohr envelope and, 
therefore, indicates a value of vertical load Fa 
that could not be obtained for the given degree 
of lateral support L provided, because the 
specimen would fail before it had been reached. 
I t should also be noted that the shearing stress 
E H that would be generated on the plane of 
failure for the conditions of loading repre­
sented by Mohr Circle (3) would be greater 
than the maximum shearing resistance E F 
that can be developed on this plane. Thus, 
Mohr Circle (3) represents an impossible con­
dition of loading from the point of view of 
both the shearing stress and the principal 
stresses involved, and it has, therefore, been 
drawn with a broken line. 

Figure 11 demonstrates that when a definite 
quantity of lateral support L is provided for a 
specimen that is loaded triaxially, failure will 
occur when the major principal stress V ex­
ceeds a certain critical value, in Figure 11. 
I t also clearly indicates that when the major 
principal stress exceeds the critical value Vi, 
the shearing stress on the critical plane simul­
taneously exceeds the maximum shearing re­
sistance that can be developed on that plane. 
I t should be recalled again in this connection 
that the shear and normal stresses on any 
plane through a point are components of the 
principal stresses acting at that point. Conse­
quently, it cannot be said that failure of the 
specimen is due singly either to the difference 
between the principal stresses V and L, or 
because the shearing stress exceeds the shear­
ing resistance on the critical plane. Since each 
of these two factors is effective at precisely 
the same time, both are criteria of failure. 
Unless this were true, shearing resistance could 
not be measured by the triaxial test. There­

fore, theories of stability for soil and flexible 
pavement materials that are based exclusively 
on either the relationship between the princi­
pal stresses, or the ratio of shearing stress to 
shearing resistance on the plane of failure, 
are supplementary and closely interrelated 
approaches that provide identical solutions 
to stability problems pertaining to these 
materials. 

EQUATIONS OF STRESS FOR A LOADED ELEMENT 

Figure 12(a) indicates the stresses and the 
angles of inclination of the plane of failure to 
both the vertical and horizontal planes, be­
tween which relationships are frequently re­
quired for the condition of incipient failure 
(equilibrium) of a loaded element. All of the 
quantities shown have been previously defined 
except a, which is the angle between the plane 
of failure and the horizontal. 

Figure 12(b) is a principal stress diagram 
for a material for which the relationship be­
tween the major and minor principal stresses 
can be represented by a straight line. The 
limited usefulness of this diagram for visually 
illustrating the magnitudes of the various 
stresses and angles shown in Figure 12(a) is 
obvious. 

Figure 12(c) is a Mohr diagram correspond­
ing to the principal stress diagram of Figure 
12(b). The outstanding advantages of the 
Mohr diagram are quite evident. The relative 
magnitudes of the quantities V, L, Sr, s„ n, 9, 
and a shown in Figure 12(a) are visually and 
immediately apparent from even a cursory 
examination of the ^lohr diagram. In addition, 
the Mohr diagram develops and illustrates 
the magnitudes of the cohesion c and the angle 
of internal friction <t>, which are properties of 
the material that are not even indicated by the 
diagrams of Figure 12(a) and (b). That no 
assumptions are made when going from either 
Figure 12(a) or Figure 12(b) to the Mohr 
diagram of Figure 12(c) is quite clear from the 
fact that precisely the same relationships can 
be derived from the Mohr diagram that can 
be established from a consideration of the 
stresses acting on the loaded element of Figure 
12(a). This is illustrated in Figure 12 for the 
shear stress s, and the normal stress n, for 
which it will be observed that identical equa­
tions can be derived on the basis of either the 
loaded element of Figure 12(a), or the Mohr 
diagram of Figure 12(c). The ^iohr diagram of 
Figure 12(c) is a precise graphical method for 
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illustrating the size of the angles involved, and 
the magnitudes of the various stresses acting 
on the loaded element of Figure 12(a). 

For a soil or similar material for which 
stress conditions can be represented by 
straight line Coulomb, principal stress, and 
Mohr envelopes, that has both cohesion and 
internal friction characteristics, and that meets 
the other assumptions specified in the intro­
duction, the following equations can be written 
to express equilibrium relationships between 
the principal stresses V and L, in terms of 0, 

s, = L sin <t>, jl + sin ^ 
V l - sin 0 

+ c(l -I- sin 4>) (7) 

For the developed normal stress, the equa­
tions in terms of each of the three angles are: 

n = 2L cos' 9 -1- c sin 26 (8) 
n = 2L sin' a 4- c sin 2a (9) 
n = L {I + sin <i>) -f c cos * (10) 

Theories of stability for soil materials have 
been built up around the angle of internal 
friction <t) (Coulomb's internal friction theory). 

,Xb-J 
.COT^« 

iccoT-e 
1 

MINOR PRINQPAL 
STRESS L IN P.S.I. 

(A) (B) 

100 150 200 
NORMAL STRESS RS.1. 

(C) 

y - L , V - L SIN2-e-Ss« vsiN-e-cos-e~LSiN-e-cos-e-=-=Y'SiN2-e-

n= vsiN*-e-+LCOS*-e--L+(v-L)siN*-e-

Figure 12. Illustrating Identity of Stress Relationships Derived from a Loaded Element and 
from the Corresponding Mohr Diagram 

n-L+(V-L)SIN'-e-

the angle between the plane of failure and the 
vertical, a, the angle between the plane of 
failure and the horizontal, and the angle 
of internal friction: 

V = L cot' 9 -f- 2c cot 9 
7 = L tan' a -t- 2c tan a. 

(2) 
(3) 

y = L f L + i ! ! L _ A + 2cA^-±^ (4) 
\1 - sm 0 / \ 1 - sm 0 

The equations for the developed shear stress 
in terms of the three angles are: 

«, = L cot 9 cos 29 -(- 2c cos' 9 (5) 
s, = —L tan a cos 2a -I- 2c sin' a (6) 

and also around either the angle 9 (Housel's 
arching action theory) (9) between the plane 
of failure and the vertical (minor principal 
plane), or the angle a between the plane of 
failure and the horizontal (major principal 
plane). However, there is a complementary 
relationship between these three angles as 
shown below: 

= 4 5 - 1 

9 = 90 - a 

(11) 

(12) 

(13) 
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Consequently, a theory of stability based 
upon one of these three angles is supplemen­
tary to a theory of stability built up around 
either of the other two angles. These theories 
are, therefore, essentially identities, and they 
will give identical solutions to any given sta­
bility problem concerning these materials. 

Therefore, theories of stability for soil ma­
terials that are based exclusively on either the 
principal stresses, or on relationships between 
normal stress, shearing stress, and shearing 
resistance, or on the angle of internal friction, 
or on either of the angles between the plane 
of failure and the major or minor principal 
planes, or on combinations of two or more of 
these, are actually supplementary theories 
that provide identical solutions to any sta­
bility problem concerning these materials. As 
previously pointed out, corresponding direct 
shear and triaxial test data that seem to 
indicate fundamental differences between 
these theories of stability for soil materials, 
merely provide evidence that either the test 
specimens were not identical, or they were not 
subjected to identical conditions in the direct 
shear and triaxial equipment employed to 
provide the test data. 

SUMMABY 

1. There appears to be some difference of 
opinion at the present time concerning the 
significance of the Mohr diagram when used 
for the analysis of triaxial data, and regarding 
the relatioi^ips between the Coulomb and 
Mohr diagrams. 

2. The characteristics of the Coulomb dia­
gram employed for direct shear test data are 
described. 

3. The use of the Mohr diagram for the 
analysis of triaxial data is reviewed. 

4. For given soil materials tested imder 
identical conditions in direct shear and triaxial 
equipment, it is shown that the Coulomb and 
Mohr envelopes must be identical, 

5. The criteria of failure involved when a 
specimen is loaded triaxially to failure are 
examined. 

6. The conclusion is reached that theories 
of stability for given soil or similar materials, 
that are based exclusively on either the princi­
pal stresses, or on relationships between 
normal stress, shearing stress, and shearing 
resistance, or on the angle of internal friction, 
or on either of the angles between the plane of 

failure and the major or minor principal 
planes, or on combinations of two or more of 
these, are actually supplementary theories, or 
identities, that provide identical solutions to 
any stability problem concerning these ma­
terials. 

7. Corresponding direct shear and triaxial 
test data that seem to indicate fundamental 
differences between these theories of stability 
for the given materials, merely provide evi­
dence that either the test specimens were not 
identical, or they were not subjected to identi­
cal conditions in the direct shear and triaxial 
equipment employed to provide the test data. 
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SYNOPSIS 

P A R T I — I D E N T I F I C A T I O X B Y D I F F F R E N T I A L T H E R M A L A N A L Y S I S 
This paper is the first in a series of articles concerning the role of the clay 

fraction in engineering soils, including both the methods of analysis and the 
application of the results obtained therefrom to the determination and control 
of the engineering behavior of these soils. The differential thermal method of 
analysis is presented with the major emphasis on Ihe preparation of samples for 
analysis so as to increase the sensitivity and accuracy of this analytical 
procedure. 

Sample preparation becomes necessary whenever the clay fraction constitutes 
only a small percent of the soil or when other constituents are present whose 
reactions tend to mask those of the clay minerals. The clay concentration may be 
increased by extracting and analyzing either the soil fraction passing a 270 mesh 
sieve or the particles less than one micron in diameter. Interfering constituents 
may be eliminated by the proper treatment, e.g. the removal of organic material 
from a soil by the use of hydrogen peroxide. 

Examples of the thermal patterns obtained by the use of these techniques in 
some Iowa soils are presented. These patterns are discussed to show what data 
can be obtained from this relatively simple, rapid method of soil analysis. 

P A R T I I — P A R T I C L E S I Z E D I S T R I B U T I O N AND CATION E X C H A N G E 
C A P A C I T Y 

This is the second in a scries of studies concerning the definition and control of 
the properties of the clay fraction in engineering soils. This article presents 
methods for the determination of the particle size distribution down to one-
tenth micron diameter and below, and for the rapid determination of cation ex­
change capacity for the whole soil and for the less than one micron fraction. 
The methods presented have been selected because of their rapidity and sim­
plicity and because the}' employ equipment which is readily available. 

Correlation of the results obtained by these methods cannot at the present 
be made with soil properties except in a very general manner. However, these 
methods are accurate and when the basic knowledge relating fundamental clay 
properties and soil behavior is known they will be valuable analytical tools. 
Further studies with the purpose of making available the knowledge necessary 
for the fullest application of analytical research to practical engineering are 
in progress. 

P A R T I — I D E N T I F I C A T I O N B Y D I F F E R E N T I A L T H E R M A L A N A L Y S I S 

I t is now well established that the clay havior of soil as an engineering material, 
fraction of soil is the seat of varied and vigor- Experimental evidence indicates that such 
ous reactions which greatly influence the be- proi^erties as plasticity, adsorption, shrinkage. 




