Ohio Incremental Study: An Experiment in Vehicle-Tax Allocation

D. F. Pancoast, Ohio Department of Highways

The present paper, while based upon a solution for Ohio, emphasizes the use of new data and techniques which can be of general application. Methods of using data from road-use studies, loadometer surveys, and traffic classification counts are discussed.
Highways are divided into five groups according to types of pavement. These types are defined as those capable of carrying an indefinite number of repetitions of axle loads of $19,000 \mathrm{lb} ., 14,000 \mathrm{lb} ., 8,000 \mathrm{lb}$., and $4,000 \mathrm{lb}$. In each of these groups of highways, indices of incremental cost responsibility have been developed for pavements, structures, grading and drainage, and maintenance.

In the present study, a number of concepts were discarded and the analysis was based upon axle-miles. Costs of right of way and of the 30 percent of maintenance costs not assignable to definite highway sections (snow removal, traffic markings, etc.) were allocated on a vehicle-mile basis. Costs of the motor vehicle bureau (issuing licenses, etc.) and of the highway patrol were distributed equally among all vehicles.
It is believed that the new techniques described in this paper, while complicating the solution, represent a distinct advance in the attempt to make an equitable allocation of highway costs.

- AS far back as 1933, the Joint Committee of Railroads and Highway Users issued a report stating: "The basic cost of constructing, improving and maintaining a given highway should be determined from a highway designed for private passenger vehicles and other vehicles commensurate therewith. All vehicles using such highways should pay their proportionate share of that total as a base tax. The total additional cost of construction, improvements, and maintenance to make a road suitable for a type of vehicle requiring such additional cost should be shared by each vehicle of that type and each vehicle of greater size. Thus, each vehicle should share in the base cost plus all increments of cost up to and including cost required by it."

That still stands as a reasonably good definition of the "incremental," or "differentialcost," method of allocating the motor vehicle's share of highway costs among the several types of vehicles. Its use presupposes that the motor vehicle's fair share of highway costs as compared to the share to be borne by abutting property, the community, and other beneficiaries of highways, has already been determined.

The incremental method is not new.

Probably the best known example of its use is in the report of the Federal Coördinator of Transportation. ${ }^{1}$ Written at that same time was a report by Breed, Older, and Downs, for the Association of American Railroads. ${ }^{2}$

Among earlier studies using the incremental method were reports covering the highways of Oregon, ${ }^{3}$ Illinois, ${ }^{4}$ and Ontario. ${ }^{5}$ The first of these is notable for the use of a short-cut method which uses only two increments; the basic highway and the standard highway. The former is a theoretical highway for basic vehicles of a gross weight of $4,000 \mathrm{lb}$. or less. The latter is a highway suitable for existing traffic.

A study of these and other incremental solutions, while rewarding as to methods, gives little help as to detailed figures. The paucity of data with which these authors had

[^0]to work is appalling. Moreover, the costs and methods of construction and the characteristics of traffic have changed greatly in the last 10 or 15 yr . For example, the coördinator's report which the trucking industry refers to so nostalgicly, used 4 in . of concrete for the basic vehicles and only $61 / 3$ in. for the heaviest combinations. Now, 10 in. must be used. His heaviest combinations averaged 32,500 lb . gross weight and $28,000 \mathrm{mi}$. a year. Those figures are more than doubled today.

The incremental method can be used in analyzing historical costs, those of the immediate future, or (with a planner's customary hardihood) those of a long-range program of highway development.

The present study is in the last category. Its purpose was to determine a fair allocation of the motor-vehicle share of a $20-\mathrm{yr}$. program of highway improvement in Ohio.

A comprehensive needs study conducted under the direction of the Automotive Safety Foundation had resulted in suggested $10-$, 15-, and $20-\mathrm{yr}$. programs.

A highway committee of the Ohio Program Commission had decided that the 20 -yr. program was feasible and that the motorists' share of the cost should be about 82 percent.

This preliminary work gave a figure of approximately $\$ 220$ million per year which was to be allocated among the various types of vehicles. The needs study also developed a mass of data which was invaluable in applying the incremental method. In fact, one should hesitate to recommend that any state attempt an incremental solution unless similar data were available.

Collecting and analyzing the data required for this type of study can conveniently be divided into three parts: 1) the highway, 2) the vehicle, and 3) the interaction between the two.

In considering highways, it was decided not to classify them according to jurisdiction such as rural primary, rural local, and city streets. Each of these classifications would have included pavements of the lowest as well as the highest types and many miles of highway which do not carry one heary vehicle a month. A more realistir approach was deemed to be a classification based on type of pavement.

Luckily, such a classification was used in the needs study: Type A pavement was
determined to be capable of sustaining large numbers of repetitions of $19,000-\mathrm{lb}$. axle loads, Type B of $14,000-\mathrm{lb}$. axle loads, Type C of $8,000-\mathrm{lb}$. axle loads, and Type D of $4,000-$ lb. axle loads. For each of these types the program costs had been divided into costs of 1) pavement, 2) structures, 3) grading and drainage, 4) right of way, and 5) maintenance.

In determining the incremental costs of pavements, the design engineers of the highway department reported that, due to climatic conditions in Ohio, a satisfactory road for large numbers of the lightest vehicles should be either 3 in . of asphaltic concrete on 5 in . of water-bound macadam, or 4 in . of portland-cement concrete, either of which would cost about $\$ 29,000 \mathrm{a}$ mi. if 22 ft . wide. Such pavements will sustain indefinite numbers of repetitions of $4,000-\mathrm{lb}$. axle loads. For lesser numbers of light vehicles, this cost is reduced (see Table 2).

This determined our basic velicles as those having axle loads of not over $4,000 \mathrm{lb}$.

To keep the necessary computations within reasonable bounds, it was decided to use only four increments of thickness, and hence four increments of cost, for Type A pavement. These were taken at thicknesses suitable for axle loads of $4,000,8,000,14,000$, and $19,000 \mathrm{lb}$.
Costs for these increments were decided after studying all the contracts awarded during one year by the highway department, and consulting with state, countr, and municipal engineers and contractors.

For the incremental costs of structures, the bridge department was asked to design a series of bridges for different weights of vehicles and for two different sites.

When it came to grading and drainage, the earlier studies were of little help. Are grades below 6 percent for the benefit of trucks, and are the tops of hills leveled to give passenger cars longer sight distance? Who benefits from easing horizontal curves?

Even if we knew the answers to such questions, no highway department keeps its accounts in such shape that the costs can be segregated.

One thing is known: trucks are wider than passenger cars. Commissioner Mc.Donald has said ${ }^{6}$ that trucks require an increase of 1 ft .
${ }^{6}$ Heurings Before the subcommittee of the Senate Committee on Interstate and Foreign Commerce. Pursuant to Senate Resolution 50, Part II (June 1950).
in lane width over that satisfactory for passenger cars. It was decided that shoulders should be 2 ft . wider for trucks than if passenger cars only were considered. From these figures, typical cross sections were drawn (Fig. 1) and the percentage of grading and drainage costs chargeable to the larger vehicles computed.

Maintenance costs have been an equal bugaboo to earlier workers in this field. What is believed to be an entirely new approach has been used here. For each of the three pavement types, A, B, and C , the actual

Figure 1. Typical cross-sections.
maintenance expenditures on a large number of highway sections over a $51 / 2-y r$. period was recorded. Only sections having the same width and which had not been constructed or reconstructed during the period were included. The total traffic and the heavy truck traffic on each of the sections was recorded.
A multiple-correlation analysis was made of the three factors: maintenance cost in dollars per mile per year; total traffic in vehicles per day; and heavy truck traffic in vehicles per day. The results are shown in Table 2.
It must be admitted, however, that an
application of statistical tests of the significance of the multiple regressions shows that, if we use a 95 -percent probability of correctness as a criterion, that the effect of numbers of heavy trucks on maintenance costs is significant in the cases of Type A pavements but not in the case of B and C pavements.

However, in order to complete the solution in time for this meeting (and as a probability of being correct attaches even to the results for B and C pavements) the figures for these were used. As time permits, additional data will be gathered and a new analysis made. It is not believed that appreciable changes in the final results will be necessary.

It should be emphasized that this treatment is applied only to the 76 percent of total maintenance costs which is directly allocable to specific highway sections. The remaining 24 percent, which included snow and ice control, traffic signs and marking, guard rail painting, and the like, is allocated on a vehicle-mile basis. Costs of right-of-way were also distributed on a vehicle-mile basis (see Table 3).

The costs of the motor-vehicle bureau and the highway patrol are paid from motorvehicle revenues. These costs were considered to be justly allocable on a per-vehicle basis. Similarly, miscellaneous revenues such as fines and drivers' and dealers' license fees seemed to be derived mainly on a per-vehicle basis. Hence, such revenues were deducted from the cost of the bureau and patrol and the remaining cost allocated to all vehicles equally (see Table 3).
In considering vehicles, they were first divided by types into passenger cars, farm trucks, commercial trucks, trailers, tractortrucks, semitrailers, and buses. Taxicabs were included in passenger cars and motorcycles were ignored. The subclassification by empty weight was necessitated by the fact that Ohio licenses its vehicles on that basis. Those states which license on a different basis should, of course, classify their vehicles accordingly.
Most of the earlier studies treated all the components of combinations together as one unit. This led to serious anomalies. We know, for example, that there are about twice as many semitrailers as there are tractors; hence, the former can have average annual mileages

TABLE 1
VEHICLE GROUP RESPONSIBILITY FOR COSTS OF TYPE C HIGHWAYS

TABLE 1-CONCLUDED

of only about half those of tractors. Moreover, the two vehicles are often under different ownership. They are licensed separately. A tractor may haul a one-axle semitrailer today and a two-axle one tomorrow. The case of trucks and trailers is similar. The components of vehicle trains must be treated individually.
As this study was made to allocate the costs of a proposed $20-\mathrm{yr}$. program, it was necessary to project vehicle registrations to the mid-year of the program. The same was true of average annual mileages. In this connection, the spectacularly increasing traffic on our highways makes it imperative that the very latest available data be used.

In considering the interaction between vehicle and pavement, a complete break was
made from the earlier work in this field. Where gross ton-miles or vehicle-miles classified by the heaviest axle on the vehicle or combination have been used, the present study was based on axle-miles.

By this method, a two-axle truck having a front-axle weight of $3,000 \mathrm{lb}$. and a rearaxle weight of $6,000 \mathrm{lb}$. would be charged with two axles in the basic cost increment but for only one in the second increment. A three-axle truck with a front axle of 3,000 lb. and two rear axles of $6,000 \mathrm{lb}$. each would be charged for three axles in the basic increment and for two axles in the second increment.

The loadometer surveys and traffic classification counts furnished the information

\footnotetext{
Type C Highways

0-4	$\text { From Table } 1(\mathrm{~d})$	Type 1) Highways								1,914,083	100.000	100.033	7,513,411	11,629,769	1.86156	1.88156
		100.000	100.000	1,286,501	100.000	100.000	915,774	100.000	100.000							
ed from this final report. Table 1 of this paper is Table 1 (c) of the origina																
${ }^{2}$ Column $5 \times \$ 34,794,121$ ${ }^{\mathrm{b}}$ Column $5 \times \$ 8,442,010$.		${ }^{\text {d }}$ Column $9 \times \$ 15,285,480$.				${ }^{\mathrm{g}}$ Column $12 \times \$ 25,746,798$.					${ }^{\mathrm{k}}$ Column $15 \times \$ 8,981,210$.					

Costs which do not vary with vehicle size or weight

		－	 	－	 	菏	 	O
			 	$\begin{aligned} & \stackrel{\rightharpoonup}{ة} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{4} \end{aligned}$	 	$\begin{aligned} & \text { 帝 } \\ & \text { 荷 } \end{aligned}$	 	＋
		$\begin{aligned} & \text { 箩 } \\ & \text { 等 } \end{aligned}$	 	$\begin{aligned} & 8 \\ & 9 \\ & 9 \end{aligned}$	 	$\begin{aligned} & \infty \\ & \\ & 8 \\ & 8 \end{aligned}$	 	－
			 	$\begin{aligned} & \frac{9}{2} \\ & \text { B } \end{aligned}$	 	－	 	$\stackrel{+}{\dot{\sim}}$
$\begin{aligned} & \text { U } \\ & 0 \\ & \stackrel{y}{2} \end{aligned}$		$\begin{aligned} & \text { gio } \\ & 0 \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$		$\left\lvert\, \begin{gathered} \text { 侃 } \\ \infty \end{gathered}\right.$	 		 	3
			ダがごご	$\begin{aligned} & \text { 淃 } \\ & \stackrel{5}{5} \end{aligned}$	 		 	
			 	$\begin{aligned} & \text { 888 } \\ & \text { 8 } \\ & 0 \end{aligned}$	 		 	\％
		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{8}{8} \\ & \vec{j} \end{aligned}$	 	$\left\lvert\, \frac{8}{8}\right.$	 	$\begin{aligned} & \text { 䧺 } \\ & \text { di } \\ & \text { cin } \end{aligned}$	 	算
	$\xlongequal{ } \begin{gathered} \\ \\ \\ \\ 0 \end{gathered}$	感	 		 		 	\％
		\％	がら゙ごがから	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sim}{\pi} \\ & \hline \end{aligned}\right.$	 		 	郒
		8 8 0 0 0	 	$\left\lvert\, \begin{aligned} & \tilde{x}_{\infty}^{\infty} \\ & \underset{\infty}{\infty} \end{aligned}\right.$	 	$\left\lvert\, \begin{aligned} & 7 \\ & \text { 管 } \end{aligned}\right.$	 	落
			이కిరికిళిళ がゆ風家 \＆ิర్రైరెళ్ర ベバザッジージー		Eizz 		 	

required for this breakdown, except for buses. Ohio loadometer crews have not weighed buses for several years. However, the Washington Highway Department furnished photostats of the field sheets of a bus study made in connection with James C. Nelson's report ${ }^{7}$ for that state.
and of the federal-aid secondary system (as well as numerous local studies) were a a ailable. From these it was possible to make a distribution of the annual axle-miles by axle weights of each type of vehicle to the several highway systems and finally to the pavement types.

TABLE 5
VEHICLE-MILES BY AXLE COMBINATIONS AND BY PAVEMENT TYPES COMMERCIAL TRUCKS

Empty Weight	Axle Loadings	Total	Vehicle-Miles (times 1,000)			
			On Type A	On Type B	On Type C	On Type D
kips	kips					
1-2	(0-4) (0-4)	11,235	8,494	2,269	416	56
2-3	(0-4) (0-4)	432,675	317, 151	93,458	19,038	3,028
3-4	(0-4) (0-4)	1,030,803	735,993	233,992	51,540	9,278
	(0-4) (4-8)	54,252	38,736	12,315	2,713	-488
4-5	(0-4) (0-4)	371,014	258,968	88,301	20,035	3,710
5-6	(0-4) (4-8)	43,224	28,774	9,811	2,226	413
	(0-4) $(0-4)$	485, 322	335, 357	117, 933	27,178	4,854
	(0-4) (4-8)	97,000	67,027	23,571	5,432	970
	(0-4) (8-14)	1,183	${ }^{817}$	${ }^{287}$	+66	13
6-7	$(0-4)$ $(0-4)$ $(8-8)$ $(8-14)$	534,276 59,364	369,719	130,363	29,919	4,275
7-8	$(0-4)$ $(0-4)$ $(4-14)$	59,364 151,450	41,080 106,469	14,485 36,197	3,324 8,178	475 606
	(0-4) $(8-14)$	217,226	152,710	51,917	11,730	869
	(4-8) (4-8)	38,016	26,725	9,086	2,053	152
	(4-8) (8-14)	25,344	17,817	6,057	1,368	102
8-9	(0-4) (8-14)	242,029	175,713	54,456	11,860	0
	(0-4) (Over 14)	62,008	45,018	13,952	3,038	0
	(4-8) (8-14)	16,008	11,622	13,602	${ }^{784}$	0
9-10	(0-4) (Over 14)	$\begin{array}{r}24,619 \\ \hline 9\end{array}$	18,661	4,973	985	0
	(4-8) (8-14)	79,633	60,362	16,086	3,185	0
	(4-8) $(0-4)($ Over $(0-4)$ $(0-4)$	54,800	41,538	11,070	2,192	0
10-11	(4-8) (Over 14)	81,527	65,140	11,023	2, ${ }^{210} \mathbf{3 6 4}$	0 0
	(0-4) (0-4) (0-4)	1,860	1,486	. 320	54	0
	(0-4) (0-4) (4-8)	9,790	7,822	1,684	284	0
11-12	(4-8) (Over 14)	26,252	22, 262	3,596	394	0
	(0-1) (0-4) (4-8)	6,639	5,630	-909	100	0
	(0-4) (4-8) (4-8)	17, 187	14,575	2,355	257	0
	(4-8) $(0-4)$ $(4-8)$ $(4-8)$ $(4-8)$ $(4-8)$	21,400 9	18,147	2,932	321	0
12-14	$\begin{array}{ll}(0-4) & (4-8) \\ (0-4) & (4-8) \\ (4-14)\end{array}$	9,987	9,218	769	0	0
	$(4-8)(4-8)(4-8)$	6,108 $\mathbf{2 0 , 7 9 2}$	5,915 19,191	493 1,601	0	0
	(4-8) $(4-8)(8-14)$	9,324	8,606	'718	0	0
	(4-8) (8-14) (8-14)	4,139	3,820	319	0	0
14-16	(0-4) $(4-8)(8-14)$	2,805	2,805	0	0	0
	(4-8) (8-14) $(8-14)$	${ }^{680}$, 680	0	0	0
	(4-8) (8-14) (Over 14)	12,614	12,614	0	0	0
16-20	(8-14) (Over 14) (0-4) (4-8) (8-14)	500 1,634	500 1.634	0 0	0	0
	$\left(\begin{array}{cc}(-8) & (8-14) \\ (8-8) \\ \text { (Oer 14) }\end{array}\right.$	1,634 7,994	1,634 7,994	0	0	0
	(8-14) (8-14) (8-14)	100	100	0	0	0
	(8-14) (Over 14) (Over 14)	100	100	0	0	0
Over 20	$(1-8)(8-14)($ Over 14)	1,887	1,887	0	0	0

In studying the combined factors of vehicle and highway, and the influence of each upon the other, those states which have recent road use surveys are to be envied. In Ohio, the road use study was made in 1936 and driving habits have changed since then. However, recent comprehensive traffic surveys of the state highway system, both rural and urban,

[^1]The results in vehicle-miles are shown in Table 3. Table 5 illustrates how the loadometer data were used to break these vehiclemiles down into axle-miles.

Table 1 shows how the axle-miles for each class of vehicle on Type C highways are combined for each of the two increments into which this type of highway was divided.
Table 4 completes the incremental solution.
The breakdown of the computations into

TABLE 6
AXLE-MILES BY AXLE LOADINGS AND BY PAVEMENT TYPES, COMMERCLAL TRUCKS

Empty Weight	Axle Loadings	Axle-Miles (times 1,000)			
		On Type A	On Type B	On Type C	On Type D
kips	kips				
1-2	0-4	16,988	4,538	832	112
2-3	0-4	634,302	186,916	38,076	6,056
3-4	0-4	1,510,722	480, 299	105,793	19,044
	4-8	38,736	12,315	2,713	- 488
4-5	0-4	546,710	186, 413	42,296	7,833
	4-8	28,774	9, 811	2,226	413
5-6	$0-4$	-738,558	259, 724	59,854	10,691
	4-8	62,027	23,571	5,432	970
6-7	8-14	817	287	66	13
	0-4	410,799 369,719	144,848 130,363	33,243 29,919	4,750 4,275
7-8	8-14	41,080	14,485	3,324	+75
	0-4	259, 179	88,114	19,908	1,475
	4-8	71,267	24,229	5, 474	406
8-9	8-14	170,527	57,974	13,098	971
	0-1	220,731	68, 408	14,898	0
9-10	4-8	11,622	3,602	784	0
	8-14	187,335	58,058	12,644	0
	Over 14	45,018 30,592	13,952 8,153	3,038 1,615	0
	4-8	101,900	27,156	5,377	0
	8-14	60,362	16,086	3,185	0
10-11	Over 14	60,199	16,043	3,177	0
	$0-4$ 48	20,102 72,962	4, 15,728 1	730 2,648	0
11-12	Over 14	65,140	14,023	2,364	0
	$0-4$	25, 835	4,173	, 457	0
	4-8	111, 483	18,011	1,971	0
12-14	Over 14	22,262	3,596	394	0
	${ }_{4-8}^{0-4}$	15,133 102,956	1,262 8,589 1,819	0 0	0
14-16	8-14	-22,161	1,849	0	0
	$0-4$	2,805	0	0	0
16-20	4-8	16,099	0	0	0
	Over $\begin{array}{r}8-14\end{array}$	16,779 12,614	0	0 0	0 0
	$0-4$	1,634	0	0	0
	4-8	9,628	0	0	0
Over 20	8-14	10,528	0	0	0
	Over 14	8,694 1,887	0 0	0 0	0
	$\stackrel{4}{8-14}$	1,887 1,887	0	0	0
	Over 14	1,887	0	0	0

Figure 2. Trucks.
many tables and the cross referencing back and forth between them is regretted, but the

Figure 3. Trailers.
limitations of reproduction and legibility compelled it. The classical methods of the incremental solution have been followed, and it is believed that the readers of this paper are sufficiently familiar with those computations to follow those shown in these tables.

Actually, the incremental solution ends with
the ninth column of Table 4, where the annual cost responsibility of each type and weight of vehicle is shown. However, to put this information to practical use it is necessary to

Figure 4. Tractor-trucks.

Figure 5. Semitrailers.
determine how much of this responsibility is taken care of by gasoline tax payments, and how much is left to be covered by license fees or other forms of taxation.

The gallons-per-mile gasoline consumption
for passenger cars and buses were taken from the Simpson ${ }^{8}$ report. For the other vehicle types, it was based upon data from HRB's Research Report 9-A. Specifically, the formula $G=.0208 W^{0.618}$ was used. Here G is gallons per mile and W the gross weight of the vehicle or combination. The fuel consumption of trailers and semitrailers was computed by subtracting from the weighted average fuel consumption of the combinations in which a

Figure 6. Busses.
given trailer is found, the weighted average fuel consumption of the motive units.

Figures 2 and 6, inclusive, are presented to give a quick visualization of the results of the Ohio study.

It is hoped that this description of the use of modern data and new techniques will encourage others to use and further improve the incremental method which is believed the soundest yet proposed for the equitable allocation of highway costs among highway users.

[^2]
[^0]: ${ }^{1}$ Public Aids to Transportalion, Vol. IV, Government Printing Office (1040).
 ${ }^{2}$ C. B. Breed, Clifford Older, and W. S. Downs, Highway Costs-A Study of Highway Costs and Motor Vehicle l'ayments in the United States (1939).
 ${ }^{3}$ Report of the Interim Committee for a Study of the Motor Transportation Act and the Fees and Taxes paid by the Road Csers for the Highway Facilities Provided by the State of Oregon (Jan. 1, 1937).
 ${ }^{4}$ V. L. Glover et al. A Study of Highway Costs and Motor Vehicle Taxation in Illinois (1938).
 ${ }^{5}$ C. B. Breed, Clifford Older, and W. S. Downs, Report on Annual Highway Costs, Province of Ontario (Feb. 21, 1938).

[^1]: ${ }^{7}$ James C. Nelson, Taxing Washington's Motor Vehicle. Equitably for Highway Services (Sept. 23, 1950).

[^2]: ${ }^{8}$ Herbert D. Simpson, Highway Finance, A Study Prepared for the Ohio Program Commission (Sept. 1951).

