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Stresses in Subgrade under Rigid Pavement

GERALD PickeTT, Professor of Mechanics, and

Daxiern K. Y. A1, Graduate Student,
Unaversity of Wisconsin

SiMPLIFIED expressions for the theoretical stresses in the subgrade under a pavement
are obtained. The simplification results from the substitution of an arbitrary com-
bination of two solutions based upon plate theory for the usual rigorous solution of
a two-layered system. The range of application of the substitute solution is greatly
extended by arbitrary choice in each component solution of the factor which expresses
the effect of the Poisson’s ratios of pavement and subgrade on the radius of relative

stiffness.

Use of the simplified expressions is facilitated by the inclusion of tables from which
the stresses for given conditions may be obtained by interpolation.

@ THE question of subgrade stresses has
been considered by Burmister and others in
their studies of two- and three-layer systems
(1, 2, 3). In general the expressions they ob-
tain for stresses are involved and require
considerable computational work to evaluate.
Moreover, the elastic constants of the pave-
ment and the subgrade enter in in such a way
that separate calculations are required for
each different ratio of these properties. The
purpose of this paper is to obtain, by a few
simplifying assumptions and semiempirical
methods, much-simpler expressions for sub-
grade stresses under rigid-type pavements
such as cement concrete.

The primary simplification of the theory
used by Burmister will be to use the theory of
thin plates for the concrete pavement. This
is the usual assumption when the study is
confined to the bending of the concrete
pavement (4, §). However, this simplifica-
tion without modification would result in
appreciable error in cases of practical im-
portance, since it does not take into account
the effects of shear in the pavement on de-
flection and does not properly take into ac-
count horizontal shear at the interface be-
tween subgrade and pavement. In the analysis
given here, a modification is introduced which,
in effect, takes these other factors into ac-
count, with the result that the simplified
theory, as modified, gives results that are in
agreement with the more-rigorous theory
used by Burmister over a wide range of
conditions.

In both cases—the Burmister theory and
the simplified theory—an assumption has to
be made in regard to the conditions at the
interface between the pavement and the
subgrade. Burmister considered two pos-
sibilities: (1) there is no friction at the inter-
face or (2) there is continuity of displacements
and boundary stresses at the interface. There
are also two possibilities when plate theory
is used for the pavement: (1) there is no fric-
tion at the interface and (2) no horizontal
displacement is permitted at the interface.

It is of interest that the two assumptions
for plate theory lead to identical expressions
for the bending of the pavement slab, with
the exception that the radius of relative stiff-
ness is slightly different in the two cases. This
i1s shown by the following equations:

I = WB[E,/E,)'" 1
where

h is pavement thickness

E,is Young’s modulus for pavement

E.is Young’s modulus for subgrade

B is a factor that depends on the Poisson’s
ratios and is different for the two cases.

For no friction at interface:
B =11 —u)/6(1 — )7 2)

For no horizontal displacement at inter-
face:

B =[(3 — 4wl 4+ w)/24(1 — (1 — )5 (3)
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where

4 is Poisson’s ratio for subgrade
v is Poisson’s ratio for pavement.

The first modification introduced is to use
an arbitrary value for 8 in either solution
instead of that given by Equations 2 or 3.
The second modification is to combine both
solutions in an arbitrary way. If in the Bur-
mister theory the assumption of no friction
at the interface is made, then only the one
plate theory solution, that of no friction, is
needed. If in the Burmister theory continuity
at the interface is assumed, then g parts of the
one solution based on plate theory is added
to (1 — g) parts of the other solution based
on plate theory. The basis for determining g
is to make the shear at the interface approxi-
mately the same as that given by the Bur-
mister theory. The basis for determining B
in each solution is to make the shapes of the
two curves obtained from plotting shear
stress and normal stress at the interface
versus radial distance from the load agree
best with the Burmister theory. If these
interface stresses are approximately the same
as in the Burmister theory, then all subgrade
stresses at all points will be in good agreement
with his theory.

SUBGRADE STRESSES BASED ON PLATE
THEORY FOR THE PAVEMENT

The pavement is assumed to be governed

by the well known plate equation
E K 2 o2
20 = V Viw=¢q—-7p 4)

where ¢ is the loading on top and p is the
reactive pressure between pavement and
subgrade. The subgrade is assumed to be
governed by the Love strain function ¢ which
must satisfly Equation 6.

Vivig =0 (5)

Subgrade stresses are found from solutions
for ¢ by means of the relations

2
o = [@ ww—%ﬂ )

9z
2
o) = g[W¢—aﬂ @

DESIGN

uvi — 1 —] ®

Trs = 5(?7:[(1 - )V2¢ - ip:l (9)

The use of Love’s strain function necessi-
tates the assumption that all stresses are in-
dependent of the cylindrical cooérdinate 6.
This assumption is made.

If the load on the pavement is uniformly
distributed over a circular area of radius a,
then ¢ becomes:

For no friction at interface:

¢ = —qal?

* (2u+ ag')Jo(ap)J1< >e o doy
0 a3(1 + a?)

(10)

For no horizontal displacement at interface:

qal®
2(1 — )

¢=.._

® (1 4+ ab)Jolap)dy <a_la> e do
0 (1 + a?)

where p = r/land { = 2/l
After substituting the appropriate ¢ into

(11)

Equations 6 to 9 and expanding J, into

aa
T
a power series, the following equations are
obtained:

For no friction at the interface:

k=0

o= =7 i A <(Z—Z> [Fooepn + $Foea0) (12)

a& a
or=—q7 > Ax <7> [Foze+1 — $Fo,2%42
panr

— (1 = 2uw)F1,21 + (F1,2041]

a & a
k=0

[2uFo0,0k41 + (1 — 2w) Fyoe — $F1,0044]

e a§'P Z Ai <‘l—’> Fiosa  (15)

(13)

(14)
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For no horizontal displacement at inter-
face:

=T 2(1—#)12‘1"<>

(16)
-[2(1 — wFooe41 + {Fo2n40]
. A
’ 2(1—mlZ k<> (17)
2uFeomi1 — Foskre + $F1ous1)
qa & a
=2 54 (2
R TSRy k§, g <z> (18)
[2uF o241 — $F1,0641]
qal = a
re = T 371 N7 A T
§ 2T -l 2 <l> (19)

101 — 2u) Fro641 + $F12e42)
where

2k+1
Ak(?) = (2%) JEEen @)

“ Jolap)e™

Fon = A T+ o o do (21)
1" D,
Fln = Py 1 + a3 a™ do (22)

The particular expressions for ¢ in Equa-
tions 10 and 11 were chosen not only to
satisfy Equation 5 but the plate equation,
Equation 4. For this purpose w is taken as
being the deflection of the subgrade at z = 0,
or
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2 and 3, is also required if Equation 4 is to be
satisfied.

The requirement that 1., be zero at z = 0
in the first solution is obviously met by
Equation 15. The requirement of no horizontal
displacement at the interface is met for the
second solution, since for it

Q4w
E? 1 9z|emo

=0 (24)

All the expressions for stresses are conver-
gent and rapidly so if a/I is not large. If a/l
is zero, that is, the load is concentrated at a
point, then only the first term in the summa-
tions remains. Other simplifications result if
either p or ¢ is zero, and still further simpli-
fications if two of the three parameters
a/l, p, { are zero.

For numerical computations tables of the F
functions are desired. The function Fy, may
be reduced to one of the three functions
Fw, Fo, Foe, and Fi, may be reduced to
one of Fy, Fiui, Fiz by repeated application
of the following formulas:

— Fom + (=)™ —g_;.[p + 7R (25)

FO,m+3

"‘Flm

(_1)m—1 ﬂ g‘ (26)
T el

Numerical values for the six basic F func-
tions for a limited range of p and { are given
in Tables 1 to 6. Their use is illustrated by
the following example:

Fl,m+3 =

14+u 2¢, Example: In Equation 12 let a/l = 0.5,
w = . 2(1 — )V2¢>—- — (23) = 1.0, { = 1.2. Then
2=Q

Th < th " ; ; 0 = —0.5¢[.25Fy + .30F¢,
e pressure p is the negative of o, at z = 0, .

and the load ¢ is ¢ for r < a and zero forr > a. + .0078125F; + .009375F o4

The appropriate expression for 3, Equations + .000081Fq + ---1 (27)

TABLE 1
= Jolap) e
Fo 0 T1ta de
0.0 0.2 0.4 0.6 0.8 1.0 12 14 1.6 1.8 2.0

0.0 | 1.20020 | 1.18192 | 1.12747 | 1.06066 | 0.98853 | 0.91526 | 0.84347 | 0.77482 | 0.71020 | 0.65042 | 0.50543
0.2 | 1.01934 | 1.00756 | .97582 | .93139 | .87068 | .82449 | .76841 | .71284 | .66015 | .60996 | .56304
0.4 88446 | .87714 | .85644 | .82552 .78767 | .74566 | .70164 | .65690 | .61357 | .57150 | .53154
0.6 78025 | 77521 . .76068 | .73825 | .70988 | .67746 | .64262 | .60645 | .57072 | .53545 | .50145
0.8 -69675 69309 | .68230 | .66557 | .64381 | .61842 | .59059 | .56116 | .53160 | .50198 | .47303
1.0 .62831 62540 | .61734 | .60433 | .58736 | .56710 | .54472 | .52062 | .49603 | .47108 ; .44639
1.2 57104 | 56880 | .56253 | .55232 | .53879 | .52254 | .50423 | .48433 | 46378 .44268‘ 42157
1.4 -52259 52088 | .51581 @ .50763 | .49670 | .48346 | .46838 | .45184 | 43456 | .41664 | .39854
1.6 48106 | .47968 | .47558 | .46803 | .45900 | 44008 |  .43655 | .42269, .40808 ~ .39280 | .37722
1.8 (44513 | 44309 | .44083 | .43516 | .42776 | .41868 | .40819 | .30650 | .38406 | .37097 | .35751
2.0 41376 | 41282 | 41003 | .40548 | 39930 | .30168 | .38282 | .37280 | .36225 | .35008 | .33931
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TABLE 2
af
Fa = fw Jo(ap)e' ada
0.0 0.2 ‘ 0.4 0.6 0.8 1.0 J 1.2 1.4 1 1.6 1.8 2.0
0.0 ' 1.20920 ! 1.02121 | 0.85655 | 0.71370 , 0.59078 | 0.48581 ‘ 0.39678 | 0.32177 | 0.25806 | 0.20669 | 0.16341
0.2 77649 . 74495 66933 .58364 .50010 .42308 | .35426 .29378 .24193 .19799 .16044
0.4 58693 | .57147 | (53176 47912 .42233 .33637 . .31389 .26578 | .22365 .18646 .15424
0.6 46330 45466 .43090 . 39695 35772 .31690 ¢+ .27694 : .23902 ,  .20483 .17384 .14642
0.8 , .37621 .37080 | .35541 .33245 + .30468 .27459 | .24406 | ,21419 .18654 .16089 13770
1.0 + .31176 .30811 . 29757 .28141 | .26127 .23876 221527 ¢ .19168 .16932 .14814 .12863
1.2 ¢ ,26242 . 25983 .25230 ' .24056 . 22562 .20853 .19028 17156 .15345 . 13597 .11958
1.4 ; 22369 .22179 .21624 .20749 .19617 .18301 . 16869 .15374 .13902 . 12457 .11081
1.6 .19268 19127 .18708 .18041 .17169 .16141 .15007 .13804 . 12601 .11404 .10248
1.8 18750 .16641 .16318 . 15802 .15119 .14306 .13398 . 12424 .11436 .10441 .09468
2.0 14676 ’ .14591 .14338 .13931 .13390 .12740 .12006 .11211 .10395 .09565 .08743
TABLE 3
S Jolap) e
Fo=], T alda
\p 1 0.0 i 0.2 | 0.4 ‘ 0.6 ; 0.8 1.0 1 1.2 1.4 ! 1.6 1.8 2.0
A | S .
0.0 1.73660 | 1.07396 ~ 0.71393 °© 0.48320 | 0.32516 | 0.21378 | 0.13429 ‘ 0.07747 | 0.03713 |10.00890
0.2 1.26737 1.07326 .80261 58537 42196 .30119 .20784 14222+ .08649 .05428 02453
0.4 .74939 .69888 . 58504 . 46293 . 35492 . 26572 19420 .13758 .09402 .06098 .03584
0.6 .51099 .48893 | .43300 . 36281 .29254 . 22906 .17476 .12945 .09338 .06454 .04186
0.8 . 37066 .35919 ‘ .32821 28574 . 23949 .19466 . 15404 .11851 .08909 .06463 .04484
1.0 .27982 .27312 . 25440 .22738 .19624 .16440 .13415 .10655 | .08286 06251 .04555
1.2 21729 ‘ .21305 ¢ .20102 .18307 .16157 .13867 .11607 .09472 1 07579 .05904 .04471
1.4 17238 .16956 | .16146 .14911 .13388 .11718 .10018 .08363 08855 .05486 .04285
1.6 .13911 L13717 13151 .12275 L11173 .09936 .08645 .07358 ;  .06156 .05040 .04039
1.8 .11387 .11248 .10841 ‘ . 10205 09392 | .08462 .07472 .06465 - .05505 .04596 .03764
2.0 i 09433 .09331 . .09032 ‘ .08560 ; 07949 .07241 06474 .05681 .04911 .04170 .03479
TABLE 4
_ 1o Jifap)e
Fy = J. I+ o
N, \ ' 1
NP 00 0.2 04 | 06 | o8 1.0 1.2 14 1.6 18 | 20
g‘ \ H i
N e ‘ N o o
0.0 0.60460 | 0.54094  0.48318 | 0.43103 | 0.38415 | 0.34214 | 0.30462 | 0.27119 | 0.24147 | 0.21510 ‘ 0.19173
0.2 .38825 | .38075 . 35946 .33303 . .30533 27811 .252256 ¢ 22814  .20595 .18331 .16736
0.4 .29346 . 28961 . 27903 .26410 .24688 | .22876 .21065 .19310 1 .17643 .16084 | .14640
0.6 23165 .22948 .22332 .21409 20282 1+ .19039 ' .17746 © .16453 °  .15191 .13984 © 12843
0.8 18810 | 18675 18281 .17672 .16901 - .16022 .15081 . .14114 .13150 .12208 .11303
1.0 (15588 . .15497 (15228 . 14806 (14259 1 .13621 .12922 12190 .11445 . 10705 .09983
1.2 L13121 . 13056 . 12865 12561 12161 .11687 11159 . 10596 .10015 .09429 = . 08849
1.4 L11184 .11137 .10997 .10771 .10472 ° .10113 .09707 .09269 .08810 .08342 ‘ .07874
1.6 09634 09599 .09493 09323 .09094 .08817 08500 .08155 ,  .07790 .07413 | .07032
1.8 .08375 - .08348 08267 08135 07957 .07740 | .07490 07215 1 .06921 06615 .06303
2.0 07338 ‘ 07317 | .07253 .07150 | .07009 .06837 ‘ 06637 .08416 | ‘ .06178 05927 ‘ 05670
TABLE 5
1o Jl(dp)e ~af
Fn= T+a ada
AN ) | ‘ 7 o
(\\P 0.0 02 ' 04 | 06 0.8 1.0 1.2 e | o1s 18 2.0
~ L B o i _
0.0 0 1.11554  0.77686 ' 0.58619  0.45779 | 0.36435 ~ 0.20345  0.23826 - 0.19456 ‘ 0.15958 . 0.13134
0.2 0.63369 57607 .48935 i 40682 .33731 27998 | 23276 i .19389 .16169 13499 | .11299
0.4 37470 .36192 32974 | .29079 .25213 21664+ .18520 - .15786 ‘ .13429 . (11412 | .09696
0.6  .25550 . 24989 . 23401 . 21441 .19184 16938 14823 .12983 | .11166 00642 .08309
0.8 18533 .18245 17435 16253 .13414 .13401 .11954 ¢+ (10580 © .09309 .08155 .07121
1.0 13991 . 13823 13340 .12609 .11714 .10731 .09723 ‘ .08733 . .07791 .06913 .06109
1.2 . 10865 .10759 10450 .09973 .09373 .08694 07977 | .07254 .06549 .05878 .05251
1.4 .08619 08549 ;  .08342 .08018 .07601 .07120 .06601 06066 ‘ .05533 .05017 .04525
1.6 . 06956 .06907 | .06763 06535 .06238 . 05890 . 05507 .05105 .04699 .04298 03911
1.8 . 05694 .05659 + .05556 05391 .05174 .04917 04630 .04324 ‘ 04011 . 03698 03391
2.0 04717 . 04691 04616 | 04494 04333 .04139 03824 .03686 | .03442 .03195 02950
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TABLE 6
o0
Fu= 0 Jlia:_)ez ada
N i ‘ ‘
N 0.0 0z | 04 0.6 ‘ 08 | 10 12 14 16 18 20
0.0 o0 | 4.40284  1.91830 | 1.10465  0.71006 | 0.48335  0.34040  0.24495 . 0.17877 ' 0.13169 0.097575
0.2 | 1.99033 | 154713  1.04687 | .71494 50443  .36403  .26840  .20009 15030 . 11285  .085691
0.4 | 80777 | (73909 .60045 | .46500 , .35606 ' .27261  .20028  .16130 . 12447 | .006189 074666
006 | 44321 | 42254 (37170 (31100 ' (25330 | .20852 © .16238  .12010 . .10240 ' .0S1104 064203
0.8 | 27662 | (26805  .24542 - .21514  .18311 | 15288  .12607  .10811 ' 083841  .067789 .034798
1.0 | (18584  .18I66  .17008 | 15358  .13487 © .11602 098326  .082420  .068525 036616 046543
12 | 18115 , .12382 12231 | (11267 .10121  .089100 077215  .066099  .056041 - 047150 .039422
14 | 095848 | 094472 (000546 | 084585  .077267 | .060263 061128  .053267  .045938 | 030281 033352
16 | (071970 | 071103 068610 | 064758  .059917 | 054482, 048807  .043175 037789 | .032780 .028221
18 | 085213 | 054646 052997 | 050415 .047116 | .043336, 039303  .035213  .031218 | 027428, .023906
200 | 03120 | o473z (041604 | 039622 [037S14 | 034528  .031914 | 028304  [025011 | 023019 .020290

By Equation 25

Fos = —~Fop + [1 + 1.44]71/2

For = —Fo + 1201 + 1.44]732

Fos = —Fg + (2 X 1.44 — 1)[1 + 1.44]782

From the tables

Fo = 0.52254

Fo = 0.20853

Foe = 0.13867

Therefore

Fop = —.52254 4 64018 = .11764

Fos = —.20853 4- .31484 = .10631

Fos = —.13867 + .20215 = .06348

o, = —0.5[.05213 + .04160 + .00092
+ .00100 + .00001}q

o, = —0.04783 ¢

In general two-dimensional interpolation
is necessary when using the tables, since the
F functions depend on two variables, ¢ and
p. In some cases interpolation within the
limited tables given here may not give the
accuracy desired. Fortunately there are three
ranges of the variables ¢ and p for which satis-
factory formulas are available. These are as
follows:

For { large and equal to or greater than p.

an=

2k (28)
(1) (m + n + 3j + 2k)!<53>
2"kl (m + k) g

For p small and less than or equal to ¢.

&, (—1)*0" forpmpa(§)

Foun = ,; TG 1 Ry O

For ¢ small and less than or equal to p.

k
Z( Dk Unsx(p) (30)
Fin =/1) f; Viwilp)  (31)
where =
w© ne—a{
() = mdtx (32)
Unlp) = f “—Jl‘)(j‘# (33)
0

Vo) = [ ) “_{l(fp_ﬁdﬁ (34)

0 24

The functions f3(¢), f1(¢), and f({) were
investigated and tables prepared in work
done for the Army Corps of Engineers, soon
to be published. The remaining f’s may be
expressed in terms of these three by the re-
duction formula

fn+3(§‘) =

The six functions Uy, Uy, Uz, Vi, Vo,
V', are given in tabular form in Table 1, page
61 of reference 5. The remainder of these
may be obtained by the reduction formulas
Unys(p) = —Us(p)

0if n is odd

[1-3:5--
p

—Vn(p) + Bn

—10) + S:% 3)

N (=12 n-+(1n— Dl if n is even.

1777.4—3(”) =
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where
by =1
.

p
0, = 0if » > 0 and even

" [1-3:5 - nJ?

611 = (_1)( b npﬂ+1

if n > 0 and odd.

Use was made of these special formulas
and of the tables of f, U, and V in preparing
the tables for the F' functions. However, most
of the tabulated values were obtained by
numerical integration using IBM equipment.

MODIFICATION OF THE PLATE-THEORY
SOLUTIONS

The solutions based on thin plate theory
for the pavement mayv be modified by using
an arbitrary value for 8 in each solution in-
stead of those given by Equations 2 and 3.
By using a reduced value the effects of de-
flection due to shear and of other factors
neglected in the derivation of Equation 4
are accounted for to some extent. By taking
g parts of one solution and (1 — g) parts of
the other solution, three adjustable parame-
ters, two §’s and ¢, become available for the
modified plate theory solution. The determina-
tion of these three parameters or their equiv-
alents so as to bring the modified plate theory
solution into good agreement with the Bur-
mister theory will now be considered.

DESIGN

Certain special solutions based upon the
Burmister theory are necessary to provide a
basis for selecting the adjustable parameters.
The solutions used will be those for interface
stresses caused by a concentrated load. The
interface stresses are a normal stress o, and
a shear stress 7., . They are given by:

P
Tz = — QTh?B, (36)
r
Tre= =5 B, 37
where
[1-05L+K)+ (11— K)aje
B, = +[KL—-0.5(L+K)4(1-L)Kale 3=
o 1 —(L+ K+4Ka?)e % + KlLe %
“Jo <a—hr> ada
[05(L-—K)+(1—-K)ale™
B - /“" +[0.5(K —L)—(1—~L)Kaje—
Tl 1—(L+ K +4Kabe 2 4 KLe %=
-J1 (%) ada
1-—n
K=———
C Tl aB )
L=3—4,u.—n(3—4v) n_Eg(l—l—v)
3—4u+n T E(+w

Values of B, and B, for six different com-
binations of K and L and for various values
of r/h are given in Tables 7 and 8, respec-

TABLE 7
Bs

r K=.9 K = .94 K = .9 K = .96 : K = 98 ! K = .98
h ! L = .94 L = .96 L = .96 L = .98 L = .98 L = 99

0 0.448408 0.420845 0.330422 0.306315 0.210083 0.178013
1.0 as08T | 22875 01475 179158 130837 121803
20 133096 125157 119313 107523 0036337 0835560
5.0 0187949 0197420 0231457 0237175 0274422 0267515

TABLE 8
B,

T K= 9 K - 9t K = 9 K=9% | K=.8 K = 98
B L= o L-9 | L=26 L=ss | L= L= %

0 0 0 0 0 0 0
0.2 0.041938 0.046070 0.028508 0.033022 0.014648 0.017209
04 067421 075015 046020 054379 023785 028572
0.6 ‘07472 084858 051385 062673 026827 033374
08 071583 083528 049732 063153 026331 034234
1.0 064965 078117 046006 060674 024509 033570
1.5 .049660 .064410 .036186 053548 . 020450 031241
2.0 038658 03792 029220 047607 017387 020212
5.0 007407 ot6727 007253 020779 006116 016915
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tively. The variations in K and L correspond
roughly to a variation in E,/E; from 50 to
150 and to reasonable variations in u and v.
The tables were obtained by numerical in-
tegration using IBM equipment.

The corresponding solutions based on plate
theory are:

For no friction at interface!

P R\
o= _Zr—}ﬁ(l_l> Us(r/ly)

Trg =0

(38)

(39)

For no horizontal displacement at inter-
face

P (Rh\®
Oy = —m(g) Ll(T/l2)

P (1-2u) (k. |
- mz(T—_“)<g> Vi(r/ly) - (41)

(40)

Trz =

The problem then becomes one of selecting
the adjustable parameters (l;/h), (l2/h), and
g so as to satisfy the following relations as
well as possible.

opr (T
!](h/ll) U <l1> (42)
+ (1 — @)(h/1)*Ur(r/l)) = B,
1-2u [\ ..
1-9 20— 4 <Z;> Vilr/ly) = B, (43)

Since B, and B, are functions of A and L,
it is obvious from Equations 42 and 43 that
the adjustable parameters depend on u, K,
and L. Eventually it is desirable to use g, »,
and E,/E, instead of u, K, and L for the elas-
tic properties and, because of less variation,
it is desirable to use @ and 3. instead of
(Li/h)y and (la/h) for adjustable parameters.
Finally then it is desirable to have tables or
charts from which 8:, B:, and g may be
readily determined from given values of
i, v, and E;/E,. The preparation of such
tables is beyond the scope of this paper. How-
ever, the determination of these parameters
from available tables will now be explained.

An understanding of the functional rela-
tions involved and of the adjustments neces-
sary are provided by Figure 1. The upper
curve of Figure 1 is a plot of (&/0)*U.(r/l) for
(I/h) = 1.643 versus r/h. The lower curve is a

! See page 61 of Kansas State College Bulletin 65 for a
table of Ui and V.

127

plot of 0.496 (h/D2V.(r/l), also for (I/h) =
1.643. The plotted points near the upper
curve are values of B, from Table 7 and the
plotted points near the lower curve are values
of B, from Table 8 for K = 0.94, L = 0.94.
The value of 1.643 was selected to make the
upper curve coincide with B, at r = 0. The
value of 0.496 makes the peak value of the
lower curve about 0.9 as much as the maxi-
mum B.. This selection was entirely ar-
bitrary.

The closeness of agreement between the
upper curve of Figure 1 and the plotted values
of B, indicates that either plate solution is
satisfactory as far as the interface stress o, is
concerned. The agreement would be still
better if (I/h) were selected to make the
curve agree with B, at r = 0.54. All this has
been accomplished by the use of only one
parameter, [/h. By combining both plate
solutions and using a different ({/h) in each,
as indicated by Equation 42, excellent agree-
ment could be obtained.

The lower curve of Figure 1 and the plotted
values of B, are not in good agreement.
Fairly good agreement could be obtained by a
different choice of (I/h) and the numerical
factor. This would be equivalent to selecting
(Ia/h) and ¢ in Equation 43. However, the
selection that would make the best agreement
between the two sides of Equation 43 would
in general make it impossible for the two sides
of Equation 42 to agree very well even with
freedom to choose (l,/h). It appears that the
best compromise is to give primary con-
sideration to Equation 42 and then obtain
the best agreement between the two sides of
Equation 43 that can be obtained without
appreciably affecting IEquation 42. The fact
that the interface shear stresses are much
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Figurel. Comparison of plate theory with the Burmis-
ter theory, K = 094, L = 0.94, I = 1.649h.
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Figure 2. Comparison of plate theory with the Burmis-
ter theory, K = 0.96, L = 0.98, ! = 1.987h.
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Figure 3. Comparison of plate theory with the Burmis-
ter theory, K = 0.9599, L = 0.9799, L = 1.954, I, = 2.0h,
g = —081.

smaller than the interface normal stresses
is additional reason for allowing greater error
in the shear stresses.

Results similar to those shown in Figure 1
were obtained for all combinations of K and
L investigated, those for K = 0.96, L = 0.98
being shown by Figure 2. In Figure 2, as in
Figure 1, the agreement of the upper curve
with B, is obtained by the use of only one
parameter, (I/h), which was selected to make
the curve and B, agree at r = 0. Only one
additional parameter was used in constructing
the lower curve. Better agreement with both
B, and B, can be obtained by the use of three
parameters. This will be illustrated by an
example.

Givenh = 8in.,u = 0.24,» = 020, E, =
3 X 108 psi., E» = 40,000 psi. From this in-
formation, K = 0.9599, L = 0.9799. By inter-
polation from Table 7, B, equals 0.236 at
r = 0.5h. From Table 8 it appears that maxi-
mum B, is about 0.0632 and occurs at r =

DESIGN

0.7h. A good indication of what to use for
(la/k) is given by the relation

3
(h/12)*UL (2—1) = 0.236

This gives ly/h = 2.04. It is usually desirable
to use a slightly smaller value. Try ly/h = 2.0
and make the peak of the left side of Equation
43 equal to 0.9 of 0.0632.

52 /12
1-9 15 (2—0> 0.367 = 0.9 X .0632
(1—-g) =181, g = —081

The factor 0.367 is the maximum value of
V1. Substitution in Equation 42 gives for r =
0.5h

r\? h
—0.81 (l—1> Uy (-2—l-l>
+ 1.81($)201(0.25) = 0.236

or y/h = 1.954.

The upper curve of Figure 3 is a plot of the
left side of Equation 42, and the lower curve
is a plot of the left side of Equation 43, using
the foregoing data. Also shown in Figure 3 are
interpolated values of B, and B,. Although
improvements could be made by using other
values of the adjustable parameters, the
agreement is considered satisfactory.

With ({,/h), (I./h), and ¢ determined, sub-
grade stresses may be found not only for the
given concentrated load but also for dis-
tributed loads and for other thicknesses of
pavement. These are found by means of
Iquations 12 to 19 and Tables 1 to 6.

CONCLUSIONS AND RECOMMENDATIONS

On the basis of the present investigation,
it is concluded that theoretical stresses in
the subgrade under concrete pavements can
be determined with good accuracy by the
modified plate theory. Since the ranges of K
and L investigated correspond to a range of
about 50 to 150 for E,/E., the conclusions
are restricted to concrete pavements.

To increase the usefulness of the method,
it is recommended that tables or charts be
prepared from which 81, 8., and g may be
readily determined from given values of
Ei/Es, u, and ». It is recommended that the
limitations of the method he determined.
Perhaps it can be used for subgrades under
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flexible pavements also. It is further recom-
mended that the possibility of extending the
method to more than two layers be investi-
gated.

ACKNOWLEDGMENTS

The authors wish to express their apprecia-
tion to the University of Wisconsin and to the
Wisconsin Alumni Research Foundation for
salary support and to the Numerical Analysis
Laboratory of the University for assistance
in the numerical work.

REFERENCES

1. “The Theory of Stresses and Displace-
ments in Layered Systems and Applica-
tions to the Design of Airport Runways,”
by D. M. BurMister, Proc. of the
Twenty-third Annual Meeting of the
Highway Research Board, 1943, pp.
126-44.

129

2. “Computation of Traflic Stresses in a
Simple Road Structure,” by L. Fox,
D.S.IR., Road Res. Tech. Paper No. 9,
1948.

3. “Computation of Load Stresses in a Three-
layer Elastic System,” by W. E. A.
Acum anD L. Fox, Geotechnique, Vol. 2,
No. 4, Dec. 1951, pp. 293-300.

4. “Equilibrium of a Thin Slab on an Elastic
Foundation of Finite Depth,” by A. H.
A. Hogag, Philosophical Magazine, and
Journal of Science, April 1944, London.

5. “Deflections, Moments and Reactive
Pressures for Concrete Pavements,”
by G. Prckerr, M. E. RaviLie, W, C.
JanEes, and F. J. McCormick, Bulletin
No. 65, Engr. Exp. Sta., Kansas State
College, Oct. 1951.

6. “The Mathematical Theory of Elasticity,”
4th Ed., by A. E. H. Love, Cambridge
Univ. Press, 1927, pp. 273-77.

Accident-Exposure Index

Lro GrossMman, District Engineer
Bureau of Public Roads

THE conventional method of portraying traffic movements at highway intersections
is by means of traffic vectors. When two highways cross at grade, the vector diagram
contains 16 vector crossing points which are defined as collision points. The number of
these collision points is reduced to zero under two conditions only; namely, when a
grade-separation structure is constructed without interchange ramps and when the
grade-separation structure is constructed with a full cloverleaf or direct-connection
design.

When traffic densities or economie, topographic or urban-planning considerations
indicate that a partial-interchange layout is called for, it is most desirable that that
traffic pattern and partial-interchange layout which will offer the greatest traffic
efficiency be adopted. Using only the original traffic-vector diagram as a base, the re-
port presents a technique whereby a numerical value or score is established for each
layout under consideration. This value is termed the accident-exposure index. A com-
parison of these indices provides a direct evaluation of the traffic efficiency of the
interchange. Computations are given in this report to exemplify the technique used in
establishing the layout for expressway interchanges.

@® COLLISIONS Dbetween two moving ve-
hicles can oceur only when both vehicles try
to occupy the same space at the same time.
When referring to highway accidents, such
collisions can occur only under four condi-

tions: meeting head on, rear end by overtak-
ing, side-swiping, and crossing each others’
travel path. Highway design can minimize or
entirely eliminate all of the conditions under
which such accidents might occur. The degree





