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measured using shear cells; while in the other, 
shear stresses are derived f rom pairs of per
pendicular normal stresses measured wi th 
pressure cells. Here again the agreement 
between values compared is very good, 

I t appears that, at least for the conditions 
present in the homogeneous dry sand test sec
tion, the shear cell is capable of measuring 
shear stresses directly wi th a reasonable degree 
of accuracy. 

Application of the Elastic Theory to Highway 
Embankments by Use of Difference Equations 
J . C. D I N G W A L L , Engineer of Road Design, and 
F . H . S c R i V N E R , Senior Research Engineer 
Texas Highway Department 

T H E problem solved in this paper by the use of the theory of elasticity consists i n the 
determination of the shearing and normal stresses in a trapezoidal embankment and 
its foundation consisting of a relatively thin, uniform, natural layer which, in turn, 
is underlaid by a rigid boundary, such as the top surface of a rock or stiff soil de
posit. I t is assumed that the materials of the embankment and its foundation are 
characterized by identical elastic constants. Using the stress function, a series of 
differential equations is obtained and replaced by finite difference equations f rom 
which the stresses may be found. This is done for a numerical example in which 
Mohr's circle is applied to determine the values of cohesion and internal fr ict ion 
required to prevent an overstressed condition in the given structure. 

# T H E factor of safety of an embankment 
slope is usually computed by application of 
well-known methods involving the assump
tion of a surface of sliding along which the 
average shearing stress is computed f rom 
statics. Stresses in embankment foundations 
have been computed from the theory of elas
t ic i ty by several methods, but those known 
to the author have failed to satisfy all bound
ary conditions (1, 2, 3, 4)-

Zienkiewicz (5) has computed the stresses 
within a concrete dam wi th proper regard for 
boundary conditions by the substitution of 
finite difference equations for the differential 
equations of elasticity and by using the 
method of successive approximations known 
generally as the "Method of Relaxation" 
{6) for solving the difference equations. 

I n the present case, i t is proposed to use 
an attack similar to that of Zienkiewicz, 
but wi th the addition of a rigid horizontal 
surface at some distance beneath the surface 
of the ground. Such a condition frequently 

exists in the coastal region of Texas, where 
beds of soft clay or muck have been deposited 
on relatively firm strata existing at depths 
of 10 to 40 feet beneath the present ground 
surface. 

STATEMENT O F T H E P R O B L E M 

The elastic body of Figure 1 is bounded by 
the planes x = 0, x = f , y = b, y = mx, 
y = c, y = d, and 2 = ± « ) . The embank
ment and foundation are symmetrical about 
the plane, a; = 0. The distance f rom the 
embankment to the boundary, x = / , is 
indefinitely large when compared to the vert i
cal dimension, d-c; and the state of stress at 
the boundary, x = / , is assumed to be the 
same, at least to the degree of accuracy to 
be achieved herein, as i t would have been 
had the embankment load not been applied. 
The boundary, y = d, is completely rigid and 
i t is assumed that no slipping occurs along that 
boundary. Poisson's ratio is taken as 0.5 
throughout. Gravity, which is assumed to be 
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Figure 1. Half section of embankment and foundation. 

the only force applied, acts in the positive 
direction of the y axis. 

The stress in the embankment and its 
foundation above the rigid boundary is to be 
determined approximately by the substitu
t ion of finite difference equations for the 
differential equations of plane strain elasticity, 
and by the use of the method of relaxation. 

G E N E R A L E Q U A T I O N S A P P L Y I N G T H R O U G H O U T 

T H E E M B A N K M E N T AND I T S F O U N D A T I O N 

Most of the symbols defined below and most 
of the general equations given are those used 
by Timoshenko (7), 

<t> 

U 
V 

w 

E = 

the Ai ry stress function, 
normal stress acting horizontally, 
normal stress acting vertically, 
shear stress acting in planes parallel 

to the xz and yz planes, 
displacement measured horizontally, 
displacement measured vertically, 
weight per unit of volume, assumed 

constant. 
Young's modulus. 

dx^ 
<r„ = ^ -w{y - c) (1) 

_ a y 
dxdy 

For Poisson's ratio equal to 0,5, Hooke's 
law may be writ ten in the following form: 

dx 4E\_dx^ V 

dy 4:E \_dx^ 

du 

dy' 

-w(y 

w(y • 

- c) 

- c) (2) 

dy dx Edxdy 

As well known, the stress function must 
satisfy the following equation: 

dx* dx-'dy' dy* (3) 

B O U N D A R Y C O N D I T I O N S 

On Boundaries A , B , and C the stress 
unction and its first derivatives are known. 

On Boundaries D and E the stress function 
must satisfy two differential equations on each 
boundary. On Boundary F and throughout 
the region beyond, the stress function is 
given by 

<t>=-^iy - (4) 

Figure 2 summarizes the boundary as well 
as the general equations, 

F I N I T E D I F F E R E N C E A P P R O X I M A T I O N S T O 
D I F F E R E N T I A L E Q U A T I O N S , AND T H E 

M E T H O D OP R E L A X A T I O N 

Figure 3 illustrates a square-mesh net 
formed by horizontal and vertical lines, wi th 
the boundaries of the embankment and 
foundation drawn thereon. The mesh length 
is equal to the constant, a. 

Also shown in Figure 3 is a numbering 
system for 13 mesh points arranged in a geo
metrical pattern. The central point of this 
numbering pattern may occur at any point 
on the net. Difference equations based on 
the numbering system have been substituted 
for differential equations in this diagram. 

Assume now that computed or estimated 
values of 4> have been written at all net points 
in Figure 3 and that these ini t ia l values do not 
satisfy the difference equations. Funda
mentally, the method of relaxation consists 
in changing the originally estimated values of 
<f>, point by point, unt i l all difference equations 
are satisfied, or nearly so, at every point on 
the net where they apply (5, 6). 

Decreasing the mesh size increases accuracy, 
and apparently any desired degree of ac
curacy may be obtained by making the mesh 
size sufficiently small. 

Once the numerical values of <j> carried on 
the net have been adjusted unt i l all difference 
equations are satisfied (or nearly so), the 
stress components are computed from the 
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Figure 2. G c n e r a r a n d boundary equations i n 4>. (Arrows indicate where boundary equations apply.) 
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Figure 3. Algebraic and difference equations. 

following difference equations corresponding 
to differential Equations 1: 

(7x at point No. 7 

ffy at point No. 7 

1 
(<t>3 — 2(̂ 7 + 4>n) 

-T, (<̂ 6 - 2,^7 - f <#>8) - M,'(?/7 - C) (5) 

Txv at [joint No. 7 

•1 
— i4>i — 4>i — '^'lO " I " 't'li) 4o-

E X A M P L E O F M E T H O D 

Figui'e 4 shows the relative dimensions of 
an embankment wi th 45-deg. side slopes for 
which the stresses were computed by the fore
going method. The remaining figures illustrate 
the results of the computations in the critical 
area of high sliear stress under the slojje of 
the embankment. 

Figure 5 gives the ratio of the maximum 
shearing stress (lialf the difference of the 
principal stresses) to the product, WL, where 
W is the density of the material and L is the 

Figure 4. Stiape selected for numerical solution. R e 
sults are given Figures 5, 6, 7, 8, and 9. T l i e scale 

length, L, Is arbitrary. 

9 

Figure 5. 

scale length, which is equal to half the height 
of the embankment (or to one-half the thick
ness of the foundation layer). Examination 
of Figure 5 indicates that the greatest shearing 
stress occurs on the rigid boundary approxi
mately under the toe of slope, and is equal to 
the product, WL. 

As an example, consider an embankment 
100 feet wide at the crown, 20 feet in height, 
resting on a foundation layer 20 feet thick 
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and underlaid by a relatively rigid material. 
We assume that the average density of em
bankment and foundation is 100 lb. per cu. f t . 
Then W = 100 and L = 10, and the greatest 
shearing stress would be 100 X 10 = 1,000 
lb. per sq. f t . 

Since the shear strengths of most soils 
increase wi th the average normal stress (half 
the sum of the principal stresses) acting on 
them, the normal stresses must be considered. 
Figure 6 shows contours of average normal 
stress divided by WL. I t may be seen from 
this graph that the average normal stress 
at the point where the greatest shearing stress 
occurs is about 3.17 WL. Again taking W 
as 100 pcf. and L as 10 feet, we arrive at an 
average normal stress of 3,170 psf. 

Figure 7 is a Mohr's diagram of the state 
of stress at the point of greatest shearing 
stress for the preceding example. Also plotted 
on this diagram is a rupture line assumed to 
have been determined f rom a triaxial test and 
to represent the strength of the soil. Appar
ently this material would not fai l at the point 
under consideration since i t cleai's the stress 
circle. 

S T B E S S E N V E L O P K 

However, the assumption that the soil 
possesses an angle of internal friction re
quires that additional points in the structure 
be investigated, provided this can be done 
easily. I n order to facilitate comparison of 
strength with stress at all points wi thin the 
embankment and its foundation, Figure 6 may 
be superimposed on Figure 5, and from the 
combined diagram the point of greatest shear-

CONTOURS OF AVERAGE 
NORMAL STRESS 

DIVIDED BY WL 

Slit a . ^ L 

0 ^ 1 « 0 ^ 1 « 

Figure 6. 

ing sti-ess on each average normal stress 
contour hne may be found by inspection. The 
pair of dimensionless values of average normal 
stress and maximum shearing stress at each 
such critical point may then be plotted as a 
stress circle on a Mohr's diagram. When all 
such circles are plotted on the same diagram, 
a continuous stress envelope tangent to as 
many circles as possible and concave down
ward throughout its length, may be con
structed as shown in Figure 8. I n comparing 
the strength of soils with stress, the envelope 
of Figure 8 may be taken to represent the 
stress at every critical point within the 
embankment and its foundation. (This con
cept of a stress envelope to represent the 
stress at every point in a plane has been 
used for some years in the design of flexible 
base in Texas.) 

Roptufe Lin 1 

* / S, 

1 
C=&00(b)./K 

ft. 
Str«» Circl* / 

/ 
/ 

Normol SIrtss - I b l / s q . f t . 

Figure 7. Mohr's diagram comparing strength of foundation wi th stress at point of greatest shearing stress for 
the case W y. L = 1,000 lb. per sq. ft . 
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I—Rupture line of Fig. 6 . { 9 W L - 0 . 6 , • • 9 ° ) 

A R E A OF I N S U F F I C I E N T S T R E N G T H 
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NORMAL S T R E S S -e- WL 

Figure 8. Envelope of crit ical stress circles i n the embankment and foundation, for comparison w i t h strength 
of soils. (Data from Figures 5 and 6.) 
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Figure 9. Cohesion a n d Internal friction required i n embankment and foundation to prevent overstress a t any 
point. (Data from F i g u r e s . ) 

Again assuming L = 10 feet and W = 
100 pcf. we may plot the rupture fine of Figure 
7 on Figure 8 by dividing the cohesion, C, 
by the product, WL, as indicated in Figure 8. 
Obviously, the soil would be slightly over-
stressed at some point in the embankment or 
foundation. 
"^By drawing a series of straight-line tangents 
to the stress envelope of Figure 8, and 
measuring simultaneous values of C/WL and 
(t> (representing the angle of internal f r ic t ion 
in this case) for each tangent, the diagram of 
Figure 9 was constructed. The circled point 
in Figure 9 represents the soil i n the embank
ment previously considered as an example. 

CONCLUSIONS 

A t present only the problem illustrated in 
Figure 4 has been worked out numerically. 
The work was done using a desk calculator. 
I t is hoped that a number of additional 
examples, treating other slopes and founda
tion layer thicknesses, wiU be completed by 
the I B M Computing Laboratory at A. & M . 
College of Texas in 1954. Meanwhile, only a 
few rather general conclusions can be drawn 
with regard to the computations presented 
here: 

1. The use of difference equations makes 
possible the approximate solution of stress 
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problems of practical importance in soil 
mechanics which otherwise probably would 
remain unsolved. 

2. For application to soil mechanics, plane 
stress systems generally may be reduced to a 
dimensionless stress envelope adequately 
representing the stress at every critical point 
in the stressed body. 

3. The values of cohesion and internal 
fr ict ion required to prevent overstress at any 
point under a 1-to-l slope (Figure 9) are ap
parently much greater than the values re
quired to prevent a slide according to results 
obtained f rom the use of the sliding circle 
method of soil mechanics (8). I n fact, i t 
appears that a relatively large plastic zone 
may develop under the slope without danger 
of a sUde. 

4. When more numerical results, represent
ing a variety of slopes and depths to the rigid 
boundary, become available, i t is expected 
that a series of graphs of the type presented 
in Figure 9 can be used for quickly estimating 
whether a proposed design is conservative or 
wi l l require a more lengthy investigation by 
the estabhshed methods of soil mechanics. 
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A P P E N D I X 
Derivation of the Boundary Equations Shown 

in Figure 2 
On any horizontal boundary, y = k = con

stant, not acted upon by external forces (such 
as Boundaries A and C of Figure 1), <r|, = r^, = 
0, and the following equations in <t> apply: 

dxdy 
: 0 

— = w{k — c) 
(6) 

Integrating Equations 6 along the boundary, 
we find for Boundary A, 

4. = Cix + Ci 

dx 
= Ci 

(7) 

dy 

where C i , C2 and C3 are constants of integra
t ion. 
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Similarly, for Boundary C, 

w{b — c) 
4, = 

d(f> 
= w{b - c)x + Ci dx 

(8) 

The distribution of stress is symmetrical 
about Boundary E and that boundary is a 
principal plane in which r^y vanishes. There
fore, on Boundary E, 

dxdy 

day 

dx dx^ 

0 

= 0 

a i ) 

(12) 

where Ct, d and Ce are constants of integration. 
On Boundary B, mVi — niTxy = 0 and <r„ — 

niTxy = 0. I f the corresponding equations in 
4> are added and subtracted, the following 
equations result for Boundary B : 

a v 
TO^— = W(V — C) 

dx^ dy' ^ 

a v a v av 
h 2m 1- m" — = w{y — c) 

dx' dxdy dy' 

(9) 

Since both x and y vary on Boundary B, i t 
is convenient to transform Equations 9 to a 
pair of new variables so selected that one wil l 
be constant on Boundary B. The variables 
chosen are given below: 

s = 7nx + y 
t = mx — y 

Then, on Boundary B, according to Equa
tions 9, 

a v 
asa« 

im' — = w \ - — c 
ds' \2 

(9a) 

Integrating Equations 9a wi th respect to 
the variable, s (( being zero on B) and trans
forming the result to the variables, x and y, 
we obtain on B : 

By integrating Equation 11 along the bound
ary, we obtain on Boundary E, 

— = Ci( 
dx 

(13) 

where Cio is a constant of integration. 
Equations 12 and 13 express the conditions 

on Boundary E. 
On Boundary D , 

u = 0 
V = 0 

(14) 

Differentiating the first of Equations 14 along 
the boundary and comparing with the first 
of equations 2, we find on Boundary D , 

a y 
dx' ' 

a y 
- w{d - c) = 0 (15) 

Differentiating the second of Equations 14 
along the boundary and comparing with the 
third of Equations 2 we find on Boundary D , 

du 3 d'<i> 
Edxdy 

(16) 

Differentiating Equation 16 along the bound
ary, we find on Boundary D , 

d'u 
dxdy 

3 a'.̂ . 
E dx'dy 

(17) 

<t> = — iy' - icy') +2C^y + C, 

^ = (y^ - 2cy) + Cm + Csm (10) 
dx 2m 

a* 
dy 

C, 

where C-, Cs and C 9 are constants of integra
tion. 

By differentiating the first of Equations 2, we 
obtain. 

d'u 
dxdy 

_3_ 
4B 

â 0 
dx'dy 

a v 
d f ' 

(18) 

From Equations 17 and 18, we conclude that 
on Boundary D , 

+ h w = 0 
dx'dy dy' 

(19) 



D I N G W A L L A N D S C K I V N E R : E L A S T I C T H E O R Y 481 

Equations 15 and 19 express the conditions 
on Boundary D . 

On Boundary F and in the region, x > f , 
we assume the state of stress given by the fo l 
lowing expression for 0: 

w 
* = - T (2/ - c)' + C i x + C2 + Ciu - c) (20) 

b 

Equation 20 satisfies Equation 3 and the 
boundary conditions expressed by liquations?, 
15 and 19. The constants, Ci, C-> and C 3 , are 
arbitrary, since their values cannot affect the 
values of the stress components. 

The stress function, <f>, and its derivatives are 
assumed to be continuous throughout the 
stressed body including the boundaries. The 
assumption of the continuity of <t> and its first 
derivatives along the boundaries furnishes the 
method for evaluating the constants, d through 
C i o , at the intersection of F with A, A with B, 
B with C, and C with E. I f we begin at the 
intersection of F with A, b)' arbitrarily letting 
C, = C« = C 3 = 0, and then evaluate the re
maining constants at the other boundary 
intersections as may be appropriate, we ob
tain the final forms of the boundary equations 
shown in Figure 2. 

DISCUSSION 

W. C. B o Y E R , Associate Professor, AND J. I . 
ADRAMS, Research Staff Assistant, Civil 
Engineering Department, Joltns Hopkins Uni
versity—After studying this fine paper i t 
appears logical to appraise i t f rom two points 
of view. Accordingly, comment is directed 
first to the solution of the problem and 
secondh- to the results and their interpreta
tion in the light of soil mechanics practice. 

The authoi's have solved this jjroblem of 
plane strain by utilizing the finite difference 
ajjproximation for the homogeneous equation: 

dx'dy'' dy"^ 
0 

Poisson's ratio was taken as 0.5 throughout 
for the obvious simplifications that are pro
duced in relationshijjs thereby. Since similar 
simplifications occur for the case of Poisson's 
ratio equal to zero, i t would be of value if 
the authors would include this case in their 
future plans in order to indicate the limits of 
variation in the solution produced thereby. 

A detailed study of this paper wil l make one 
realize the amount of work entailed in such a 
solution. Problems related to the jjurely 
mechanical aspects of the calculation pro
cedure wi l l appeal to those wi th specialized 
interest, but are not appropriate for detailed 
attention here. Such details have been amply 
covered in tlie litei-ature on the subject of 
relaxation methods.' 

The demonstration of boundary conditions 
adjacent to free surfaces, contact surfaces, 
surfaces of sj-mmetry, and remote surfaces, 
all of which form the field of solution for the 
problem, provide an added insight, and many 
can profit f rom the demonstration. I t may be 
pointed out that there is a more direct method 
of obtaining conditions of </>, the stress func
tion, at stressed boundaries. This method^ 
is discussed by Mindl in and Salvadori. The 
equations are derived for definitions of stress 
that ai'e slightly different f rom those em
ployed by the authors. However, these equa
tions can be converted readily to the conven
tion presented in this paper. For a simply 
connected region these equations become: 

(l>co = (Bol — Aom) 
Jo 

ds 

dn 

where: 

Bo 

m els 

= Aol + Bom 

= - [ \ j d s + f Y-
Jo Jo 

= I X ds 
Jo 

V = —w{y — c) 

I, m—direction cosines 
X, y—the known surface tractions 

n—the normal direction 

I t may be verified readily that these equations 
yield the same boundary conditions as de
veloped in this paper by straightforward 
integration. There is, of course, no essential 
difference in the two methods, but the method 
demonstrated above is economical of effort 

• e.g. S H A W , F . S . ; "An Introduction to Relaxation 
Metliod"; Dover Publications, Inc., 1953. 

2 "Experimental Stress Analysis," M. H E T E K Y I (Editor); 
Chapter 16, "Analogies," by M I N D L I N , R . D . AND S A L V A 
D O R I , M. S . i pp. 752-755; John Wiley and Sons, 1950. 
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and reduces the development of the stress 
function to practically a rote procedure. 

I t should be pointed out that arbitrary 
functions may be added to <!> and d^/dn 
provided these functions do not change any 
stresses. 

I t is well to emphasize that the solution 
presented in this paper is appUcable to 45-
deg. slopes only wi th the added stringent 
conditions: (1) that the foundation soil and 
superimposed f i l l possess identical elastic 
properties and (2) that the problem solved 
has identical dimensional similarity to the 
solution given. These limitations point im
mediately to the f u l l scope of work encom
passed in providing a set of charts, as con
templated by the authors. I n addition, to 
varying slope angles, variation in basic 
dimensions for each slope angle is also re
quired. This does not resolve the additional 
problem of indicating variation in the solution 
due to values of Poisson's ratio other than 
0.5. 

The second part of this discussion is directed 
to the results presented by the authors. They 
have demonstrated that the maximum stress 
conditions throughout the stress field are 
encompassed by an envelope as depicted in 
their Figure 8. This envelope yields the 
necessary data to produce the curve shown 
in Figure 9, which may be depicted as the 
combinations of cohesive strength and fric
tion angle required in the embankment and 
foundation to prevent overstress at any point. 

I t has been stated by the authors that the 
values given in Figure 9 "are apparently 
much greater than the values required to 
prevent a shde according to results obtained 
f rom the use of the sliding circle method of 

CiO^l-C METHOD 

Figure A . Comparison of elastic-theory solution to 
slldlng-citcle method. 

soil mechanics." This point may be em
phasized by observing Figure A, which is a 
reproduction of Figure 9 of the paper wi th 
the ordinate scale converted to cohesive 
strength. Using the data' given by Taylor, 
the curve for required cohesive strength 
versus fr ict ion angle, for a factor of safety of 
one, is superimposed. Correspondingly, the 
curve for a factor of safety of 2 is also shown. 
I t becomes evident that, for the case illus
trated in the authors' paper, the elastic solu
t ion generally yields results indicating a 
factor of safety of approximately 2.5 when 
compared to the sUding circle method. This 
statement is predicated on the thought that 
the curves assume practical usefulness in the 
range of fr ict ion values between 0 deg. and 
25 deg. I n view of this, one may question the 
value of the elastic solution. The possible 
area of application was defined in a paper* 
by Jilrgensen. He states that the overstressed 
points in an embankment cross section become 
plastic and then transmit additional stress to 
adjoining material. I f the plastic zone is 
generally confined, this transfer may be 
effected without danger of progressive failure. 
The strong point of the elastic solution lies 
in its ability to indicate the location of the 
plastic zone. 

As a general rule, the plastic zone is ad
jacent to the toe of very steep slopes, but 
goes deeper into the ground as the slope 
flattens. I n the problem illustrated in this 
paper i t recedes and moves to the left of the 
toe. Below a slope of 45 deg., the probability 
of progressive failure is greatly lessened. 
Hence, a set of charts, as contemplated by the 
authors, should not be construed as design 
charts, but as the upper l imit ing case encom
passing all possible elastic conditions of yield. 
Under most circumstances, the sliding circle 
method, wi th its adaptability to many effects, 
wi l l suffice as a design criterion. 

A limitation results f rom the assumption of 
identical elastic properties of the fill and 
foundation material. This condition wi l l 
rarely occur in practice. I t is hoped that the 
authors wi l l consider this problem in exten
sions of their work. For their present effort, 
they are to be heartily congratulated. 

» T A Y L O R , D . W . ; "Stability of Earth Slopes"; Journal, 
Boston Society of Civil Engineers; 1937; pp. 337-385. 

< J C R Q E N S E N , L . ; "The Application of Theories of Elas
ticity and Plasticity to Foundation Problems"; Journal, 
Boston Society of Civ i l Engineers; 1937; pp. 148-182. 




