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A Model Study of Rigid Pavement Behavior 
Under Corner and Edge Loadings 

P A U L F . CARLTON, Chief of Research Analysis Branch, and 
R U T H M . B E H R M A N X , Research Mathematician, 
Ohio River Division Laboratories, Corps of Engineers, U. S. Army 

Results of laboratory tests, using small scale models, are presented and compared with 
theoretical analyses of critical stresses resulting from single-wheel loads acting at a free 
corner and at a free edge of a rigid pavement slab. 

Included are a bi ief description of the design and construction of the model, test i)ro-
cedures used, presentation of the data therefrom and its anah-sis. Principalh', the test­
ing involved the measurement of strains in a plaster slab subjected to static loading as 
follows: (1) loads tangent to a free edge and at a considerable distance from an}- corner; 
and (2) loads tangent to both edges of the slab at a free corner. By using various sizes 
of both circular and elliptical contact areas in loading the slab, and by expressing the 
stress comparisons in non-dimensional terms, relationships between critical pavement 
stresses for corner and edge loadings are established \vhich are applicable to the proto­
type as well as to the model. 

• SINCE 1940, the Corps of Engineers, 
through the Rigid Pavement Investigational 
Program conducted by the Ohio River Divi­
sion Laboratories, has endeavored to develop 
a complete understanding of the behavior of 
rigid pa\-ement under various conditions of 
loading. Condition surveys and performance 
studies have shown that aijproximately 90 
percent of structural breaks (pavement cracks) 
of both airfield and highway pa\-ements are 
transverse to the direction of traffic. This 
type of failure indicates that the most severe 
loading condition occurs when the load is at 
or near a longitudinal edge of a pavement 
slab. However, from the standpoint of pave­
ment deterioi'ation from continued traffic, 
corner breaks, although relatively few in 
number, are more detrimental than trans­
verse cracks, and have been the object of 
several extensive research investigations dur­
ing the past 30 years (1, 2, 3). These previous 
investigations far exceed the scope of the work 
covered bj- this report, which is limited to 
the presentation of recent findings regai'ding 
the relationship between stresses produced 
by corner and edge loadings. This study is 
unique, however, in that it was conducted in 
the laboratory using small scale models. 
Previous experience at the Ohio River Divi­

sion Laboratories (4) has shown that such 
models can be utilized with considerable 
success for investigating stresses resulting from 
vailous loading arrangements. The laboratory 
methods employed provide greater control 
over the several varial)les involved than can 
be obtained in field tests. Since conditions of 
conti'oUed tempei-ature and humidity were 
maintained during testing, warping due to 
temperature and moisture gradients in the 
slab were virtually eliminated. In addition, 
the physical properties of the slab and sub-
grade were controlled and measured moie 
precisely' in the laboratory than is possible in 
tlie field. 

DESIGN OF THE MODEL 

Theoretical Considerations 

So that the results obtained from the model 
tests might be correlated with Westergaard's 
theoretical analyses of rigid pa\-ement be­
havior, it was necessary in the design of the 
model that consideration be given to the simu­
lation of certain liasic assumptions inherent 
in these theoretical analyses. The assumptions 
and conditions simulated include: (1) that the 
subgrade be uniform in character and jirovide 
continuous support for the slab; (2) that the 
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relationship between the size of the loaded 
area and the thickness of the slab be such that 
the ordinary theory for the bending of thin 
plates is applicable; (3) that the slab be a 
homogeneous, isotropic material of uniform 
thickness; (4) that the critical stresses re­
main within the elastic hmits of both the 
slab and the suVjgrade; (5) that the horizontal 
dimensions of the slab be such that the slab 
acts as though it were infinite in horizontal 
extent; (6) that the depth of the subgrade be 
such that it may be considered infinite; and 
(7) that, for corner loadings, the loaded area 
be symmetrical about the diagonal bisector 
of the corner angle. 

Westergaard, in his analyses, introduced the 
term "radius of relative stiffness," which he 
denoted by I. This term reflects the relation­
ship between the stiffness of the slab and the 
resistance of the subgrade to vertical displace­
ment. In comparing theory, model, and proto­
type, various dimensions and relationships 
may b e expressed as functions of I. 

Edge Loadings 

The theoretical maximum stresses developed 
in the model slab for loadings tangent to a 
free edge were computed in accordance with 
Westergaard's Equation 12 (5) as follows: 
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where: ^ = Poisson's ratio for the slab. 
E = modulus of elasticity of the slab. 
h = slab thickness. 
k = subgrade modulus. 
P = load on the footprint. 
a = semi-major axis of the footprint. 
b = semi-minor axis of the footprint. 
I = radius of relative stiffness of the 

slab and is defined as: 

For edge loading, the critical stress occurs at 
the bottom edge of the slab, at the point of 
tangency, and acts in a direction parallel to 
the edge. 

Corner Loadings 
Theoretical analysis of slab behavior at a 

free corner is Umited largely to Westergaard's 
earl}' work. In a paper in April, 1926 ((?) 
Westergaard gave the following equation for 
the determination of maximum stress at the 

3P 

Eh? "['/^ 
12(1 -

where: P = load on the footprint. 
h = slab thickness. 
a = radius of the footprint. 
I = radius of relative stiffness of the 

slab. 

For corner loadings symmetrical about the 
diagonal bisector of the corner angle (a con­
dition assumed in the above equation), the 
critical corner stress occurs in the top of the 
slab along the diagonal bisector and acts in a 
direction parallel to the diagonal bisector. 

In his April 1926 paper, Westergaard also 
gave the following equation for finding the 
distance from the corner, along the diagonal 
bisector of the corner angle, that the maximum 
stress occurs: 

d = 2.3785 {aiy^ 

where a = radius of the footprint. 
I = radius of relative stiffness of the 

slab. 

Description of the Model 
A general view of the model table and equip­

ment used in these tests is shown in Figure 1. 
The prototype slab is simulated in the model 
by a 15" x 15" x 0.125" Hydrostone gypsum 
cement slab having a modulus of elasticity, E, 
of 3.0 X 10" pounds per square inch and a 
Poisson's ratio, ti, of 0.25. The subgrade is 
simulated by a 24" x 24" x 12" block of natural 
rubber supported rigidly by a concrete table. 
Small lead cubes are distributed uniformly 
over the slab to insure its being in continuous 
contact with the rubber subgrade, a basic 
assumption in the Westergaard analyses, 
and their presence does not affect the elastic 
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action of the slab. Using various sizes of circu­
lar and elliptical footprints, static loads are 
applied to the slab by means of the reaction 
beam. 

In addition to the physical properties of the 
slab, the effective modulus of subgrade re­
action, k, must be known. Values of k, for 
both corner and edge loadings, were deter­
mined experimentally; and were based on the 
volumetric displacement of the subgrade 
within the limits of the slab. For edge loadings 
a static load of 7.5 pounds was applied to a 0.4-
inch radius circular footprint placed tangent 
to an edge of the slab. For corner loading, a 
static load of 8.0 pounds was applied to a 0.5-
inch radius circular footprint placed tangent 
to both edges at a corner of the slab. In these 
tests the choice of the footprint size and static 
load was arbitrary inasmuch as the load was 
transmitted to the subgrade by the pave­
ment slab rather than by the footprint bear­
ing directly on the subgrade. 

Slab deflections were measured to the 
nearest 0.0001 inch and at I-inch intervals 
longitudinally and transversely around the 
loaded areas. From the deflection data, con­
tours of equal slab deflection were plotted on 
a scaled drawing of the slab. Assuming there 
was no volume change in the slab, the de­
flections measured represented the vertical 
displacement of the subgrade. The total volu­
metric displacement of the subgrade, within 
the limits of the slab, was then computed from 
a summation of the individual volumes de­
termined for each deflection contour. The 
subgrade modulus for each type of loading 
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Figure 1. General view of tiie model table and 
equipment. 

DISTANCE FROM LOAD C E N T E R - INCHES 

Figure 2. Loading arrangement and slab deflection 
contours for determination of subgrade modulus at a 

free edge. 

was then obtained from the relationship: 

k = P/V 

where: P = total load applied to the foot­
print. 

V = volumetric displacement of the 
subgrade. 

The loading arrangements and contours of 
equal slab deflection, for the determination of 
A; at a free edge and at a free corner, are shown 
in Figures 2 and 3, respectively. Based on these 
data, the effective subgrade modulus was de­
termined to be 67.0 pounds per cubic inch for 
corner loadings, and 65.7 pounds per cubic 
inch for edge loadings. For purposes of analysis 
in this report, k was assumed to be 65.0 pounds 
per cubic inch for both comer and edge load­
ings. 

Using the elastic constants of the model 
slab and subgrade, as given above, the radius 
of relative stiffness, /, of the model slab was 
approximately 1.7 inches. In terms of I, the 
horizontal dimensions of the slab were only 
slightly less than Ql x 91, which satisfied the 
assumption that the slab was infinite with 
regard to horizontal extent. Similarly, the 
thickness of the rubber subgrade was approxi­
mately 71, which satisfied the assumption 
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that the subgrade was, in effect, infinite in 
depth. 

CONSTETJCTION OF THE MODEL SLAB 

Using standard procedures for mixing and 
blending the Hydrostone cement, the test 
slab was cast in a steel form glued to a glass 
plate. Immediately after poui'ing, the slab was 
struck off with a second glass plate, this strike-
off plate being left in place on top of the slab 
for approximately one hour. The use of glass 
plates to form both the top and bottom sides 
of the test slab insured smooth plane surfaces 
and a thickness uniform within jilus or minus 
0.002 inch. After permitting the slab to cure 
in air at room tempei'ature for seven days, 23 
Type A-7, SR-4 strain gages were cemented 
to the slab as follows: 17 gages for measuring 
strains at the edge, cornei'-edge, and on and 
parallel to the corner-diagonal were mounted 
on the underneath side of the slab; 6 gages for 
measuring strains perpendicular to the corner-
diagonal were mounted on the to]5 side of the 
slab. Figure 4 shows the orientation and spac­
ing of the gages with respect to the corner and 
the edges of the slab. 

CORNER 
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Flfture4. Orientation and spacing of SR-4 strain gages 
on the model slab. 
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Figure 3. Loading arrangement and slab deflection 
contours for determination of subgrade modulus at a 

free comer. 

TEST PROCEDURE 

After allowing the strain gages to air-dry 
for a minimum period of 48 hours, the test 
slab was placed directly on the rubber sub-
grade. A layer of i?4-inch lead cubes was then 
distributed uniformlj- over the top surface of 
the slab (see Figure 1). Static loads were 
applied to the slab by means of the reaction 
beam and the various sizes of footjjrints us 
follows: circular footprints having radii of 
0.1", 0.2", 0.3", 0.4", 0.5", and 0.75"; and 
elliptical footprints having semi-a.xes of 
0.15" X 0.10", 0.30" X 0.19", 0.51" x 0.31", 
0.69" X 0.40", and 0.96" x 0,60". A static load 
of eight pounds was used fo2' all footi)rints and 
both corner and edge loadings. Inasmuch as 
the strains in the slab are proportional to the 
load ap])lied to the footprint, the choice of the 
test load was arbitrary and limited only by 
the working stresses of the Hydrostone and a 
reasonable factor of safety against accidental 
failure of the slab during testing. 

For edge loadings, the footprints were 
placed tangent to the edge at a point approxi­
mately at the center of one edge of the slab. 
In this way there was sufficient distance be-
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tween the point of application of the edge 
loadings and the adjacent corners of the slab 
to eliminate any effect of the corners on the 
edge strains. All elliptical footprints were 
oriented so that their major axes were parallel 
to the edge. (Note: Previous model tests had 
shown that this orientation of an elliptical 
footprint produces the maximum edge stress.) 

For corner loadings, both the circular and 
the elliptical footprints were positioned 
tangent to the two edges at the corner. Inas­
much as strain gages were mounted on the 
corner diagonal and along one edge of the 
corner only, three different orientations of the 
eUiptical footprints were required to investi­
gate all possibilities of critical loading: 

El—with the major axes parallel to and on 
the diagonal bisector of the corner angle. 

E2—with the major axes parallel to the 
corner edge on which the strain gages were 
mounted. 

E3—with the major axes perpendicular to 
the corner edge on which the strain gages were 
mounted. 

DETERMINATION OF UNIT STRESSES 

In order to analyze better the strain data 
obtained from the model, the maximum meas­
ured strains were converted to corresponding 
maximum unit stresses bj- means of the 
following equations (7): 

E ( ^ = 0 - ^ - / i ( o - . / + 0 - - ' ) (1) 

E e y = <T„ - ^ j ( o - , -h < r , ) (2) 

For this study the assumption 0 - 2 = 0 was 
made. Substitution of this assumption in 
Equations 1 and 2 results in: 

E e x = C x — fiCTy (3) 

E t y = (r„ - MO-x (4) 

Edge and Corner-Edge Stresses 
For loading at a free edge, = 0 at the 

edge. The maximum edge stress, , was then 
determined from Equation 3 to be 

<Tx = E t x 

where: = maximum edge stress in the di­
rection parallel to the edge. 

E = modulus of elasticity of the 
Hydrostone. 

6x = maximum measured edge strain 
parallel to the edge. 

Corner-Diagonal Stresses 

Assuming that the maximum strain or stress 
lies on and parallel to the bisector of the corner 
angle foi' corner loadings, the maximum meas­
ured strains along the diagonal were converted 
to maximum unit stresses using Equations 3 
and 4 modified as follows: 

(3a) 

(4a) 

Combining Ecjuations 3a and 4r. gi\'es the 
maximum stress, , at a point on the diago­
nal bisector of the corner angle to be 

E{id + IXin) 
1 - ^ 

where: = Poisson's ratio for Hydrostone. 
E = modulus of elasticity of Hydro­

stone. 
td = measured maximum strain along 

the diagonal bisector of the 
corner angle. 

e„ = measured strain normal to the 
diagonal at the point of maxi­
mum strain along the diago­
nal. 

aa = measured maximum stress at a 
point on the diagonal bisector 
of the corner angle. 

TEST RESULTS 

The magnitude and location of the maxi­
mum strains obtained from the model slab for 
the circular loadings and the three cases of the 
elliptical loadings are shown in Table 1. The 
maximum strains for corner-edge and corner-
diagonal loadings were determined from curves 
plotted from the strains indicated by the indi­
vidual SR-4 gages. In the case of the edge 
loadings, however, the width of the strain 
gages precluded mounting any gage such that 
its effective center would be at the edge of the 
slab (in these tests, the center of the gage 
nearest the edge was 0.12 inch from the edge). 
I t was necessary', therefore, to obtain the maxi­
mum strain at the edge of the slab by ex­
trapolation from the strains indicated by the 
five gages, in line, normal to the edge. In the 
case of the corner-edge loadings, no extrapo­
lation was made as it was assumed that strains 
at the gage position and the edge lay on the 
same equi-strain contour about the corner. 
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T A B L E 1 
L O C A T I O N A N D M A G N I T U D E O F M A X I M U M E D G E A N D C O R N E R S T R A I N S 

Type of Loading Footprint 
Radius or 

Semi-Axes, 
Inches 

A / / ' Maximum 
Strain 
X 10*, 
I n . / I n . 

E d ^ Corner-Diagonal 
Maximum 
Para l l e l 

Strain 
X 10* 

I n . / I n . 

Maximum 
Normal 
Strain 
X 10* 
I n . / I n . 

Distance 
from 

Corner , 
Inches 

Corner-Edge 
Maximum 

Strain 
X 10* 

In. / I n . 

Distance 
from 

Corner , 
Inches 

0. 10 
0.20 
0.30 
0.40 
0. 50 
0.75 

0. 0111 
0.0444 
0.0999 
0. 1775 
0. 2775 
0.6244 

6.03 
4. 58 
3.76 
3. 19 
2. 76 
2.02 

3.56 
2. 72 
2.27 
1.89 
1.48 
0. 98 

1.80 
1.38 
1. 12 
0. 98 
0.72 
0.46 

0. 90 
1.15 
1.38 
1.56 
1. 95 
2.84 

2. 18 
1.80 
1. 52 
1.24 
1.05 
0.80 

1. 55 
1. 75 
2. 00 
2. 32 
2. 62 
3.40 

0. 15 X 0. 10 
0.30 X 0. 19 
0,51 X 0.31 
0.69 X 0.40 
0. 96 X 0.60 

0.0166 
0,0633 
0. 1755 
0. 3063 
0. 6392 

5.40 
4.07 
3.08 
2.55 
1. 90 

3. 26 
2. 34 
1. 53 
1. 15 
0.80 

1.58 
1.23 
0.87 
0.67 
0.39 

0. 92 
1.22 
1.66 
2.06 
2.86 

2.08 
1. 63 
1.22 
0.98 
0. 73 

1. 60 
1.87 
2.30 
2.63 
3. 10 

0. 15 X 0. 10 
0. 30 X 0.19 
0.51 X 0.31 
0.69 X 0.40 
0. 96 X 0. 60 

0.0166 
0.0633 
0. 1755 
0.3063 
0.6392 

5.40 
4.07 
3. 08 
2.55 
1. 90 

3.28 
2.45 
1.58 
1.17 
0. 80 

0. 90 
1. 18 
1.64 
2.02 
2.86 

2. 05 
1, 62 
1.19 
0. 92 
0.68 

0. 15 X 0. 10 
0. 30 X 0. 19 
0.51 X 0. 31 
0.69 X 0.40 
0.96 X 0. 60 

Hydrostone Slab 15" x 15 

0.0166 
0.0633 
0 . 1755 
0 .3063 
0. 6392 

5.40 
4. 07 
3.08 
2. 55 
1. 90 

3.28 
2.45 
1.58 
1. 17 
0. 80 

0. 90 
1. 18 
1.64 
2. 02 
2. 86 

2. 12 
1.79 
1.32 
1.07 
0. 77 

1.65 
2. 20 
2. 90 
3.25 
3. 50 

1. 58 
1. 82 
2. 17 
2.44 
2. 85 

'x 0 .125", E = 3 . 0 X 1 0 6 lbs / in . 2, 
P = 8 lbs . , / " 1.6825 in. 

ft, = 0. 25, k = 65 lbs / in . 3, 

The maximum strains measured in the 
model were converted to unit stresses as de­
scribed above, and the corresponding theo­
retical stresses were computed from the 
Westergaard equations given previously'. A 
comparison of maximum corner and edge 
stresses, both theoretical and observed, is 
shown in Figure 5. The stresses are plotted 
versus A /P, where A is the contact area of the 
footprint. Inasmuch as I is in the form of a 
linear dimension, the expression A/P is non-
dimensional. Thus, this method of analysis 
allows the direct application to the prototype 
of stress relationships developed in the model. 
The various footprint sizes used in applying 
the load to the slab provided a range in values 
of A/P which includes most prototype con­
ditions. 

A percentage comparison of the maximum 
corner stress to the maximum edge stress for 
both the model and the theory is shown in 
Figure 6. 

The distance from the corner to the point of 
maximum stress along the diagonal bisector of 
the corner angle, as determined theoretically 
and experimentally, are compared in Figure 7. 

D I S C U S S I O N O F T E S T R E S U L T S 

AND A N A L Y S E S 

Slab Stresses 

A comparison of the measured strains along 
the diagonal bisector of the corner angle, as 
given in Table 1, shows that the strains along 
the diagonal are practically equal for all three 
cases of elliptical loading Ei, and Ez. This 
was reasonable inasmuch as there was no 
change in the distance from the corner to the 
centroid of a given footprint for the three load 
positions, and only small changes were re­
quired relative to the positioning of the foot­
prints. Therefore, i t was assumed that no 
significant differences existed between the max­
imum corner stresses, for a given footprint, for 
the three loadings Ei , E-i and Ez. On this 
basis, the unit stresses determined for the sym­
metrical loading Ei were considered as repre­
senting the maximum stresses for all corner 
loadings using elliptical footprints. Since 
Westergaard's analyses of corner stresses were 
valid onh' for a circular loaded area, no theo­
retical stresses could be determined for com­
parison with the stresses measured in the 
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model using eUiptical footprints. Also, with 
regard to the stresses at the corner-edge, no 
theoretical analysis for the determination of 
these stresses was available. From the com­
parison of corner-edge and corner-diagonal 
stresses, as shown in Figure 5, i t is apparent 
that only for the smaller values of A/P are the 
corner-edge stresses appreciably less severe 
than those along the corner-diagonal. 

For the eUiptical loadings E2 and E3, the 
measured strains along the diagonal bisector 
of the corner angle should have been identical 
for any footprint. However, due to the various 
sources of error such as positioning the foot­
prints, aUgnment of strain gages, and accuracy 
of the instruments used to measure the strains, 
some differences in comparable strains were 
noted. For purposes of analysis, average values 
of the corner-diagonal strains for loadings 
and E3 were used. I t is of some significance to 
note that the average difference between com­
parable strains for the Ei. and E3 loadings was 
only shghtly more than 3 percent. 

I t can be seen from Figures 5 and 6 that the 
shape of the loaded area, whether circular or 
eUiptical, has little effect on the pavement 
stress for a given value of AfV. Actually, the 
shape of the footprint results in less than 5 
percent variation in stress. Since prototype 
footprint shapes are actually somewhere be­
tween being circular or eUiptical, the average 
data obtained from the circular and elliptical 
loadings can be appUed to the prototype with 
negUgible error. 

In general, it may be said that the agree­
ment between the behavior of the model and 
that predicted by Westergaard's theoretical 
analyses was good. As has been noted in 
previous studies using simUar models, the 
maximum edge stresses observed in the model 
were from 10 to 12 percent less than the theo­
retical stresses. In the case of the maximum 
corner stresses, however, the stresses measured 
in the model were only 65 to 75 percent as 
great as those determined from the Wester-
gaard equations. 

Figure 6 shows a percentage comparison of 
the maximum corner stress to the maximum 
edge stress for both the model and the theory. 
Again, the stress relationships are plotted 
versus A /P. I t can be seen in this figure that 
for either the model or the theory, the ratio 
between maximum corner and edge stresses 
does not vary more than plus or minus 6 per­

cent throughout the range of values of A/P 
tested. 

Particularly good agreement, as is indicated 
by Figure 7, was obtained between the model 
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CORHIER-DIAGOIJAL M E A S U R E D 

C O R N E R - E D G E M E A S U R E D 

Figure 5. Measured and theoretical maximum corner 
and edge stresses. 
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Figure 6. Relationsli lp of corner stress to edge stress 
as observed in the model and from Westergaard's 

analyses. 
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Figure 7. Locat ion of maximum corner stress along the 
diagonal bisector of the corner as observed in the 

models and from Westergaard's analyses. 
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and the theory with respect to the location of 
the maximum stress along the corner diagonal 
for corner loadings. 

Subgrade Modulus 
From the data obtained in this study, it ap­

pears that the effective subgrade modulus is 
the same for both corner and edge loadings. In 
previous model tests, however, determinations 
of the subgrade modulus for the model had 
shown that for interior loadings, the effective 
k was 35 pounds per cubic inch. This is ap-
proximatel.v half the \-alue of k measured at 
the edge and at the corner. I t is beUeved that 
this apparent increase in k near the boundaries 
of the slab may be explained by the additional 
support derived from the subgrade outside the 
limits of the slab. 

CONCLUSIONS 

The type of model employed in these tests is 
essentially an analog device and as such, may 
be applied to a variety of problems involving 
special conditions of loading of rigid pave­
ments. The agreement between the behavior of 
the model and that predicted by Westergaard's 
theoretical analysis was generally good, es­
pecially when it is considered that the accuracy 
of analogs of this type is seldom better than 5 
to 10 percent. 

For the specific assumptions and conditions 
enumerated earlier, the following conclusions 
have been drawn: 

1. The effective subgrade modulus is the 
same for both edge and corner loadings. 

2. The maximum corner stress is not ap­
preciably affected by the orientation of an 
elliptical footjjiint. However, for corner load­
ings of the elliptical footprint with axes 
parallel to the corner edges, maximum strains 
in the corner-edge parallel to the minor axes 
of the footprints were slightly greater than 
maximum strains in the corner-edge parallel to 
the major axes of the footprints. 

3. The shape of the loaded area, whether 
circular or elliptical, has little effect on the 
pavement stress for etjual values of A/P. 

4. Maximimi corner stresses in the top 
surface of the slab are tensile and occur along 
the diagonal bisectoi' of the corner. 

5. Westergaard's equations for determining 
the distance, along the diagonal bisector of the 
corner, from the corner to the maximum corner 
stress give values in close agreement with re­
sults obtained from the model tests. 

6. AYestergaard's equations for maximum 
corner stress along the diagonal bisector of the 
corner give values greater than corresponding 
stresses as measured in the model. (Wester­
gaard's equations for maximum edge stresses 
are, as demonstrated earlier, in substantial 
agreement with corresponding stresses meas­
ured in the model.) 

7. Critical stresses in a rigid pavement re­
sult from edge loading, the maximum corner 
stress being only 45 to 55 percent of the 
maximum edge stress. 
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