In considering the foregoing it should be noted that in the test runs the conditions, such as algnment of wheels and tires, were for the most part carefully controlled. Full standard inflation was used. The speed of twenty-five mules per hour is now probably too low to be considered as average The tires were probably above average in quality and received more than ordinary care. None but dry pavements were used. Considering all such conditions it seems certain that the above figures are conservative

Laboratory investigations are in progress to collect data upon the effect of inflation, temperature, moisture and tread rubber quality upon tiead wear While progress has been made in all these phases of the investigation it is not now possible to state even preliminary conclusions

Investigations to be undertaken include the effect of speed, size and weight of vehicle upon tread wear, also roughness of road surface. The question of the relative wear of low, medium or high grade tires as affecting tire economy is an important one Statistics are needed showmg the numbers of tires used in various size and quality groups.

C

INVESTIGATION OF TIRE WEAR

H J Dana
State College of Washington, Pullman, Washington

The Engineeing Experiment Station of the State College of Washington has been conducting a series of measurements of tread rubber loss from automobile tires that were operated on some of the standard roads in the vicinity of Pullman, Washington Four dufferent cars and four sets of tires were used so it is not possible to compare runs made with one car with those made with another The following preliminary report of the results is not considered to be conclusive, but is indicative of the general trend and should be evaluated on that basis.

TIRE TEST HIGHWAYS

Location of Hıghway	Kind of surface	Length of test road	Distance run	Remarks
Pullman to Palouse	Macadam	$\begin{gathered} \text { Miles } \\ 16 \end{gathered}$	$\begin{gathered} \text { Miles } \\ 65 \end{gathered}$	Crushed basalt, some corrugations, loose material on surface, $3 / 4$ mule; roads with grades 46 per cent to 5 per cent, level for most part Two round trips constitute a "run" Road about 30 feet wide, some curves, dirt shoulders No rains during tests Frequently planed by manntenance crew
Pullman to Lewiston	Macadam	35	70	Crushed basalt, some rough places, and loose material Easy curves and grades, dirt shoulders, loose gravel at edges of road Lewnston Hill 8 miles long and average of less than 5 per cent grade Several harrpin curves on steep grade Test down hill, up hill, and on level hughway 20 MPH Took all day for one test Temperature variation 10 to 15 degrees during day
Dishman to Coeur d'Alene	Concrete	36	150	Concrete in very good condition, in some places worn smooth, olly from oll dropped by passing cars No grades to mention, easy curves Two round trips per test
Dishman South	Macadam	10	80	Crushed basalt, meduum size, some loose gravel on surface, easy curves, some easy grades Very little washboard, dusty, smoother worn track in middle Forest along part of route Several rall crossings
Portland to Gresham.	Bithulithic	22	17	Columbia Rıver Highway, blacktop in good condition Some oll on surface, several easy curves, easy grades Road crowned a reasonable amount Turnout seldom requres travel on dirt or gravel shoulders Forest along part of route Test run both ways

TIRE TEST HIGHWAYS-Continued

Location of Highway	Kind of surface	Length of test road	Dis- tance run	
Little Rock to Centralia and to Elma	Gravel	67	67	Water worn gravel mixed with sand and clay forming reasonably fine roadway with rounded gravel protruding from surface run one way
Test				
Vanmpia to Vancouver	Concrete	120	120	Concrete with average level grade Some easy curves and grades, dirt and gravel shoulders Con- crete in good condition Forest along part of route All in good repair One test going up, second test returning

TIRE DATA AT START OF TESTS

Car	Size and location of tire	Air pressure	Age of tıre	Remarks
Ford	$30 \times 31 / 2$ front	$\begin{gathered} L b s \\ 55 \\ 55 \end{gathered}$	$\begin{array}{ll} 15 \mathrm{mo} & 600 \mathrm{~ms} \\ & 0 \mathrm{~mm} \end{array}$	Total mileage during test 1,127
Touring	$30 \mathrm{x} 31 / 2$ rear	55	New $9 \mathrm{mı}$	Firestone Cord Tires Weight of Car 1,740
Nash Sedan				Firestone Cord Tires put on December, 1924
	$34 \times 41 / 2$ rear	70	$8 \mathrm{mo} \quad 7,000 \mathrm{ml}$	Put on February, 1925 Weight of Car 4,400 lbs
Hupp Touring	34×4 front $\begin{array}{lll}34 & x 4 & \text { rear }\end{array}$	65 65	$\begin{array}{rr} 11 \mathrm{mo} & 8,000 \mathrm{ml} \\ & \\ 2 \mathrm{mo} & 1,100 \mathrm{mı} \\ 18 \mathrm{mo} & 10,000 \mathrm{ml} \\ 10 \mathrm{mo} & 6,000 \mathrm{ml} \end{array}$	$\left.\begin{array}{l}\text { Goodyears trans- } \\ \text { ferred from rear } \\ \text { Riverside } \\ \text { Riverside } \\ \text { Goodyear }\end{array}\right\}$On coast Onruns
Dodge Touring	$321 / 2 \times 31 / 2$ front $33 \quad \mathrm{x} 4$ rear	55 55	R F 2 years LF New RR New L R New	U S Cord Riverside Cord G and S Cord New Portage Cord Weight of Car, 2,750 lbs

SUMMATION OF TIRE TESTS

Average tire wear in lbs per 1,000 miles at 30 M PH Average wear on concrete and black top pavement

Ford	0	0477
Dodge	0	0560
Hupp	0	1133
Nush	0	1183

Average wear on crushed basalt macadam

Ford	02972
Hupp	05260
Dodge	06616

Average wear on water worn gravel

Nash	04900
Hupp	06250

Gasoline consumption, gallons per 1,000 males on the Lewiston Highway Level 20 miles long, hill 8 miles long, gradient average is 42%, with a maximum of not to exceed $5 \% \quad 20 \mathrm{M}$ P H Crushed basalt macadam

Dodge		350
Hupp		368
	On Level	
Dodge		518
Hupp		628
	Up Hıll	908
Dodge		1048

TIRE TEST DATA

Test No	Car	Route	Type of Road	Speed miles per hour	Alr tempertempre	Tire wear Ibs per $1,000 \mathrm{M}$
8		Pullman to Spokane and return	Macadam	30	970	0590
11		Pullman to Lewiston Hill	Macadam	20	885	1122
17		Lewiston Hill to Pullman	Macadam	20	835	1045
27		Pullman to Lewiston Hıll	Macadam	20	805	1456
33		Lewiston Hill to Pullman	Macadam	20	925	0435
35		Dishman South ten miles and return	Macadam	30	813	0618
41		Dishman South ten miles and return	Macadam	30	940	0777
37		Dishman to Coeur d'Alene and return	Concrete	30	810	0076
39		Dishman to Coeur d'Alene and return	Concrete	30	860	0036

$\left.\begin{array}{c|c|l|l|l|l|l}\hline \begin{array}{c}\text { Test } \\ \text { No }\end{array} & \text { Car } & \text { Route } & \begin{array}{c}\text { Type of } \\ \text { road }\end{array} & \begin{array}{c}\text { Speed } \\ \text { mles } \\ \text { per } \\ \text { hour }\end{array} & \begin{array}{c}\text { Aır } \\ \text { Temper- } \\ \text { ature }\end{array} & \begin{array}{c}\text { Tire } \\ \text { wear lbs } \\ \text { per }\end{array} \\ 1,000 \mathrm{M}\end{array}\right]$

$\begin{aligned} & \text { Test } \\ & \text { No } \end{aligned}$	Car	Route	Type of road	Speed miles per hour	Aır Temper ature	Tire wear lbs per $1,000 \mathrm{M}$
2		Pullman to Palouse and return	Macadam	25	920	05420
5		Pullman to Palouse and return	Macadam	25	810	02710
7		Pullman to Palouse and return	Macadam	30	842	03600
19		Pullman to Palouse and return	Macadam	20	880	04180
21		Pullman to Palouse and return	Macadam	20	880	04330
23	bo	Pullman to Palouse and return	Macadam	30	945	02750
25	号	Pullman to Palouse and return	Macadam	15	780	03430
34	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Dishman south ten miles and return	Macadam	30	813	02900
40	$$	Dishman south ten miles and return	Macadam	30	940	02440
36		Dishman to Coeur d'Alene and return	Concrete	30	810	00325
38		Dishman to Coeur d'Alene and return	Concrete	30	860	00629

Test No	Car	Route	Type of road	Speed miles per hour	Alr temperature	Tire wear lbs per $1,000 \mathrm{M}$
43		Olympia to Vancouver	Concrete	30	650	0208
49		Olympia to Vancouver	Concrete	30	700	0057
45		Portland to Gresham and return	Black Top	30	640	0117
47	$\begin{aligned} & \text { 咢 } \\ & \text { © } \end{aligned}$	Gresham to Portland and return	Black Top	30	755	0091
51		Little Rock to Centralia	Gravel	30	640	0533
53		Centralia to Elma	Gravel	30	640	0447

D

INVESTIGATION OF GASOLINE AND OIL CONSUMPTION

Mark L Ireland
Major, Quartermaster Corps, U S Army

In evaluating the relation between type of road surface and the cost of vehicle operation, the first factor to consider is the relative fuel consumption. The following tabulation represents an accumulation of data obtained in connection with the ordinary activities of the Quartermaster Corps, U. S. Army. It is presented herewith so that it will be generally available for reference.

