4 In a pavement slab of uniform thickness the maximum deformation occurs along the edge of the slab for both the four-wheel and six-wheel'vehicles The deformation recorded by the gage on the diagonal showed 45 per cent for four-wheel and 48 per cent for six-wheel vehicles, of the deformation recorded in the edge of the slab
5 For the particular conditions of this test, a load passing along a pavement 9 inches from the edge produced approximately twice the fiber deformation in the edge of the pavement that was caused by the same load passing along a path 21 inches from the edge (The one stress was from 43 per cent to 51 per cent of the other in the various tests, with an average of 47 per cent for all tests)

# COMPUTATION OF STRESSES IN CONCRETE ROADS 

H M Westergatrd<br>Unutersily of Illunons, Urbana, Illnnovs

One may obtain a computation of stresses in concrete roads by assuming the slab to act as a homogeneous isotiopic elastic solid in equilibrium, and by assuming the reactions of the subgrade to be veitical only and to be pioportional to the deflections of the slab With these assumptions intioduced, the analysis is reduced to a problem of mathematical theory of elasticity

The reaction of the subgiade per unit of area at any given point will be expressed as a coefficient $h$ times the deflection $z$ at the point This coefficient is a measure of the stiffness of the subgiade, and may be stated in pounds pei square inch of area per inch of deflection, that is, in $\mathrm{lb} / \mathrm{m}^{3}$ The coefficient $k$ will be called the modulus of subgrade reaction It conesponds to the "modulus of elasticity of ral support" which has been used in recent investigations of stiesses in ialroad track ${ }^{1}$ The modulus $k$ is assumed to be constant at each point, independent of the deflections, and to be the same at all points within the area which is under consideiation It is tiue that tests of bearing pressures on soils have indicated a modulus $k$ which van es consideıably depending upon the area over which the pressure is distributed ${ }^{2}$

[^0]Yet, so long as the loads are limited to a particular type, that of wheel loads on top of the pavement, it is reasonable to assume that some constant value of the modulus $k$, determined empuically, will lead to a sufficiently accurate analysis of the deflections and the stiesses One finds an argument in favor of the assumption of a constant modulus $k$ for a given stretch of $10 a d$ by examining the tables which are given below they show that an increase of $k$ from $50 \mathrm{lb} / \mathrm{m}^{3}$ to $200 \mathrm{lb} / \mathrm{m}^{3}$, that is, an increase of the stiffness of the subgrade in the ratio of four to one, causes only minor changes of the impoitant stresses Minor variations of $k$, therefore, can be of no gieat consequence, and an approximate single value of $k$ should be sufficient for a quite accuiate determination of the important stiesses within a given stretch of the road The modulus $k$ enters in the formula for the deflections of the pavements, and may be determined empirically, accordingly, for a given type of subgrade, by comparing the deflections found by tests of full-sized slabs with the deflections given by the formulas

It will be assumed for the time being that the thickness of the slab is unform and is equal to $h$

A certain quantity which is a measure of the stiffness of the slab relative to that of the subgrade occurs repeatedly in the analysis It is of the nature of a linear dimension, like, for example, the radius of gyration It will be called the radius of relative strffness It is denoted by $l$, and is expressed by the formula

$$
\begin{equation*}
l=\sqrt[4]{\frac{E h^{3}}{12\left(1-\mu^{2}\right) k}} \tag{1}
\end{equation*}
$$

where $E$ is the modulus of elasticity of the concrete, and $\mu$ is Poisson's ratio of lateial expansion to longitudinal shortening The stiffer the slab, and the less stiff the subgrade, the greater is $l$ One may observe that $l$ remains constant when $E$ and $k$ are multiphed by the same iatio Table I contans values of $l$ for three different values of $k$ and for different thickensses of the slab In computing this table as well as the three tables following, Poisson's ratio $\mu$ was assumed to be 015 , this value agrees satisfactorily with the results of tests by A N Johnson ${ }^{1}$ The values of $l$ given in the table lie between 16 inches and 55 inches, about 36 inches may be considered to be a typical average

## THREE CASES OF LOADING INVESTIGATED

Figure 1 shows thiee cases in which it is of particular interest to be able to compute the critical stresses In case $I$, a wheel load acts close to a rectangular coiner of a large panel of the slab This load tends toward producing a corner bieak The critical stress is a tension at the top of the slab The resultant pressure is assumed to be on the

[^1]

Figure 1-Three cases of loading Corresponding greatest stresses are given in Tables II, III, and IV
bisector of the ught angle of the coiner, at the small distance $a$ fiom each of the two intersecting edges, the distance fiom the corner, accoidingly, is $a_{1}=a \sqrt{2}$ In case $I I$, the wheel load is at a considerable

TABLE I
Values of the raduus of ielative stiffiess, $l$, for different values of the slab thichness, $h$, and of the modulus of subgrade reaction, $h$, computed from equation ( 1 ) $E=3,000,000$ pounds per square inch $\quad \mu=015$

| Thuckness of slab in inches $h$ | Radus of relative stıfness, $l$, in inches |  |  |
| :---: | :---: | :---: | :---: |
|  | $k=50 \mathrm{lb} / \mathrm{m}^{3}$ | $h=100 \mathrm{lb} / \mathrm{m}^{3}$ | $k=200 \mathrm{lb} / \mathrm{ma}$ |
| 4 | 2391 | 2011 | 1692 |
| ; | 2828 | 2378 | 2000 |
| 6 | 3240 | 2726 | 2292 |
| 7 | 3640 | 3060 | 2573 |
| 8 | 4023 | 3383 | 2844 |
| 9 | 4394 | 3695 | 3107 |
| 10 | 4755 | 4000 | 3362 |
| 11 | 5108 | 4294 | 3611 |
| 12 | 5452 | 4584 | 3856 |

distance from the edges The pressuie is assumed to be distributed uniformly over the area of a small cucle with radius $a$ The critical tension occuis at the bottom of the slab undel the center of the circle In case III, the wheel load is at the edge, but at a considerable distance
from any coiner The pressure is assumed to be distributed unformly over the area of a small semicncle with the center at the edge and with radius $a$ The citical stiess is a tension at the bottom undel the center of the cucle In each of the thiee cases the load mentioned is assumed for the time being to be the only load acting
For case $I$ a computation which may be looked upon as a first approvimation was proposed by A T Goldbeck Fuither emphasis was given to this method by Clifford Older ${ }^{1}$ The load is tieated as a force concentrated at the coineı itself, that is, one assumes $a=a_{1}=0 \quad$ At small distances fiom the corner the influence of the reactions of the subgiade upon the stresses will be small compared with that due to the load The corner poition may be considered, theiefore, to act as a cantilever of uniform strength At the distance $x$, measured diagonally fiom the cornel along the bisector of the right angle of the coiner, the bending moment is $-P x$ This bending moment may be assumed to be distubuted uniformly over the cioss-section, the width of which is $2 x$ Thus one finds the bending moment per unit of width of cioss-section equal to $-\frac{P}{2}$, and the tensile stress at the top equal to

$$
\begin{equation*}
\sigma=\frac{3 P}{h^{2}} \tag{2}
\end{equation*}
$$

Since the wheel load is distıbuted over the area of contact between the tre and the pavement, the distances $a$ and $a_{1}$ can not be zero The greatest stiess occurs, then, at some distances from the load This distance will be sufficiently laige to make the reactions of the subgrade outside the cutical section contribute a noticeable reduction of the numencal value of the bending moment
An improved approximation has been obtained in the following manner The origin of the honizontal ectangular cooidinates $x$ and $y$ is taken at the conner, the axis of $x$ bisecting the right angle of the cornel By use of Ritz's method of successive approximation, which is based on the principle of minimum of energy, ${ }^{1}$ the following appioximate expression was found for the deflections in the neighboihood of the conner

$$
\begin{equation*}
z=\frac{P}{h l^{2}}\left(11 e^{-\frac{x}{l}}-\frac{a_{1}}{l} 088 e^{-\frac{2 x}{l}}\right) \tag{3}
\end{equation*}
$$

Then the reactions of the subgrade will be expressed with sufficient exactness in terms of this function as $k z$ One may compute, then, the total bending moment $M^{1}$ in the section $x=x_{1}$ due to the combined influence of the applied load and the reactions of the subgiade When $x_{1}$ is not too large, this bending moment will be appioximately uniformly-

[^2]distributed over the width $2 x_{1}$ of the cross-section That is, the bending moment per unit of width becomes $M=\frac{M^{1}}{2 x_{1}} \quad$ The numerically greatest value of $M$ was found, in this mannei, to occur approximately at the distance
\[

$$
\begin{equation*}
x_{1}=2 \sqrt{a_{1} l} \tag{4}
\end{equation*}
$$

\]

and to be, appioximately,

$$
\begin{equation*}
M=-\frac{P}{2}\left[1-\left(\frac{a_{1}}{l}\right)^{06}\right] \tag{5}
\end{equation*}
$$

Division by the section modulus per unit of width, $h^{2} / 6$, leads to the conesponding greatest tensile stress

$$
\begin{equation*}
\sigma_{\mathrm{c}}=\frac{3 P}{h^{2}}\left[1-\left(\frac{a_{1}}{l}\right)^{06}\right] \tag{6}
\end{equation*}
$$

This stress may be stated also in the following form which is derived by substituting the value of $l$ from equation (1)

$$
\begin{equation*}
\sigma_{\mathrm{c}}=\frac{3 P}{h^{2}}\left[1-\left(\frac{E h^{3}}{12\left(1-\mu^{2}\right) k}\right)^{-015} a_{1}^{06}\right] \tag{7}
\end{equation*}
$$

With $a_{1}=0$, the last two equations assume the simpler form of equation (2)

## STRESS NOT GREATLY AFFECTED BY SUBGRADE CONDITION

Table II contans numerical values of the cutical stress $\sigma_{\mathrm{c}}$ for $P=$ $10,000 \mathrm{lb}, E=3,000,000 \mathrm{lb}$ per sq in, and $\mu=015$ The table shows the influence of three vaıables the thickness $h$, the modulus $k$ of subgrade reaction, and the distance $a$ fiom the edges to the center of the load

An inspection of the table shows the influence of the variation of the distance $a$ to be appreciable, amounting easily to a reduction of more than 30 per cent as compared with the value found by the first approximation, with $a=0 \quad$ The influence of the vaniation of the modulus $k$ from 50 to $200 \mathrm{lb} / \mathrm{m}^{3}$, on the other hand, is not partıcularly large

In case $I I$, that of a wheel-load at a point of the intenor, complications arise due to the fact that the load is concentrated within a rather small area The theoly of elasticty offers two types of theory of slabs one theory may be called "ordınaty theory of slabs," the other "special theory " The difference may be explained by an analogy with beams In analysis of beams it is assumed oidinarily that a plane cross-section remains plane and perpendicular to the neutial surface during the bending For beams of ordinary propoitions, this assumption leads to satisfactory results, unless one is concerned with the local stresses in the immediate nelghborhood of a concentrated load In the latter case the assumption of the plane cross-section must be abandoned, and a special theory, which takes into account the deformations due to the vertical stresses, is required In the ordinary theory of slabs it is assumed,
correspondingly, that a straight line diawn though the slab perpendicular to the slab remains straight and perpendicular to the neutral surface With slabs of pioportions as found in pavements, the theory based on these assumptions leads to a satisfactory determination of stresses at all points except in the immediate neighboihood of a concentrated load, and leads to a satisfactoly determination of the deflections at all points At the point of application of a concentrated force this ordinary theory leads to a peak in the diagiams of bending moments, with infinite values at the point of the load itself (as indicated in Figuies

TABLE II
Stresses in pounds per square inch computed from equalion (7) for load condition as in Case I, Fugure 1, for dufferent values of $h, k$, and a

| Thichness of slab, $h$ | Modulus of subgrade reaction, $k$ | Stress in slab |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $a=0$ | $a=2 \mathrm{~m}$ | $a=4 \mathrm{n}$ | $a=6 \mathrm{nn}$ |
| $\begin{gathered} \text { Inches } \\ 6 \end{gathered}$ | $\begin{gathered} L b / 2 n^{3} \\ 50 \\ 100 \\ 200 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ \text { sq in } \\ 833 \\ 833 \\ 833 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ \text { sq in } \\ 641 \\ 619 \\ 596 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ \text { sq in } \\ 541 \\ 509 \\ 474 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ \text { sq } \mathrm{in} \\ 461 \\ 420 \\ 375 \end{gathered}$ |
| 7 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 612 \\ & 612 \\ & 612 \end{aligned}$ | $\begin{aligned} & 480 \\ & 466 \\ & 450 \end{aligned}$ | $\begin{aligned} & 412 \\ & 390 \\ & 366 \end{aligned}$ | $\begin{aligned} & 357 \\ & 329 \\ & 298 \end{aligned}$ |
| 8 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 469 \\ & 469 \\ & 469 \end{aligned}$ | $\begin{aligned} & 373 \\ & 363 \\ & 352 \end{aligned}$ | $\begin{aligned} & 325 \\ & 309 \\ & 291 \end{aligned}$ | $\begin{aligned} & 285 \\ & 265 \\ & 242 \end{aligned}$ |
| 9 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 370 \\ & 370 \\ & 370 \end{aligned}$ | $\begin{aligned} & 299 \\ & 291 \\ & 282 \end{aligned}$ | $\begin{aligned} & 262 \\ & 250 \\ & 237 \end{aligned}$ | $\begin{aligned} & 233 \\ & 217 \\ & 201 \end{aligned}$ |
| 10 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 300 \\ & 300 \\ & 300 \end{aligned}$ | $\begin{aligned} & 245 \\ & 239 \\ & 232 \end{aligned}$ | $\begin{aligned} & 216 \\ & 207 \\ & 197 \end{aligned}$ | $\begin{aligned} & 193 \\ & 182 \\ & 169 \end{aligned}$ |
| 11 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 248 \\ & 248 \\ & 248 \end{aligned}$ | $\begin{aligned} & 204 \\ & 200 \\ & 194 \end{aligned}$ | $\begin{aligned} & 182 \\ & 175 \\ & 167 \end{aligned}$ | $\begin{aligned} & 164 \\ & 154 \\ & 144 \end{aligned}$ |
| 12 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 208 \\ & 208 \\ & 208 \end{aligned}$ | $\begin{aligned} & 173 \\ & 169 \\ & 165 \end{aligned}$ | $\begin{aligned} & 155 \\ & 149 \\ & 143 \end{aligned}$ | $\begin{aligned} & 140 \\ & 133 \\ & 124 \end{aligned}$ |

5, 10, and 11) When the foice is applied at the top of the slab, the tensile stresses at the bottom are not, in fact, infinite One may sar then that the effect of the thickness of the slab is equivalent to a rounding off of the peak in the diagiams of moments In ordeı to find out to what extent the diagiams are iounded off, it is necessary to abandon the assumption of the stiaight lines diawn thiough the slab iemaining stiaight, as applying to the immediate neighborhood of the load, and a special theory is required This special theory rests on only two assumptions one is that Hooke's law apphes, the constants being the modulus of elasticity $E$ and Poisson's ıatio $\mu$, the other is that the material keeps its geometnical continuity at all points As in the case of beams, the ordinaty theory is much simplei than the special theory, and is used, theiefore, evcept in particular cases like the present one, which deals with local effects around a concentiated load

It is expedient to express the results of the special theory in terms of the ordinaty theory in the following manner Let the load $P$ be distubuted uniformly over the area of the small circle with radius a The tensile stiess produced by this load at the bottom of the slab under the center of the cucle is denoted by $\sigma 1$ This stiess is the cutical stress


Figure 2-Cones of equivalent distribution of pressure
except when the radius $a$ is so small that some of the vertical stresses near the top become more impoitant, the latter exception need not be considered, however, in case of a wheel load which is applied through a rubber tire By use of the ordmary theory one may find the same stress at the same place by assumıng the load to be distributed over the area of a circle with the same center, but with the radius $b$ One finds that this equivalent iadius $b$ can be expressed with satisfactory appioximation in terms of the true radius $a$ and the thickness $h$ only

In ordes to find the relation between $h, a$, and $b$, numerical computations were made in accordance with an analysis which is due to $A$ Nadar ${ }^{1}$ The center of the load $P$ is assumed for the time being to be at the center of a circular slab The slab is suppoited at the edge in such a manner that the sum of the iadial and tangential bending moments is zero at every point of the edge Computations according to Nádaı's analysis, with the radius of the slab equal to $5 h$ gave the results which are represented in Figuee 2 in the manner of "cones of equivalent distribution" and in Figuie 3 by a cuive with coordinates $a$ and $b$ Approximately the same cones and the same curve are obtained for other radn of the slab, and the results may be applied generally to slabs of proportions such as are found in concrete pavements, with any kind of support which is not concentrated within a small area close to the load


Figure 3-Relation between the true radius, a, the equivalent radius, b, and the thickness, $h$

[^3]One may notice that when $a$ incieases gradually fiom zeıo, $b$ is at first laige than $a$, but when $a$ passes a certain limit, $b$ becomes smaller than $a$ For the larger values of $a$, the ratio $b / a$ converges toward unity, and the ordinary theory of slabs, accordingly, gives nearly the same results as the special theory

The cuive in Figure 3 is found to lie close to a hyperbola, the equation of which may be wnitten in the following form, which is suitable for numencal computations, and which may be used for values of $a$ less than $1724 h$

$$
\begin{equation*}
b=\sqrt{16 a^{2} \times h^{2}}-0675 h \tag{8}
\end{equation*}
$$

For larger values of $a$, one may use $b=a$, that is, the ordinaty theory may be used without corrections

By the ordinaly theory one finds the following approximate expiession for the critical stress

$$
\begin{equation*}
\sigma_{\imath}=\frac{3(1+\mu) P}{2 \pi h^{2}}\left(\log _{c} \frac{l}{a}+06159\right) \tag{9}
\end{equation*}
$$

With $E=3,000,000 \mathrm{lb}$ pel sq in and $\mu=015$, and with $l$ substituted from equation (1), this formula takes the form

$$
\begin{equation*}
\sigma_{1}=03162 \frac{P}{h^{2}}\left(\log _{10}\left(h^{3}\right)-4 \log _{10} a-\log _{10} h+6478\right) \tag{10}
\end{equation*}
$$

The conection to be made in this formula in order to make it agiee with the special theory is merely to replace the true radius $a$ by the equivalent radius $b$ Thus one finds the following formula, which replaces equation (10) when $a$ is less than $1724 h$

$$
\begin{gather*}
\alpha_{1}=03162 \frac{P}{h^{2}}\left(\log _{10}\left(h^{3}\right)-4 \log _{10}\left(\sqrt{16 a^{2}+h^{2}}-0675 h\right)\right. \\
\left.-\log _{10} k+6478\right) \tag{11}
\end{gather*}
$$

The stresses given in Table III have been computed in accordance with this formula for $P=10,000$ pounds Lake Table II, this table shows the influence of three vaniables the thickness $h$, the modulus $k$ of subgiade reaction, and $a$ In Table III, as in Table II, one may notice the relatively gieater influence of the variation of $a$ as compared with the influence of the variation of $k$

In dealing with case $I I I$, that of a wheel load at the edge, it was assumed that an equivalent iadius $b$ may be introduced in the place of the true radius $a$ in the same manner as in the preceding case, and by the same formula, that of equation (8) This assumption may be justified on the ground of the similarity in the two cases in the distribution of the energy due to veitical shearing stresses By introducing the equivalent radius $b$ in the place of $a$ in the formula for the tensile stress
$\sigma_{\mathrm{t}}$ along the bottom of the edge under the center of the circle, as obtained by the ordinary theory, one finds the following expiession which, like the analogous equation (11), is based on $E=3,000,000 \mathrm{lb}$ peisq in and $\mu=015$

TABLE III
Stresses in pounds per squave inch computed from equahon (11) for load condition as in Case II, Figure 1, for different values of $h, k$, and a

| Thickness of slab $h$ | Modulus of subgrade reaction $k$ | Stress in slab |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $a=0$ | $a=2 \mathrm{n}$ | $a=4 \mathrm{n}$ | $a=6 \mathrm{~m}$ | $a=8 \mathrm{~m}$ |
| Inches 4 | $\begin{gathered} L b / \imath n^{3} \\ 50 \\ 100 \\ 200 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ s q \text { in } \\ 1,231 \\ 1,172 \\ 1,112 \end{gathered}$ | $\begin{gathered} \text { Lbs } \quad p e r \\ \text { sq } 2 n \\ 1,058 \\ 998 \\ 939 \end{gathered}$ | $\begin{gathered} L b s \text { per } \\ s q \quad \text { in } \\ 848 \\ 788 \\ 729 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ \text { sq in } \\ 693 \\ 634 \\ 574 \end{gathered}$ | Lbs per sq in 588 528 469 |
| 5 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 763 \\ & 725 \\ & 687 \end{aligned}$ | $\begin{aligned} & 694 \\ & 656 \\ & 617 \end{aligned}$ |  | $\begin{aligned} & 487 \\ & 449 \\ & 411 \end{aligned}$ | 415 <br> 377 <br> 339 |
| 6 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 523 \\ & 497 \\ & 470 \end{aligned}$ | $\begin{aligned} & 487 \\ & 461 \\ & 435 \end{aligned}$ | $\begin{aligned} & 421 \\ & 395 \\ & 368 \end{aligned}$ | $\begin{aligned} & 361 \\ & 335 \\ & 308 \end{aligned}$ | $\begin{aligned} & 313 \\ & 287 \\ & 260 \end{aligned}$ |
| 7 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 380 \\ & 361 \\ & 341 \end{aligned}$ | $\begin{aligned} & 360 \\ & 341 \\ & 321 \end{aligned}$ | $\begin{aligned} & 319 \\ & 300 \\ & 280 \end{aligned}$ | $\begin{aligned} & 279 \\ & 260 \\ & 240 \end{aligned}$ | $\begin{aligned} & 245 \\ & 226 \\ & 206 \end{aligned}$ |
| 8 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 288 \\ & 273 \\ & 258 \end{aligned}$ | $\begin{aligned} & 276 \\ & 261 \\ & 246 \end{aligned}$ | $\begin{aligned} & 250 \\ & 235 \\ & 220 \end{aligned}$ | $\begin{aligned} & 222 \\ & 207 \\ & 192 \end{aligned}$ | $\begin{aligned} & 197 \\ & 182 \\ & 167 \end{aligned}$ |
| 9 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 226 \\ & 214 \\ & 202 \end{aligned}$ | $\begin{aligned} & 218 \\ & 206 \\ & 194 \end{aligned}$ | $\begin{aligned} & 200 \\ & 188 \\ & 177 \end{aligned}$ | $\begin{aligned} & 180 \\ & 169 \\ & 157 \end{aligned}$ | $\begin{aligned} & 162 \\ & 150 \\ & 138 \end{aligned}$ |
| 10 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 181 \\ & 172 \\ & 162 \end{aligned}$ | $\begin{aligned} & 176 \\ & 167 \\ & 157 \end{aligned}$ | $\begin{aligned} & 164 \\ & 154 \\ & 145 \end{aligned}$ | $\begin{aligned} & 149 \\ & 140 \\ & 130 \end{aligned}$ | $\begin{aligned} & 136 \\ & 126 \\ & 116 \end{aligned}$ |

$$
\begin{align*}
\sigma_{e}=0572 \frac{P}{h^{2}}\left[\log _{10}\left(h^{3}\right)\right. & -4 \log _{10}\left(\sqrt{16 a^{2}+h^{2}}-0675 h\right) \\
& \left.-\log _{10} k+5767\right] \tag{12}
\end{align*}
$$

Stiesses computed according to this formula are given in Table IV, again for $P=10,000$ pounds The influence of the three variables $h, h$, and $a$ is shown in the same manner as in the two preceding tables, and is seen to be of the same natue, the vanation of $a$ being of gieater importance than that of $h$

TABLE IV
Stresses in pounds per square anch computed from equation (12) for load condition as in Case III, Figure 1, for different values of $h, h$, and a
$P=10,000$ pounds, $E=3,000,000$ pounds per squrae inch, $\mu=015$

| Thickness of slab $h$ | Modulus of subgrade reaction $h$ | Stress in slab |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $a=0$ | $a \in 2 \mathrm{~m}$ | $a=4 \mathrm{n}$ | $a=6 \mathrm{in}$ | $a=8 \mathrm{n}$ |
| Inches <br> 6 | $\begin{gathered} L b / \imath n^{3} \\ 50 \\ 100 \\ 200 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ s q \text { in } \\ 833 \\ 785 \\ 738 \end{gathered}$ | $\begin{gathered} \text { Lbs per } \\ \text { sq } 2 n \\ 769 \\ 721 \\ 673 \end{gathered}$ | Lbs per $s q 2 n$ 649 601 553 | Lbs per sq ${ }^{2 n}$ 541 493 445 | Lbs per sq $\quad \mathrm{m}$ 453 406 358 |
| 7 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 604 \\ & 569 \\ & 534 \end{aligned}$ | $\begin{aligned} & 568 \\ & 533 \\ & 498 \end{aligned}$ | $\begin{aligned} & 494 \\ & 459 \\ & 424 \end{aligned}$ | $\begin{aligned} & 422 \\ & 386 \\ & 351 \end{aligned}$ | $\begin{aligned} & 360 \\ & 325 \\ & 290 \end{aligned}$ |
| 8 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 457 \\ & 430 \\ & 404 \end{aligned}$ | $\begin{aligned} & 436 \\ & 409 \\ & 382 \end{aligned}$ | $\begin{aligned} & 388 \\ & 361 \\ & 334 \end{aligned}$ | $\begin{aligned} & 337 \\ & 311 \\ & 284 \end{aligned}$ | $\begin{aligned} & 293 \\ & 266 \\ & 239 \end{aligned}$ |
| 9 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 358 \\ & 337 \\ & 315 \end{aligned}$ | $\begin{aligned} & 344 \\ & 323 \\ & 301 \end{aligned}$ | $\begin{aligned} & 312 \\ & 291 \\ & 269 \end{aligned}$ | $\begin{aligned} & 276 \\ & 255 \\ & 233 \end{aligned}$ | $\begin{aligned} & 243 \\ & 222 \\ & 200 \end{aligned}$ |
| 10 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 287 \\ & 270 \\ & 253 \end{aligned}$ | $\begin{aligned} & 278 \\ & 261 \\ & 244 \end{aligned}$ | $\begin{aligned} & 256 \\ & 239 \\ & 221 \end{aligned}$ | $\begin{aligned} & 230 \\ & 212 \\ & 195 \end{aligned}$ | $\begin{aligned} & 204 \\ & 187 \\ & 170 \end{aligned}$ |
| 11 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 235 \\ & 221 \\ & 207 \end{aligned}$ | $\begin{aligned} & 229 \\ & 215 \\ & 201 \end{aligned}$ | $\begin{aligned} & 213 \\ & 199 \\ & 185 \end{aligned}$ | $\begin{aligned} & 194 \\ & 180 \\ & 165 \end{aligned}$ | $\begin{aligned} & 174 \\ & 160 \\ & 146 \end{aligned}$ |
| 12 | $\begin{array}{r} 50 \\ 100 \\ 200 \end{array}$ | $\begin{aligned} & 196 \\ & 184 \\ & 172 \end{aligned}$ | $\begin{aligned} & 192 \\ & 180 \\ & 168 \end{aligned}$ | $\begin{aligned} & 180 \\ & 168 \\ & 156 \end{aligned}$ | $\begin{aligned} & 165 \\ & 153 \\ & 142 \end{aligned}$ | $\begin{aligned} & 150 \\ & 138 \\ & 126 \end{aligned}$ |

## BALANCED DESIGNS TESTED BY USE OF TABLES

From the three tables, for cases $I, I I$, and $I I I$, one may obtain suggestions on the question of balanced design Consider, for example, a pavement with the thicknesses 7 inches in the intenoi portion, and 9 inches at the edges It may be assumed for the time being that the outer portions behave as a large slab with unifoim thickness 9 inches With the thickness diminishing slowly toward the intenor, the stresses $\sigma_{c}$ and $\sigma_{\mathrm{c}}$ would be somewhat larger than with constant thickness of 9 inches, but the correction needed for this reason is probably only small For the time being only the one wheel load which is considered in each of the thiee tables will be taken into account The influence of other wheel loads acting on the same panel, but at some distance, will be considered later, in any case it is found to be relatively small With $P=10,000$ pounds, $k=50 \mathrm{lb} / \mathrm{m}^{3}$, and $a=4$ mehes, the three tables give the following value

$$
\sigma_{\mathrm{c}}=262, \quad \sigma_{1}=319, \quad \sigma_{\mathrm{e}}=312 \mathrm{lb} \quad \text { pel } \mathrm{sq} \text { in }
$$

In companng these stiesses, then different characters should be considered The stress $\sigma_{\mathrm{c}}$ at the comer acts piesumably throughout the width of a whole cross-section, wheieas $\sigma_{1}$ and $\sigma_{\mathrm{e}}$ are localized within smaller regions With equal tendency to iupture at the three places, $\sigma_{c}$, then, should be, probably, somewhat smaller than $\sigma_{1}$ and $\sigma_{\mathrm{e}}$ The stress $\sigma_{\mathrm{e}}$ is produced under the influence of a load which is distnibuted over an area only one-half of that assumed for $\sigma_{1}$ While the situation represented by the smalleı area may occur when a wheel moves in oves the edge of the pavement, it is ieasonable, for the puipose of a comparative study of the tendency to supture, to assume a laiger radius of the semi-circle at the edge than for the full circle in the intenior portion With $a=6 \mathrm{in}$, for example, at the edge, one finds the stress

$$
\sigma_{\mathrm{n}}=276 \mathrm{lb} \text { per sq in }
$$

In companing this stiess with $\sigma_{1}$, it should be obseived that $\sigma_{1}$ repiesents a state of equal stresses in all horizontal drections at the points, whereas $\sigma_{\mathrm{e}}$ is a one-directional stress The elongations pei unit of length are in the two cases $\sigma_{1}(1-\mu) / E$ and $\sigma_{\mathrm{c}} / E \quad$ It appears to be reasonable, therefore, for the purpose of companison, to replace $\sigma_{1}$ by an equivalent one-dinectional stress, if in this case the elongation is a direct measure of the tendency to rupture, this equivalent stress should be

$$
\sigma_{1}^{\prime}=\sigma_{1}(1-\mu)=319(1-015)=271 \mathrm{lb} \text { per sq in }
$$

The three values 262,271 , and 276 lb per sq in point toward the conclusion that the assumed design is suitably balanced

The suggestion has been made alieady that one may determine suitable values of $k$ by comparing the deflections found by tests of full-s zed
slabs with those given by the formulas The following formulas lend themselves to this purpose, they iefeı to the three cases shown in Fig 1, in each case the load $P$ is the only one acting

Case I Equation (3) gives the deflection at the comer

$$
\begin{equation*}
z_{c}=\left(11-088 \frac{a^{l}}{l}\right) \frac{P}{h l^{2}} \tag{13}
\end{equation*}
$$

Case II The deflection under the center of the load differs only shightly fiom the following value which is accurate when $a=0$

$$
\begin{equation*}
z_{1}=\frac{P}{8 h l^{2}} \tag{14}
\end{equation*}
$$

Case III The deflection at the point of application of a concentrated force $P$ at the edge is appioximately equal to

$$
\begin{equation*}
z_{\mathrm{e}}=-\frac{1}{\sqrt{6}}(1+04 \mu) \frac{P}{h l^{2}} \tag{15}
\end{equation*}
$$

that s , for $\mu=015$

$$
\begin{equation*}
z_{\mathrm{e}}=0433 \frac{P}{k l^{2}} \tag{16}
\end{equation*}
$$

The quantity $k l^{2}$ occunıng in each of these formulas may be expressed, according to equation (1), as

$$
\begin{equation*}
k l^{2}=\sqrt{\frac{E h^{3} k}{12\left(1-\mu^{2}\right)}} \tag{17}
\end{equation*}
$$

When experimental values of the deflections are at hand, one may deteimine the cor responding values of $k l^{2}$ by means of equations (13) to (16) Then equation (17) gives the value of $k$ as

$$
\begin{equation*}
h=\frac{12\left(1-\mu^{2}\right)\left(k l^{2}\right)^{2}}{E h^{3}} \tag{18}
\end{equation*}
$$

Figuies 4 to 11 are diagiams of deflections and moments The titles of these figures explain the nature of the diagrams The deflections and bending moments have been computed by means of the ordinary theory of slabs The diagiams, theiefore, give information conceining deflections in general, and conceining bending moments except in the immediate neighborhood of the concentrated load which produces the bending moments


Figure 4-Deflections produced by a concentrated load which acts at a point of the interior at a considerable distance from the edges



Figure 5-Tangential bending moments, $M_{t}$, and radial bending moment, $M_{r}$, produced by a concentrated load which acts at a point of the interior at a considerable distance from the edges

## DETERMINATION OF DEFLECTIONS DUE TO MORE THAN ONE WHEEL

The dagiams in Figures 4 and 5 have been obtaned by an analysis which rests essentially on that given by the physicist Heıtz ${ }^{1}$ in 1884

The diagrams in Figures 4 and 5 may be used in the following way, fol the purpose of finding the resultant deflections and stresses due to the combined influence of two or four wheel loads each acting at a consideable distance fiom the edges of the slab
Let each load be 10,000 pounds, and let the hoizontal rectangular coordnates of the centers of the four loads be as follows

| Coordinate | Load No 1 | Load No 2 | Load No 3 | Load No 4 |
| :---: | :---: | :---: | :---: | :---: |
| $x=$ | 0 | 66 in | 0 | 66 in |
| $y=$ | 0 | 0 | 66 n | 66 in |

Loads 1 and 2 alone may represent the two rear wheels of a four-wheel truck, and the four loads combined may represent the four reai wheels of a six-wheel truck

With $h=7 \mathrm{~m}, E=3,000,000 \mathrm{lb}$ pei $\mathrm{sq} \mathrm{m}, \mu=015$, and $k=50 \mathrm{lb} / \mathrm{m}^{3}$, one finds by equations (1) and (17) or by Table I

$$
l=3640 \mathrm{in}, \quad k l^{2}=66,200 \mathrm{lb} / \mathrm{mn},
$$

distances 1-2 and 1-3 $66 \mathrm{in}=1813 l$, distance $1-466 \sqrt{2}=2564 l$

[^4]Then equation (14) as well as Fig 4, gives the following value of the deflection at point 1 due to load No 1

$$
z_{1} \cdot \frac{P}{8 k l^{2}}-\frac{10,000}{8 \times 66,200}=00189 \mathrm{~m}
$$

Furthermore, Fig 4 leads to the following value of the deflection at point 1 due to load No 2 alone

$$
z_{12}=003921 \frac{P}{k l^{2}}=003921 \frac{10,000}{66,200}=00059 \mathrm{~m}
$$

Then, by superposition of the two deflections, one finds the deflection at point 1 due to the combined influence of the two sear wheels 1 and 2.

$$
z_{1,(1,2)}=z_{1,1}+z_{1,2}=00248 \mathrm{~m}
$$

The deflection at point 1 due to load No 3 alone $1 s$

$$
z_{1},{ }_{3}=z_{1,2}=00059 \mathrm{in}
$$

The deflection at point 1 due to load No 4 alone is, accoiding to Fig 4,

$$
z_{14}=001620 \frac{P}{k l^{2}}=00024 \mathrm{in}
$$

By super position of the four deflections due to each separate load, one finds the resultant deflection due to the four loads

$$
z_{1},(1,2,3,4)=00331 \mathrm{in}
$$

For the purpose of computing the state of stiesses at the bottom of the slab under the center of load No 1 it will be assumed that load No 1 is distributed unformly ovei the area of a cucle with a radius $a=6$ inches The stresses due to load No 1 will be the same in all directions, and they are, according to Table 3

$$
\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=279 \mathrm{lb} \text { peı } \mathrm{sq} \mathrm{in}
$$

According to Fig 5, load No 2 pıoduces a iadial bending moment $M_{r}$, in this case in the diection of $x$, equal to

$$
\left.M_{\mathrm{x}}=-00211 P=-211 \mathrm{in} \mathrm{lb} \text { per in (or }-211 \mathrm{lb}\right),
$$

and a tangential bending moment $M_{t}$, in this case in the direction of $y$, equal to

$$
M_{\mathrm{y}}=00181 P=181 \mathrm{lb}
$$

The corresponding stresses are found by dividing these bending moments by the section modulus per unit of width, that 1 s , by $\frac{1}{6} h^{2}=8167 \mathrm{~m}^{2}$.

Thus one finds the stiesses in the directions of $x$ and $y$

$$
\sigma_{x}=-\frac{211}{8167}=-26 \mathrm{lb} \text { per sq in }
$$

and

$$
\sigma_{y}=\frac{181}{8167}=22 \mathrm{lb} \text { pet sq in }
$$

These stresses are principal stresses, that is, one is the maximum, the other the minimum stiess, and theie are no shearing stiesses in the directions of $x$ and $y$

For the case of the four-wheel tiuck, one finds, then, by super-position the following puncipal stresses due to the two rear wheels, loads No 1. and No 2, these princrpal stresses are in the diections of $x$ and $y$

$$
\begin{aligned}
& \sigma_{\checkmark}=279-26=253 \mathrm{lb} \text { peı sq in }, \\
& \sigma_{\imath}=279+22=301 \mathrm{lb} \text { peı sq in }
\end{aligned}
$$

## STRESSES DUE TO SIX-WHEEL TRUCK

In the case of the six-wheel truck the effects of loads No 3 and No 4 must be included Load No 3 contributes the same stiesses at point 1 as does load No 2 , only the indices $x$ and $y$ are to be interchanged Consequently the resultant stresses in the directions of $x$ and $y$ due to the combined influence of loads 1,2 , and 3 become

$$
\sigma_{\mathrm{x}}=\sigma_{\mathrm{s}}=279-26+22=275 \mathrm{lb} \text { peı sq in }
$$

These stresses, again, are puncıpal stresses Since they are equal, the hoirontal stiesses will be the same in all directions, each stress being a principal stress

Let $x^{1}, y^{1}$ be a new system of honizontal rectangular coordinates with the axis of $x^{1}$ along the diagonal line from point 1 to point 4 Load No 4 pıoduces a iadıal bending moment in the direction of $x^{1}$ and a tangential bending moment in the diection of $y^{1}$ Accoiding to Fig 5 these bending moments are

$$
M_{\mathrm{x}}{ }^{1}=-00186 P=-186 \mathrm{lb} \text { and } M_{, ~}{ }^{1}=00058 P=58 \mathrm{lb},
$$

respectively The corresponding stiesses are found, again, by dividing the bending moments by the section modulus pei unit of width, that is, bv $8167 \mathrm{mn}^{2}$, and they are

$$
\sigma_{\mathrm{x}}{ }^{1}=-23 \mathrm{lb} \text { per } \mathrm{sq} \text { in, and } \sigma_{,}{ }^{1}=7 \mathrm{lb} \text { pel sq in }
$$

These stresses are pincipal stiesses The resultant principal stresses due to all four loads combined, therefore, are in the directions of $x^{1}$ and $y^{1}$, and have the values

$$
\begin{aligned}
& \sigma_{\mathrm{x}}{ }^{1}=275-23=252 \mathrm{lb} \text { per sq in } \\
& \sigma_{\mathrm{\imath}}{ }^{1}=275+7=282 \mathrm{lb} \text { per sq in }
\end{aligned}
$$

One may diaw the conclusion that the man part of the state of stiesses at a given point is due to a wheel load ught over the point In the case examined, the contribution due to the thiee additional rear wheels of the six-wheel truck is of less importance than that due to the one additional rear wheel of the four-wheel truck


Figure 6-Deflections produced by two equal loads like the load in Figure 4, separated by a distance of 21 The deflections are found by superposition of two diagrams of the kind shown in Figure 4

Figures 6 and 7 show deflections due to two wheel loads combined Each of these diagrams was obtaned by superposition of two diagrams such as shown in Figure 4

Figures 8 to 11 show effects of loads at the edge, but at a considerable distance from any cornel ${ }^{1}$

By virtue of Maxwell's theorem of reciprocal deflections, the deflection at a point $B$ of any slab due to a load $P$ at the point $A$ is the same as the deflection at $A$ due to a load $P$ at point $B \quad$ Figures 8 and 9 may

[^5]

Figure 7-Deflections produced by two equal loads like the loads in Figure 4, separated by a distance of 31


Figure 8-Deflections produced by a concentrated load at the edge at a considerable distance from any corner for $\mu=025$
be interpreted, therefore, in a double manner first, as diagrams of deflections at any point $B$ due to a load $P$ at the particular point $A$ at the edge, secondly, as influence diagrams, showing the deflection'at the particular point $A$ at the edge due to a load $P$ at any point

From this reciprocity of deflections one may draw a further conclusion which may be applied to Figures 8 and 9 , and which conceins the curve of deflections ol elastic curve which is obtained by inteisection of the deflected middle surface by a vertıcal plane Two lines $L_{\mathrm{A}}$ and $L_{\mathrm{B}}$ are drawn parallel to two opposite parallel edges of a slab Two equal loads are considered, one acting at a point $A$ of the line $L_{\mathrm{A}}$, the


Figure 9-Deflections produced by a concentrated load at a considerable distance from any corner for $\mu=0$
other acting at a point $B$ of the line $L_{B} \quad$ The points $A$ and $B$ are assumed to be sufficiently far from the remaining two edges of the slab to permit the assumption of zero deformations at these edges Then one may conclude that the elastic curve produced along the line $L_{\mathrm{B}}$ under the influence of the load $P$ at $A$ has exactly the same shape as the elastic curve produced along the line $L_{A}$ under the influence of the load $P$ at point $B \quad$ In applying this conclusion to Figure 8 or Figure 9, let the line $L_{A}$ be the edge shown in the drawing, and let the line $L_{B}$ be at some distance fiom the edge By the direct use of the diagrams
one obtains the elastic curve at any line $\mathrm{L}_{\mathrm{B}}$ paiallel to the edge, due to a load at the edge But one may interpiet this curve as the elastic curve for the edge produced under the influence of a load at a point of the line $\mathrm{L}_{\mathrm{B}} \quad$ The curvature of the deflected middle surface at point $A$ of the edge in the direction of the edge, produced by the load $P$ at any point $B$ at some distance fiom the edge, is the same, accordingly, as the


Figure 10-Bending moments along the edge for a load concentrated at a point of the edge (top diagram), and for loads distributed uniformly over lines of three lengths at the edge (lower three diagrams), $\mu=0$
curvature of the deflected middle surface at point $B$ in a direction parallel to the edge, as obtained in Figure 8 oı Figure 9, due to the load $P$ at the point $A$ of the edge

Thus Figures 8 and 9 may be used in studying the stresses produced along the edge by a wheel load at some distance from the edge

The following use of the tables and diagrams is suggested Let it be assumed that a certain pavement has been proved by tests and experience to be satisfactory for a given type of traffic By the tables and diagrams one may compute, then, the corresponding critical
stresses These stresses may be adopted for the tume being as allowable working stiesses With the stresses given, the tables and diagrams, through computations of the kind which has been shown, furnish answers to two questions what additional thicknesses are required if the wheel piessures are increased in a given mannei, and, what may be saved in the thicknesses by eliminating some of the heaviest vehicles


Figure 11-Bending moments along the edge as in Figure 10, but for $\mu=025$
Professoı T R Agg has called attention to the impoitance of having an answer to the latter question, when one attempts to apportion the cost of the pavement to the vanous kinds of traffic for which it is used

In using the tables and diagrams it should be kept in mind that the analysis is based on those assumptions which were stated at the beginning of this discussion By the nature of these assumptions certain influences were left out of consideration, especially the following (1) variations of temperature, and other causes for tendency to change of volume, (2) the gradual diminishing of the thickness from the edge toward the interior, (3) local soft or hard spots in the subgrade, (4) hori-
zontal components of the reactions of the subgrade, and (5) the dynamic effect, expressed in terms of the inertia of the pavement and subgrade The horizontal components of the reactions of the subgiade, which are due to friction, may have a stiengthening influence, especially at some distance fiom the edges, by causing a dome action in the pavement As to the dynamic effects, with known values of the maximum piessure developed between the tire and the pavement, the effect of the inertia of the pavement may possibly be expressed approximately in terms of an increased value of the modulus $k$ These additional influences are suitable subjects for further analysis

## REPORT ON EXPERIMENTS ON EXTENSIBILITY OF CONCRETE

W K Hatr<br>Purdue Umversity, Lafayelte, Indıana

Two properties of materials are important-strength and toughness Avalable data are few resulting fiom measurements of the ability of concrete to withstand extension without the appearance of fissures These may range in magnitude (a) from those in the order of 00004 inch width seen only with a microscope or appearing as "water veins" or "water maıks," as Feret termed them, when a skin-dıed surface. breaks and capillary moisture comes fiom the interior through the fissures, to (b) larger fissures in the order of $00015-\mathrm{mch}$ width, seen by the unaided eye, and (c) in the extieme to those laige open cracks that occur when the elastic limit of reinforcing steel is exceeded In the class of microscopic fissures are those ciazes that mar the appeaiance of architectural concrete or othel concrete products Such crazes are not always evident to the unaided eye, but may be developed by a coating of light oul

The various fissures may be produced by load or by the action of temperature or mossture changes

The preservation of the integrity of the surface of exposed concrete is important In many cases surface cracks are the first indication of subsequent falure in concretes that have been made of defective materials, ether cement or aggregate

We are increasingly required to compute expansions and contractions of structures, these movements are limited by extensibility

As has been said, the active agents may be tensions due to loads, or due to the working back and forth of the surface under temperature and moisture changes The latter express themselves most markedly when the surface of the concrete is of a richer composition than the interior, or when the suiface is contracted by careless diying against a moist core Indeed, the falling off in strength of cement briquettes


[^0]:    ${ }^{1}$ Progress report of the special committee to report on stresses in railroad track, Am Soc Civil Engineers, Trans, v 82, 1918, p 1191
    ${ }^{2}$ Tests dealing with this question have been reported by A T Goldbeck, Researches on the structural design of highways by the United States Bureau of Public Roads, Am Soc Civil Engineers, Trans , v 88, 1925, p 264, especially p 271, by A T Goldbeck and M J Bussard, The supporting value of soil as influenced by the bearing area, Publıc Roads, Jan 1925, and by A Bııls, in Génie Civil, v 82, 1923, p 490 According to these tests, in the case of a pressure which is distributed uniformly over an area, the modulus $h$ would be approximately anversely proportional to the squareroot of the area This result is supported by theoretical considerations

[^1]:    ${ }^{1}$ A N Johnson, Direct measurement of Poisson's ratio for concrete, Am Soc for Testing Materials, Proc , v 24, Part II, 1924, p 1024

[^2]:    ${ }^{1}$ Chfford Older, Highwas research in Illinois, Am Soc Civil Engınecrs, Tians, v 87, 1924, p 1180, espectall p 1206
    ${ }^{1}$ W Ritz, Crelle's Journal, v 135, 1909, p 1

[^3]:    ${ }^{1}$ A Nádaı, Die Biegungsbeanspruchung von Platten durch Einzelkıafte, Schweizerische Bauzeitung, v 76, 1920, p 257 and his book, Die elastischen Platten, (Berlin) 1925, p 308

[^4]:    ${ }^{1} \mathrm{H}$ Hertz, Uber das Glenchgewicht schwimmender elastıscher Platten, Wiedem ann's Annalen der Physik und Chemie, v 22, 1884, pp 449-455, also in his Gesamrelte Werke, v 1, pp 288-294 Hertz dealt with the problem of a large swimming slab, for example, of ice, loaded by a single force 4 Foppl in his Technische ISechanik, v 5, 1907, pp 112-130, presented Hertz s theory in a modified, and in son e ways simplified form, and he called attention to the applicability of this analysis to the protlem of the slab on elastic support Hertz made use of Bessel functions in his analysis Since his analysis was published, the number of published numerical tables of Bessel functions has been incieased Among the newer tables those repiesenting Hankel's Bessel functions

    $$
    H_{0}^{(1)}(x \sqrt{\imath}) \text { and } H_{1}^{(1)}(x \sqrt{\imath})
    $$

    are of expecial interest for the present problem Tables of these functions may be found in the book of tables by $E$ Jahnke and $F$ Emde, Funktionentafeln mit Forreln und Kurven, 1909, pp 139 and 140 By means of these tables the numerical values given in Figures 4 and 5 were obtained by simple computations After these diagrams had been prepared, two papers have appeared in which the same functions arr used for the purpose of analy sis of slabs on elastic suppoit One is by J J Koch, Berekening van vlakke platen, ondersteund in de hoekpunten van een willekeurig rooster, De Ingenieur, 1925, No 6, the other is by Ferdinand Schlencher, Uber Kreisplatten auf elastischer Unterlage, Festschrift zur Hundertjahrfeier der Techmischen Hochschule Karlsruhe, 1925

[^5]:    ${ }^{1}$ The theory by which these diagrams were obtained may be found in a paper by the writer Om Beregning af Plader paa elastisk Underlag med særligt Hemblik paa Sporgsmaalet om Spændınget i Betonveje, Ingentoren (Copenhagen), v 32, 1923, pp 513-524 See also, A Nisdar, Die elastıschen Platten, (Berlın) 1925, p 186

