Longitudinal cracks
6 Were elıminated by $1 / 2^{\prime \prime}$ transverse bars (60 lb to 85 lb . total). Corner cracks
7. Were caused by $3 / 4^{\prime \prime}$ edge bars in bond when slab length exceeded 200 feet

Relative cracking in plain and reinforced sections is shown in Table 10, while corner cracks occurring in various slab lengths with single and double $3 / 4^{\prime \prime}$ edge bars are shown in Table 11.

W W. Mack: On account of the size of Delaware, the conditions encountered there may be comparable to those that may be found in some of the counties of the larger States. As Mr Hogentagler has said, there are favorable subgrade conditions there which apparently seem to throw other conditions out of line. There being practically no local materials whatever in the State of Delaware, no attempt has been made to use inferior local aggregates Materials have been of a very high grade. We have used a $11 / 2$-mınute mix, and have secured a unform grade of concrete. This has reduced the number of cracks in a marked degree

EFFECT OF REINFORCEMENT IN CONCRETE ROADS IN DELAWARE

SUMMARY OF REPORT

By W. W. Mack
Delaware State Highway Department, Dover, Delaware
Because of favorable soll, traffic or climatic conditions, certan Delaware highways have developed exceptionally few defects This condition is illustrated by a plain concrete road in Delaware County, $21 / 2$ miles long, with an average slab length of 595 feet, which, after one year of use, has but four transverse and no longitudinal cracks

Sections reinforced with mesh (15 to 25 lbs per $100 \mathrm{sq} . \mathrm{ft}$) and bars (81 to 185 lbs . per 100 sq ft) in some cases contained more cracks than adjoining plain concrete slabs. With 185-pound bar reinforcement cracking was more than double that in the adjacent plain slabs.

Maintenance costs per mile, pavement slab only, for the year 1924 on several roads were as follows
A. Coleman du Pont road, Sussex County, 5-7-5 section, 14 feet wide, 15 mıles long, and reinforced with mesh 15 to 25 lbs per 100 sq. ft-\$ $\$ 1973$.

- B Plain concrete pavement, 5 miles long, of same age and design and adjoinıng $A-\$ 2060$
Table 11 Study of Paving Reinforcement Michigan State Highway Department-Transverge Craceing

$\begin{aligned} & \circ \\ & \text { ㄹ } \\ & \text { O } \\ & \hline 1 \end{aligned}$						Cross Section of Pavement									
FA 45 Al	$83+13-86+06$	25\#	60\#	$3-3 / 4{ }^{\prime \prime}$	$1 / 2$	Uniform $8^{\prime \prime}$ single slab	4	2971	317'	391'	270	264	21	- 20%	-19 5\%
FA 68 DEF	$541+50-546+47$	50\#	80\#	6-3/4"	$1 / 2{ }^{\prime \prime}$	Uniform 8° cen-		$1_{380^{\prime}}^{\prime \prime}$	560^{\prime}	211'			21	75%	-345%
FA 68 C	$153+94-220+14$	30\#	31\#	8-1/2"	$1 / 2^{\prime \prime}$	Uniform $8^{\prime \prime}$ cen-	2	380^{\prime} 160^{\prime} 1	$\left.\right\|_{500^{\prime}} ^{124^{\prime}}$	1365^{\prime}		191		-658%	-385%
FA 70 A	$62+50-65+75$	27\#	50\#	8-1/2"	$1 / 2^{\prime \prime}$	ter joint ${ }^{\text {d }}$	2	166^{\prime} 117		282'			70		-39 8\%
						ter joint ${ }^{\text {U }}$		208'	352'		104			-15 5\%	-237%
(1) FA 70 A	$77+55-86+00$	27\#	50\#	8-1/2 ${ }^{2}$		Uniform 8 center joint	2	275'	2525^{\prime}		34			412%	
(2) FA 115	$486+29-490+35$	27\#	35\#	8-1/2"	$1 / 2^{\prime \prime}$	9-7-9 Mich	1						7		4
FA 115	$513+19-520+54$	27\#	35\#	8-1/2"	1/2"	9-7-9 Mıch	1	101 96	101	100		561	${ }^{41} 9$	-173 1%	82%
TL 46-22	$174+98-179+21$	30\#	31\#	8-1/2"	$1 / 2^{\prime \prime}$	9-7-9 Mich	1	106	95	100	84	${ }^{42}$	59	504%	-30 3\%

Table 12 Study of Paving Reinforcement Michigan State Highway Depart-ment-F A 68 Def
Table Showing Relation of Slab Length to Number of Corner Breaks per Station Breaks Due to Edge Bar Unıform 8-ınch woth Center Joint

Single $\%$ • Edge Bar

Slab Lengths	0-40	40-100	100-150	150-200	200-250	250-300	300-350	350-400	400-450			Uver 500
Average Slab		+0-100	100-150	150-200	200-250	250-300	300-350	350-400	400-450			
Nength	33	84	128	200	228	277	320	380	423	482		586
No Slabs	1	4	2	1	10	8	7	4	6	12		24
No Breaks	0	0	0	0	2	7	6	4	2	17		38
$\underset{\substack{\text { Breaks } \\ \text { Slab }}}{ }$	0	0	0	0	02	09	09	10	15			38 16
Double 8/4* Edge Bar												
Average Slab Length No Slabs No Breaks Breaks per Slab					18 \|61	128	169 224	277	0 0			
					18 61 6 7	128	${ }^{169}{ }_{6}^{1624}$	277	0 0		475 3	609 1
					0 0	1	0	2	0	0	12	7
					0	02	$0{ }^{0} 02$	025	0 0	0	40	70

C Plain concrete pavement, 6-8-6 section, 16 teet wide. 32 miles long, similar subgrade and age, but with 50 per cent more traffic than A and $B-\$ 2430$
D Plain concrete pavement, 6-8-6 section, 18 to 20 feet wide and 15 miles long, with less favorable subgiade and 3 to 5 times the traffic of roads A and $B-\$ 7850$
Since at $\$ 1,000$ per mile cost for reinforcement a saving of $\$ 7095$ would be required to warrant its use it would seem that unless it afforded a reduction in first cost of road, renforcement would not be economically justified for average soll, traffic and climatic conditions existing in Delaware

EFFECT OF REINFORCEMENT AS SHOWN BY COLUMBIA PIKE EXPERIMENTAL ROAD

SUMMARY OF REPORT

By J 'I Pauls
I S Burealu of P'ublir Roads, 1 axhmitum $D C$
Based on comparative sections, gravel aggregate, with and without center joint, 200 feet long and 4 years old, the following conclusions are offered

1 Combined longitudinal and transierse crack in full width sections was reduced more consistently with slab thickness than was either one separately

2 Plain half width sections contained no more transverse cracks than did full width sections

3 Mesh reinforced sections contained considerably less crack than plain sections Six-inch section with mesh reinforcement contanned about the same crack length as an 8 -inch plain slab Six-inch sec-

