Longitudinal cracks

6 Were eliminated by $\frac{1}{2}$ " transverse bars (60 lb to 85 lb. total). Corner cracks

7. Were caused by 34" edge bars in bond when slab length exceeded 200 feet

Relative cracking in plain and reinforced sections is shown in Table 10, while corner cracks occurring in various slab lengths with single and double $\frac{34''}{2}$ edge bars are shown in Table 11.

W W. Mack: On account of the size of Delaware, the conditions encountered there may be comparable to those that may be found in some of the counties of the larger States. As Mr Hogentagler has said, there are favorable subgrade conditions there which apparently seem to throw other conditions out of line. There being practically no local materials whatever in the State of Delaware, no attempt has been made to use inferior local aggregates Materials have been of a very high grade. We have used a $1\frac{1}{2}$ -minute mix, and have secured a uniform grade of concrete. This has reduced the number of cracks in a marked degree

EFFECT OF REINFORCEMENT IN CONCRETE ROADS IN DELAWARE

SUMMARY OF REPORT

BY W. W. MACK

Delaware State Highway Department, Dover, Delaware

Because of favorable soil, traffic or climatic conditions, certain Delaware highways have developed exceptionally few defects This condition is illustrated by a plain concrete road in Delaware County, $2\frac{1}{2}$ miles long, with an average slab length of 595 feet, which, after one year of use, has but four transverse and no longitudinal cracks

Sections reinforced with mesh (15 to 25 lbs per 100 sq. ft) and bars (81 to 185 lbs. per 100 sq ft) in some cases contained more cracks than adjoining plain concrete slabs. With 185-pound bar reinforcement cracking was more than double that in the adjacent plain slabs.

Maintenance costs per mile, pavement slab only, for the year 1924 on several roads were as follows

- A. Coleman du Pont road, Sussex County, 5-7-5 section, 14 feet wide, 15 miles long, and reinforced with mesh 15 to 25 lbs per 100 sq. ft ---\$19 73.
- B Plain concrete pavement, 5 miles long, of same age and design and adjoining A—\$20 60

CRACKING
DEPARTMENT-TRANSVERSE
HIGHWAY
STATE
MICHIGAN
REINFORCEMENT
PAVING
0F
STUDY
11
TABLE

Influence of Reinforcement on Transverse Cracks

Adacent Section Vo 2% Decrease or Increase of Transverse Cracking on Reinforced Sectiom	-19 5% -34 5% -38 5% -39 8% -23 7% -23 7% -30 3%
Adjacent Vo 1% Increase or Decrease of Trans- verse Cracking on Rein- forced Section	- 2 0% - 7 5% - 15 8% - 15 5% - 17 5% - 133 15% - 33 15%
Spacing of Transverse CracksAdjacentSec No 2	21 7 21 1 28 7 28 7 28 7 26 3 26 3 91 7 59
Spacing of Transverse OracksAdjacentSec No 1	26 4 23 4 19 1 88 0 88 0 48 42 56 1
Spacing of Transverse Cracks Reinforced Sec	27 0 27 0 255 3 255 3 255 5 555 5 1117 1104 34 34 34 34 34 34 34 34 34 34 34 34 34
Average Slab Length No 2 Adjacent Section	391' 211' 136 5' 136 5' 250 250 250 100 100
Average Slab Length, No. 1 Adjacent Section.	317' 560' 124' 352' 252 5' 100 101 95
Average Slab Length Rein- forced Section	297' 297' 380' 210' 208' 275' 101 101 101 106
Аде, Хеага	
зпэтэүкч то погэээд гаолЭ	Unform 8" sın- Unform 8" cen- Unform 8" cen- ter joint Unform 8" cen- ter joint Unform 8" cen- ter joint 9-7-9 Mich 9-7-9 Mich
Size Transverse Steel	The set of set of set of set
Size & Number of Longr- tudinal Steel Bars	3-34 900 90 90 90 90 90 90 72 72 72 72 72 72 72 72 72 72
# of Transverse Steel per 100 Sq Ft	60# 80# 31# 50# 35# 35# 31#
# of Longrtudinal Steel per	25# 50# 30# 27# 27# 27# 27# 27# 30#
Reinforcement Station to Station	83+13-86+06 541+50-546+47 153+94-220+14 62+50-65+75 77+55-86+00 486+29-490+35 513+19-520+54 174+98-179+21
oN dol	FA 45 A1 FA 68 DEF FA 68 C FA 70 A ()FA 70 A ()FA 115 FA 115 FA 115 TL 46-22

•

,

PROCEEDINGS OF FIFTH ANNUAL MEETING

121

.

HIGHWAY RESEARCH BOARD

TABLE 12 STUDY OF PAVING REINFORCEMENT MICHIGAN STATE HIGHWAY DEPART-MENT-F A 68 DEF

Table Showing Relation of Slab Length to Number of Corner Breaks per Station Breaks Due to Edge Bar Uniform 8-inch with Center Joint Single %* Edge Bar

Slab Lengths Average Slab	0-40 40-100	00 100-150	150-200	200-250	250300	300350	350-400	400-450	450-500	Uver 500	
Length No Slabs No Breaks Breaks per Slab	33 1 0 0	84 4 0 0	128 2 0 0	200 1 0 0	228 10 2 0 2	277 8 7 0 9	320 7 6 0 9	380 4 4 1 0	423 6 2 1 5	482 12 17 1 4	586 24 38 1 6
			·	Do	uble ¾″	Edge Ba	.r	·	·	·	

Average Slab Length	18	61	$\begin{smallmatrix}128\\5\\1\\0&2\end{smallmatrix}$	169	224	277	0	0	402	475	609
No Slabs	6	7		6	9	8	0	0	1	3	1
No Breaks	0	0		0	2	2	0	0	0	12	7
Breaks per Slab	0	0		0	0 2	0 25	0	0	0	4 0	7 0

- C Plain concrete pavement, 6-8-6 section, 16 feet wide. 32 miles long, similar subgrade and age, but with 50 per cen^t more traffic than A and B—\$24 30
- D Plain concrete pavement, 6-8-6 section, 18 to 20 feet wide and 15 miles long, with less favorable subgrade and 3 to 5 times the traffic of roads A and B—\$78 50

Since at \$1,000 per mile cost for reinforcement a saving of \$70 95 would be required to warrant its use it would seem that unless it affoided a reduction in first cost of road, reinforcement would not be economically justified for average soil, traffic and climatic conditions existing in Delaware

EFFECT OF REINFORCEMENT AS SHOWN BY COLUMBIA PIKE EXPERIMENTAL ROAD

SUMMARY OF REPORT

By J T PAULS

U.S. Bureau of Public Roads, Washington D.C.

Based on comparative sections, gravel aggregate, with and without center joint, 200 feet long and 4 years old, the following conclusions are offered

1 Combined longitudinal and transverse crack in full width sections was reduced more consistently with slab thickness than was either one separately

2 Plain half width sections contained no more transverse cracks than did full width sections

3 Mesh reinforced sections contained considerably less crack than plain sections Six-inch section with mesh reinforcement contained about the same crack length as an 8-inch plain slab Six-inch sec-

122