PAVEMENT DISPLACEMENT DUE TO WATER AND FROST

F H Eno
Ohio State University, Columbus, Ohio

In 1920 the writer began a series of observations upon pavement displacement Two concrete roads leading into Columbus, Ohio, were selected, and the worst soll condition upon either road was proked for trial The method for obtaining the displacement was discussed at some length The measurement from a piano wire base line was discarded as soon as suggested, for three very good reasons First, the inevitable sag of the wire, second, the interference with traffic, and, third, the impracticability of obtaining permanent, fixed supports for the wire that would not be disturbed by the traffic, frost, or other factors The precise level was discarded because of the slowness of operation, the danger of injuring a valuable instrument that would have to be carried back and forth over the highway so much, and the lack of such an instrument immediately at hand The semi-precise level was accepted as sufficiently accurate, when carefully used, to secure results well within any movement that would be injurious to the pavement

Permanent, unmovable bench marks were required, and for these, concrete piers $31 / 2$ feet long were set inside of two lengths of vitrified $15-\mathrm{inch}$ sewer pipe set into the ground at one side of the right-of-way The sewer pipe prevented the soll from resting against the bench mark pier and lifting the concrete when frozen during the winter A cover was put over the pipe and sod thrown over that, so that frost never affected these bench marks

But few levels were ever taken on these two sites because the organization was disrupted in 1921 and nothing done until the cooperative scheme between the Ohio State University and the U S Bureau of Public Roads became active late in 1924

Beginning nominally on September 15, 1924, but actually not until December 6, 1924, the Co-operative Subsoll Survey was established As a part of this research, the observations upon pavement displacement were agan actively begun in February, 1925 Thirtyone stations were established, from Washington County, on the southeast, to Geauga County in the northeastern portion of the State Each station was selected because of some peculiar soil or condition Most of the stations were upon brick or concrete pavements, four only were upon surface treated or bituminous macadam
Each station consisted of two or more lines of observation points at right angles to the center line of the road Usually there were
three points in a line, one about six to elght inches in from each edge and one at the center line of the pavement At one station where a well-defined center joint occurred, due to the road having been built at one time and widened to double width later, each line contained four points In a number of cases where a transverse crack or a joint existed, a line of points was placed on either side of the crack or joint

In the case of brick or concrete pavements the level point was a conical depression cut in the pavement and made so as to hold a steel ball-bearing ball, 17 mm in diameter The level rod was held upon the ball, insuring a practically uniform beanng for the rod in all cases These proved very satisfactory

Upon the macadam roads three methods were used. plain 60-penny wire spikes, driven flush with the surface of the pavements, rallroad spikes having a cone beveled into the head of the spike into which the ball could rest, and nupples of $3 / 8-1 n c h$ gas pipe set flush in holes drilled into the pavement, the nupples set in cement mortar The latter method proved the most satisfactory for use

The bench marks used for these levels were ether cones cut in the wings or abutments of concrete culverts or bridges or else railroad spikes driven into telegraph poles, leaving about $11 / 2$ inches of the head stıckıng out

Eight or ten of the stations have not produced satisfactory data due to several causes, such as the resurfacing of the pavement, removal and relaying of the brick, removal and replacing of the telegraph pole holding the bench mark, and the bungling in taking the levels

Due to the press of other work in the research, levels were not taken as frequently as would have been desirable It would have been much better if levels could have been taken every 15 to 20 days each year, at least from October through until the last of March This would have enabled us to establish more nearly when the pavement began to rise in the fall and at what time the spring breakup permitted it to begin dropping back again In the case of two or three pavements that attained their maximum elevation in the late spring or mid-summer it would have enabled us to determine how soon after excessive wet weather the pavement began to rise

Hard, deep sheet ice prevented the obtainıng levels on two or three times during the winter This, however, can be avoided in future work by driving line posts on either side of the roadway and measuring from them to the level points This definite location will enable
us to economically chop through ice to the point without injury to the point
From the study given to these levels, it is the writer's opinion that the observations should be continued through another winter and spring and that for a few stations at least more frequent levels should be taken from October to May, inclusive

A plan or drawing of the road surface to scale showing the location of the level points and of all cracks and joints covering a length of the road at least 20 feet each way from the level sections should be made this coming October, and a sımilar drawing in May or June, 1927

A comparison of these will show any injurious effect that may have occurred during two major movements of the pavements
The appended tabulations show the results at a few typical stations, giving the elevations with the downward movements marked (一) and the upward movements marked (+)

The maximum difference in elevation of the pavement from extreme high to extreme low is shown, also the variation from period to period between levels There are a few cases where error in observation is undoubtedly shown, but in the great majority of the readings the accuracy of this method of measuring displacement is evidenced in the remarkable agreement under normal conditions

In a number of stations where the road was tending toward destruction, the erratic changes in elevation between the various level points of the station preshadow the ultimate breaking up, this is shown particularly in stations Nos 72 and 60x of these special illustrated sheets and in stations 22 and 21 y not shown in detal

Station No 127 gave some very pecular results From July to September, 1925, the pavement dropped rather uniformly about 0007 feet From September 28 to January 18, 1926, it rose from 0037 feet to 0041 feet along the north edge of the road, 0047 feet along the center line and 0098 feet along the south edge. From January 18 to March 10, 1926, the north edge fell 0022 feet, the center line fell from 0015 feet to 0021 feet, while the south edge rased from 0028 feet to 0045 feet From March 10 to April 8th the north edge fell from 0003 to 0010 feet, the center line fell from 0018 to 0022 feet, while the south edge fell from 0.108 feet to 0122 feet From Aprll to May the road continued to fall slowly, but only from 0002 feet to 0007 feet The soll at this station is about 22 per cent sand, 35 per cent sllt and 43 per cent clay There is a shallow weed grown ditch along the north side of the roadway,
some 6 or 8 feet away, but one that did not seem to be always wet and full of water $O n$ the south side there is a well-shaped ditch some 24 to 30 nnches below the road and 3 to 4 feet from its edge, and during these observations it was kept clean It nearly always showed water in the south ditch

In collecting soil mossture samples, water was nearly always found at 20 to 24 inches below the shoulder of the road The volumetric change of this soll is 209 per cent, rather above the normal This fact, with the other observed fact that the north ditch with less water was farther away from the edge of the road than the south ditch, probably accounts for the greater movement This is a concrete road The warping effect shown by the above movements are surely going to cause center and diagonal cracks before very long

In looking over the twenty stations discussed in this paper the average movement of the stations varied from 0009 to 0265 feet The average of all stations approximated 0070 feet The maxımum height of station as observed was reached at the following dates

1 station May 14, 1926
2 stations August 18-19, 1926
4 " in January 1925-1926
6 " March 11, 1926
7 " in February 1925-1926
A summary of the data is given in Table I, and a summary of the movements in comparison with soll characteristics in Table II A second comparison made by groups is shown in Table III

CONCLUSIONS

The following conclusions are drawn from a study of the data secured

1 No definite relationship appears to exist between the displacement of the pavement and the mechanical analysis of the soil, or with the various characteristics of the sub-sols The nearest possible chance of a relationship appears to be with capillary water Displacement seems to increase with increased capillarity
2 There appears to be greater irregularity of displacement of the pavement on bitumınous and macadam roads than upon brick and concrete roads, also upon new roads than upon long used roads

3 The displacement is due both to moisture and freezing There is not sufficient data at present to evaluate the amount due to each cause In three cases at least the morsture caused the maximum movement, for they occurred in May and August Six times the minimum height occurred during February or March.
4 In Ohio under normal seasonal conditions, the displacement of the pavements is upward during the late fall and early winter and downward during the late winter, spring, summer and early fall Exceptions are noted in paragraph No 3 above.
5 The amount of displacement ranges from 0025 to 0265 of a foot, averaging about 0063 feet in Ohio for the two seasons 1925 and 1926.
6 The rise and fall of the pavements upon long used roads were remarkably unform for each year when the weather conditions farrly paralleled themselves The average difference at two widely separated periods upon 11 of the stations average less than 0004 feet while upon 18 out of 20 stations compared, the average difference was 0011 feet The wet, humid weather of August, 1926, made some rather marked differences in the movement of pavements in August of the two years 1925 and 1926
7. The maximum height of pavements occurred later in 1926 than in 1925, due evidently to different weather conditions The maximum herght was reached later in the northern portion of the state in 1926 than in the southern portion.
8 This study seems to thrust one question prominently to the fore, viz what effect will this repeated rise and fall of pavements have upon non-flexible types of pavements? It seems certan that non-renforced concrete slabs must be cracked and broken more and more each year due to the uneven stresses laid upon them by such movements as are indicated It is quite certan that there are more severe clımates in the United States than in Ohio and that in more severe winters and wetter seasons greater movements of pavements will take place
TABLE I
SUMMARY OF LEVELS

TABLE II
SUMMARY OF LEVELS WITH ANALYSES

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Soll } \\
\& \text { No }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Sand} \& \multirow[t]{2}{*}{Sult} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Sus- } \\
\text { pended } \\
\text { clay }
\end{gathered}
\]} \& \multirow[t]{2}{*}{Total clay} \& \multicolumn{3}{|l|}{Moisture} \& \multirow[t]{2}{*}{Volume change} \& \multirow[t]{2}{*}{Average changed elevation} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Max1- } \\
\& \text { mum } \\
\& \text { change }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Date of maximum berght} \& \multirow[t]{2}{*}{Difference-low to lid} \\
\hline \& \& \& \& \& Capulanty \& Capacty \& Equvalent \& \& \& \& \& \\
\hline 17x \& 03 \& 510 \& 37 \& 487 \& 323 \& 536 \& 273 \& 193 \& 0281 \& 0285 \& Feb 21, 1925 \& 0017 \\
\hline 17y \& 54 \& 432 \& 17 \& 514 \& 215 \& 384 \& 148 \& 119 \& 045 \& 055 \& Feb 9, 1928 \& 0004 \\
\hline 32 \& 51 \& 239 \& 72 \& 710 \& 244 \& 397 \& 177 \& 124 \& 042 \& 074 \& Feb 6, 1925 \& 0003 \\
\hline 33 \& 03 \& 291 \& 68 \& 706 \& 380 \& 506 \& 278 \& 240 \& 029 \& 041 \& Feb 5, 1825 \& 0004 \\
\hline 22 \& 243 \& 302 \& 11 \& 455 \& 290 \& 405 \& 204 \& 65 \& 058 \& 105 \& Feb 5, 1925 \& Qute varable \\
\hline 25 \& \({ }^{26}{ }^{\circ} 6\) \& 157 \& 28 \& 577 \& 276 \& 403 \& 180 \& 125 \& 043 \& 051 \& Aug 19, 1928 \& 0 004, high to hagh \\
\hline 168 \& 282 \& 235 \& 29 \& 483 \& 241 \& \& 188 \& 185 \& 0315 \& 044 \& May 14, 1928 \& Aug . 1925, to Aug , 1928, 0025 \\
\hline 119 \& 96 \& 295 \& 63 \& 609 \& 31.1 \& 490 \& 218 \& 228 \& 009 \& 013 \& Aug 18, 1928 \& 0004 \\
\hline 103-4 \& - \({ }^{9} 3\) \& 271 \& 101 \& \({ }^{63} 6\) \& 281 \& 454 \& \({ }^{24} 3\) \& 173 \& \{ 089 \& 088 \& Feb 6, 1925 \& Aug , 1925, to Aug , 1928, 0050 \\
\hline 58 \& 113
88
88 \& 299
370 \& \begin{tabular}{l}
82 \\
38 \\
\hline 8
\end{tabular} \& 588
542
54 \& 303
25

8 \& 467
471 \& 231
234
23 \& 17
106 \& -047 \& 080 \& Jan 18, 1928 \& 00086

\hline 59 \& 172 \& 391 \& 55 \& 437 \& 284 \& 386 \& 196 \& 157 \& 081 \& 098 \& Jan 18, 1928 \& Qute varable

\hline 127 \& 222 \& 349 \& 93 \& 429 \& 291 \& 514 \& 212 \& 209 \& 0735 \& 143 \& Jan 18, 1928 \& 0002

\hline 80x \& 198 \& 368 \& 68 \& 436 \& 293 \& 429 \& 213 \& 148 \& 112 \& 172 \& Feb 23, 1925 \& 0020

\hline 72 \& 169 \& 2 \& 67 \& 569 \& 316 \& 432 \& 204 \& 212 \& 114 \& 136 \& Mar 11, 1928 \& | Sept to May, 00005 |
| :--- |
| Apr to Nov, 0003 |

\hline 76 \& 266 \& 334 \& 35 \& 400 \& 298 \& 388 \& 156 \& 165 \& 070 \& 115 \& Mar 11, 1928 \& Irregular

\hline 85 \& 281 \& 214 \& 55 \& 524 \& 289 \& 457 \& 221 \& 217 \& 073 \& 101 \& Mar 11, 1928 \& Sept, 1925, t May, 1928.0 024

\hline 78 \& 206 \& 246 \& 40 \& 548 \& 294 \& 403 \& 187 \& 149 \& 081 \& 083 \& Mar 11, 1928 \& Sept , 1925, to May, 1929, 0005

\hline 54 \& 122 \& 191 \& 13 \& 887 \& 294 \& 452 \& 224 \& 213 \& 068 \& 086 \& Mar 11, 1928 \& Sept , 1925, to May, 1928, 0014

\hline 71 \& 151 \& 284 \& 41 \& 585 \& 254 \& 451 \& 216 \& 254 \& 060 \& 081 \& Mar 11, 1928 \& Apr, 1925, to Apr , 1926, 0012 (May, 1925, to May, 1028, 0012

\hline 113 \& 184 \& 6 \& 49 \& 540 \& 306 \& 392 \& 20 \& 183 \& 068 \& 146 \& Jan 9. 1925 \& Apr, 1924, to Aug. 1925, 0006

\hline
\end{tabular}

TABLE III
COMPARISON OF GROUP LEVEL-CHANGES WITH OTHER PHENOMENA
August 24, 1926

Soll	Diff in elev		Silt	Clay	Morsture			Vol change
	Average	Max			Capll	Capacity	Equiv	
119	0009	0013	295	609	311	490	216	228
33	029	041	29.1	706	360	506	276	240
168	0315	044	23.5	483	241		168	185
1 Aver	. 023	033	274	599	304	$50 \pm$	220	218
17y	045	053	432	514	215	384	148	119
32	042	074	239	710	244	397	177	124
25	043	051	157	577	276	403	180	125
58	047	060	370	542	259	471	234	103
2 Aver	044	060	300	585	248	414	185	118
71	060	081	264	585	254	451	216	
54	066	086	191	687	292	452	224	213
78	061	083	246	548	294	403	187	149
103	069	088	285	612	292	460	237	175
3 Aver	064	0845	246	608	283	442	216	198
	081	098	391	437	264	386	196	
22	058	105	302	455	290	405	204	65
127	0735	143	349	429	291	514	212	209
76	070	115	334	400	296	386	156	165
85	073	101	214	524	289	457	221	217
4 Aver	071	1125	318	449	286	430	198	186
17x	106	116	510	487	323	536	273	193
60x	112	172	366	436	293	429	213	148
72	114	136	262	569	316	432	204	212
5 Aver	111	141	379	497	311	466	230	184

TABLE IV

STATION 17x, ROUTE 1
133 mules west of Zanesville

Date	A - W	Bn	Bc	Bs	Cl_{1}	C	C_{3}	Dı	D)	D_{2}
$\begin{aligned} & 19 \\ & \text { Feb } 4 \end{aligned}$	8953	9163	9212	9111	9214	9243	9124	9484	9535	9323
Difference	+ 150	$+148$	$+157$	$+168$	+ 158	+ 151	+ 148	$+167$	+ 160	+ 169
Feb 21	9103	9311	9369	9268	9372	9394	9272	9651	9695	9482
Difference	- 216	214	217	218	- 219	- 214	- 215	217	- 214	- 214
Mar 11	8888	9097	9152	9051	9153	9180	9057	9434	9481	9288
Difference	+ 001	- 008	+ 004	008	002	- 008	- 005	- 008	- 000	- 008
Mar 31	8889	9094	9156	9048	9151	9178	9052	9426	9481	9265
Difference	013	005	013	(-009)	052	009	- 009	002	- 005	008
Apr 4	8876	9089	9143	9039	9099	9168	9043	9424	9478	9257
Diference	+ 019	+ 016	+ 016	+ 017	+ 060	+ 017	+ 019	+ 015	+ 014	+ 017
Apr 22	8895	9105	9159	9058	9159	9186	9082	9439	9490	9274
Difference	- 018	008	014	011	008	- 016	- 011	- 008	- 013	018
Apr 25	8882	9097	9145	9045	9151	9170	9051	9431	9477	9256
Difference	- 088	- 042	034	036	038	- 038	- 086	- 040	- 034	- 031
June 6	8844	9055	9111	9009	9113	9138	9015	9391	9443	9225
Difference	+ 004	$+001$	+ 003	$+000$	$+001$	+ 008	+ 001	+ 008	+ 000	+ 000
June 9	8848	9056	9114	9009	9114	9141	9016	9394	9443	9225
Difference	006	008	007	006	- 007	- 009	- 008	- 007	006	- 007
Aug 25	8842	9053	9107	9004	9107	9132	9008	9387	9437	9218
Diference	- 002	+ 004	- 001	+ 0001	+ 002	- 000	+ 005	+ 004	- 001	+ 004
Oct 17	8840	9057	9108	9005	9109	9132	9013	9391	9438	9222
Difference	+ 004	+ 001	$+003$	$+000$	+ 002	+ 003	+ 001	+ 000	+ 008	+ 002
Nov 25	8844	9058	9109	9005	9111	9135	9014	9391	9438	9224
Diference		+ o7s	+ 065	+ 068	+ 071	+ 066	+ 065	+ 067	$+061$	+ 058
1928										
Feb 9		9131	9174	9087	9132	9201	9079	9458	9498	9282
Difference	+ 014	- 061	- 050	- 046	056	- 051	- 061	- 068	- 044	- 049
Mar 25	8858	9070	9124	9021	9126	9150	9028	9405	9455	9239
Difference	+ 001	$+000$	+ 001	$+003$	+ 000	+ 001	+ 000	+ 001	000	001
May 13	8859	9070	9125	9024	9126	9151	9028	9406	9455	9238
Difference	+ 006	+ 010	$+008$	+ 009	+ 009	+ 008	+ 013	+ 012	+ 034	+ 010
Aug 17	8885	9080	9131	9033	9135	9159	9041	9418	9489	9248
Difference										
Mansmum difference	269	258	268	266	265	e62	264	264	259	264

TABLE V

STATION 17y, ROUTE 1

73 miles west of Zanesıille

Date	Aw	B_{1}	B_{2}	B)	C	C ${ }^{1}$	C3	D	D_{2}	D_{3}	E_{1}	E:
$\begin{array}{r} 1925 \\ \text { Feb } 21 \end{array}$	481	795	904	25								
Diference	008	008	- 004	+ oos	- 006	- 001	- 000	- 003	- 005	- 004	004	- 002
Apr 4	0479	0793	0900	0727	0835	0955	0795	1493	1609	1471	1615	1684
Difference	000	+ 006	+ 004	- 004	+ 008	+ 002	+ 002	+ 002	+ 000	009	+ 008	- 001
Apr 25	0479	0799	0904	0723	0843	0957	0797	1495	1609	1468	1618	1683
Difference	+ 006	007	002	+ 008	012	+ 001	- 001	- 000	$+008$	+ 007	- 005	$+007$
June 6	0485	0792	0902	0725	0831	0958	0796	1490	1612	1475	1613	1690
Difference	+ 003	+ 002	+ 005	+ 002	+ 009	+ 002	+ 005	$+005$	+007	$+005$	+ 004	+ 002
June 9	0488	0794	0907	0727	0840	0960	0801	1495	1619	1480	1617	1692
Difference	007	006	005	006	009	- 008	- 008	- 007	- 006	- 009	- 006	- 006
Aug 25	0481	0789	0902	0721	0831	0957	0793	1488	1613	1471	1611	1686
Difference	00	000	000	- 004	+ 003	+ 001	+ 001	- 004	- 000	003	+ 002	- 002
Oct 17	0481	0789	0902	0717	0834	0958	0794	1484	1613	1468	1613	1684
Difference	000	+ 005	+ 001	+ 010	+ 005	+ 000	+ 002	$+007$	001	+ 008	+ 000	$+001$
Nov 25	0481	0794	0903	0727	0839	0958	0796	1491	1612	1471	1813	1685
Diference		+ 0.34	+ 048	+ 045	+ 030	+ 044	$+050$	$+038$	$+048$	+ 0.6	+ 038	$+048$
1928												
Feb 9		0828	0	772	0869	1002	0846	1523	1655	1517	1648	1733
Diference		029	- 040	- 042	- 026	- 040	- 044	- 02s	038	0.58	024	
Mar 25	lost	0	0908	0730	0844	0962	0802	1500	1617	1479	1624	1692
Difference		- 008	001	008	-001	- 002	- 003	008	000	003	008	001
May 13	lost	0796	0905	0727	0843	0960	0799	1497	1617	1476	1622	1691
Difference		006	001	- 001	006	- 000	- 000	- 004	- 001	- 001	006	001
Aug 17	lost	0790	0904	0726	0837	0998	0799	1493	1618	1475	1618	1690
				055	88	048	${ }_{0} \stackrel{3}{ }$	3	46	048	030	050
to Aug		+ 001	+ 002	$+205$	+ 006	000	+ 006	+ 005	+ 003	+ 004	+ 005	$+004$

TABLE VI

STATION 33, ROU'rE 8
315 miles south of Cambidge

TABLE VII

STATION 33, ROUTE 8
315 miles south of Cambridge

TABLE VIII
STATION 168, ROUTE 26
25 mules west of Zanesville

Date	A_{1}	A2	As	B_{1}	B_{2}	B3	
1925							
June 10	0204	0154	0011	0135	0108	9980	
Difference	+ 001	000	+ 007	- 004	- 004	- 008	
Aug 20	0205	0154	0018	0131	0104	9994	
Diference	000	+ 006	+ 008	- 005	+ 002	+ 002	
Nov 11	0205	0160	0026	0126	0106	9998	
Difference	+ 024	+ 028	+ 089	+ 080	+ 083	+ 083	
1926							
(Probably Feb 10)	0229	0188	0055	0148	0129	0021	Core-hp
	Ice	Ice	Ice	Ice	Ice	Ice	0158
Difference	- 001	- 002	- 003	- 001	- 001	- 002	- 008
Mar 26	0228	0186	0052	0145	0128	0019	0156
Difference	± 009	+ 008	+ 003	+ 001	+ 001	+ 006	+ 009
May 14	0231	0188	0055	0146	0129	0025	0159
Diference	- 004	- 003	000	- 004	- 002	- 002	- 008
Aug 18	0227	0185	0055	0142	0127	0023	0157
Maximum diference	087	034	044	080	085	099	Av 00810

TABLE IX
STATION 60x, ROUTE 19
West limits of Lourville, Ohio

Date	A_{1}	A,	As	\mathbf{B}_{1}	B_{2}	$\mathbf{B J}$
1925						
Feb 23	8168	8487	8275	8084	8310	8233
Difference	- 066	- 114	- 105	- 068	- 088	- 066
Mar 19	8103	8373	8170	8012	- 8228	8167
Difference	+ 004	+ 009	- 082	+ 003	+ 008	+ 001
Apr 7	8107	8382	8148	8015	8236	8168
Difference	- 008	-009	- 009	- 002	- 007	- 008
May 11	8099	8373	8139	8013	8229	8160
Difference	- 004	- 003	- 008	- 010	- 004	- 007
July 20	8095	8370	8127	8003	8225	8153
Difference	- 005	- 006	- 004	- 003	- 004	$\rightarrow 001$
Sept 28	8090	8364	8123	8000	8221	8152
Difference 1928	+ 078	+ 097	+ 078	+ 094		
Jan 18	8168	8461	8201	8094	Too dark	
Difference	- 047	- 056	- 072	- 076		
Mar 10	8121	8405	8129	8018	8238	8177
Difference	- 080	- 045	- 006	- 038	- 020	- 029
Apr 8	8101	8360	8123	7985	8218	8148
Differenco	- 088	- 014	- 020	-		
May 18	8083	8346	8103	Rela	d	
Maxmum difference, 1926	078	123	162	064	088	081
Maxmum diference, 1926	105	116	098	Difference only to May 18		

TABLE X
STATION 72, ROUTE 91
South line of Hudson, Ohio

Date	Ac	Bı	B2	Bı	C	C_{2}	Cı	D_{1}	D_{2}	D3
1925										
Feb 23	7390	6646	6730	6830	6631	6701	6798	5761	5887	5961
Difference	- 089	- 006	- 018	- 039	$+008$	- 014	- 089	- 029	- 043	- 058
Mar 19	7351	6840	6712	6797	6639	6687	6769	5732	5844	5908
Difference	+ 002	- 007	- 011	- 010	- 011	- 010	- 011	- 006	- 008	- 007
Apr 8	7353	6633	6701	6787	6628	6677	6758	5728	5836	5901
Difference	000	- 009	- 000	- 005	- 007	- 008	- 004	- 006	$+\quad 001$	- 006
May 12	7353	6630	6701	6782	6621	6674	6754	5720	5837	5895
Difference	+ 010	+ 009	+ 009	+ 012	$+006$	+ 010	+ 011	$+018$	$+010$	+ 0.87
July 21	7363	6639	6710	6794	6627	6684	6785	5738	5847	5922
Difference	- 013	- 005	- 014	- 014	- 004	- 018	- 018	- 016	- 014	- 013
Sept 29	7350	6634	6698	6780	6623	6671	6752	5722	5833	5909
Difference	$+051$	+ 052	+ 047	+ 060	$+047$	+ 055	+ 050	+ 067	$+064$	+ 060
1926										
Jan 19	7401	6686	6749	6830	6676	6728	6802	5789	5897	5969
Difference	+ 068	+ 055	+ 050	+ 052	+ 061	+ 049	+ 058	+ 060	$+067$	$+076$
Mar 11	7464	6741	6799	6882	6727	6775	6855	5849	5964	6045
Difference	- 108	- 106	- 101	- 098	- 102	- 100	- 100	- 119	- 123	- 215
Apr 9	7356	6635	6698	6784	6625	6675	6755	5730	5841	5830
Diference	± 004	- 0038	- 008	- 004	$-\quad 008$	- 005	- 000	$-\quad 007$	-009	
May 19	7352	6632	6695	6780	6622	6670	6750	5723	5832	* 5940
Max diff 1926	0.40	016	034	050	010	030	046	041	054	066
Max duf 1926	112	108	104	102	105	105	105	126	132	
Apr to Apr	+ 003	+ 002	-008	- 008	- 003	- 008	- 008	$+004$	$+00 \overline{0}$	- 071

* Broken $\mu \mathrm{p}$

SUB-BASE TESTS ON ROUTE 26, WASHINGTON COUNTY, OHIO

F H Eno

Ohio State Universty, Columbus, Ohio
In October and November, 1924, a series of sub-base experimental sections was constructed upon the Marietta-Athens road known as State Ald Route 26 These sections varled from 100 to 200 feet in length The sub-base construction was 2,4 or 6 inches in thickness, and was constructed of sand, gravel, slag or an admixture of 5 per cent Portland cement, by volume, mixed with the top 2,4 or 6 inches of the natural sub-base Adjoming sections of the natural sol base were left at either end of the three divisions of this test work for comparison The sand and gravel were dredged out of

