Since the Nar the regulations for carrying into effact the provisions of the Fedexal-aid Highway Act of 1944 have placed administrative amphasis on the ralation ship of right-ademay and roadside improvement problems in the several States. Trees are often found to be a cost consideration in the acquisition of highway right-ofway. The paper by Mr. George G. Holley on the evaluation of trees as an element in highway land damage should be timely and useful.

Building Setback Lines - The right-of-way and roadside improvement probloms, as already stated, are inter-related. The two must go together. The paper on High way Zoning in Virginia shows how one State is trying to coordinate locsl county zoning of highways with Statewide planning for the mutual interest of all.

TREES AS AN EHEMENT IN HIGHWAY LAND DAMAGE

By
George C. Holley
Public Roads Administration
Washington, D. C.

Introduction - At the present time there seems to be no generally accepted method for evaluating shade trees on land acquired for highway construction. Appraisers for highway departments tend to place too low a value on such trees. Often the trees are considered as so much cord-wood or timber, but unless they are growing on woodland such evaluation is generally too low. On the other hand the property owner tends to value the trees too highly. It is only natural that he should try to get all he can. Thus, both parties are likely to arrive at their respective evaluations by more or less biased opinions. If it is canceded that the property owner should receive fair and juat remuneration for his trees-but no more-some method must be found ta arrive at a true value.

This paper is presented as an introductory review on the need for improved and more uniform procedures in determining the value of shade trees on land acquired for highway purposes. Nine different methods of tree evaluation are outlined and existing data are assembled in tabular form as a basis for development of a more complete and uniform procedure in estimating damage to trees on highway rights-of-way. The use of a complete formula for appraisal of shade trees is described. A list of native trees in the cool humid northeast portion of the United States 18 also included for guidance in the use of the tree appraisal formula。

Factors in Estimating Value of Trees - In estimating the value of trees, several factors should be considered: the tree species, size, location, condition, speciman value, land value, and other Iactors of lesser importance. The following is a brief discussion of these factors.
l. The species of the tree itself is important in fixing its value. A white oak or a sugar maple is more valuable than a common locust or a silver maple
of the same size, other factors being equal. However, the value of a species may vary in different localities and under various conditions. That is, a species is most valuable in localities where it thrives best, other factors being the same.
2. Location is also important. A tree located in a front yard is more valuable than one of the same species, size, etc., located out in a pasture or along a fence row well away from the house. Also a tree standing alone is generally more valuable than one in a group, unless ite removal destroys the apparance of the group. Then the reverse may be true.
3. The physical condition of a tree has a tremendous influence on a tree's value. A tree may be in such poor condition as to be worthless and actually may be a liability. For example, a tree afflicted with a contagious disease, may spread infection to others. A tree seriously weakened by decay ia a hazard to life and property. Such trees obviously have no value.
4. Specimen value is a factor which should not be overlooked. Two trees of the same size and species, located equally well and in the same physical condition may be valued quite differently. The tree which is the better specimen and has more character has the greater value. Nurserymen recognize this factor and always price specimen plants higher than plants of number 1 grade.
5. The value of the land on which a tree is growing has a direct affect on the value of the tree. A red oak on $\$ 5,000$ per acre land is without question more valuable than the same tree on $\$ 100$ per acre land.
6. A tree growing in regions where trees are scarce is worth more than one growing where they are plentiful, everything else being equal. For example, a tree in a heavily wooded region is not as valuable as it would be in a region where they are almost no trees. Likewise a tree in a wooded area is leas valuable than the same tree standing alone in a field or pasture.
7. Sentimental and historical values are factors which occasionally mast be recognized. A tree planted by a property owner's father or grandfather has a much greater value to him than one which just grew. We have all experienced seeing a community petition the highway department to spare a fine tree or row of trees which had been a familiar sight for many years, and which engineers had condemned to clear the way for highway construction. Quite often roads have been relocated at considerable expense to spare such trees.

There is an elm tree standing not far from the main entrance to Kount Vernon which is supposed to be a grandchild of the elm under which Waehington took command of the Continental Armies at Cambridge, Massachusetts. If this tree were evaluated ite historical value would far outwelgh its value as a shade tree.

Sentimental and historical factors, however, are encountered so seldom that they present special cases which are generally recognized as such and handled accordingly.

Use of Various Yethods - During the last 60 years or more, several mathods for evaluating shade trees have been devised. As might be expected, the earlier methods were rather crude and inaccurate while the later ones came closer to the real value and depended less on guesswork. The following is a brief outline of these methods presented in a more or less chronological order:

1. The arbitrary method was one of the earliest used. A law was enacted in the State of Massachusetts whereby a fine of not less than $\$ 5.00$ and not more than $\$ 150$ could be levied for injury or destruction to a single tree. The assessment of damage was left to the court.
2. The Roth method consisted of adding 5 percent compound interest to the initial cost of a tree. For example, after twenty-five years a tree having an initial cost of $\$ 15.00$ would be valued at $\$ 51.80$.
3. The Circumference Measurement Method was simply multiplying the circumference of a tree in inches at breast haight by $\$ 5.00$.
4. The Diameter Measurement Method used the diameter of a tree in inches at breast height miltiplied by $\$ 10.00$.
5. The Square Foot Basal Method was developed collaboratively by Professor George E. Stone of the Massachusetts Agricultural College and Mr. George Parker, Park Superintendent, Hartford, Connecticyt in the early 1900's. A value of \$75.00 was used per square foot of cross section of the tree trunk at breast height. This $\$ 75.00$ figure was modifled by species and the physical condition of the tree. It seems to be the first time that species and condition were considered as affecting a tree's value.
6. The Square Inch Basal'Yethod is supposed to have been devised in Massachusetts about 1920. A maximum value of seventy-five cents per square inch of basal area or cross section at breast height was used with deductions allowed for species and condition.
7. The Newark Method; a modification of the above method, was suggested by Mr. C. L. Pack, but the only difference seems to be an increase in the square inch value to $\$ 1.00$.
8. The Replacement Value Method consiste of the cost of removing a destrojed or badly damaged tree and replacing it with one of the same size and species in good soil surroundings.
9. The late Dr. E. P. Felt elaborated on the Newark Method by adding the factors of land value and location. Species and condition were included as well as a basal square inch value of \$l. This method is by far the most complete and accurate of the nine methods just outlined. A tabulation (Table I) to assist in the use of Dr. Felt's improzed Memark Method is as follows:

TABLX I. DATA TO BE USED WITH DR. FELT'S IMPROVED NEWARK METHOD

piamoter	Basic Value	Species	Location	Condition of tree	Land value per acre	Ratio of tree value to land value
	Dollars	Percent	Percent	Percent	Dollars	Percent
6	28				500	25
8	50				1,000	45
10	79				1,500	70
12	113				2,000	100
14	154				4,000	150
16	201				6,000	200
18	254.				8,000	240
20	314				10,000	280
22	379				12,000	300
24	453				14,000	320
26	531		5 to 100		16,000	335
28	616				18,000	350
30	707				20,000	365
32	800				22,000	375
34	907				24,000	385
36	1,018				26,000 28,000	395 400
38	1,135					
40	1,257					
44	1,524					
48	1,810					

This table is set up to be used as follows: Each item or factor is to be taken in turn from left to right. In this example, assume that the tree has an 8Inch diameter. The basic value is then $\$ 50$. The species is White Oak which has a rating of 100. The location is not too good, being too far from the house. The rating for this factor may be considered as 80 . The tree's condition is excellent, rating 100. It is growing on land valued at $\$ 4,000$ per acre so that the final figure is multiplied by 150 percent. Thus we have
$\$ 50 \times 1.00 \times .80 \times 1.00 \times 1.50$ or $\$ 60$ as the estimated value of the tree.

[^0]Apparently the nine methods just deseribed were devised for trees on residential property in urban and suburban arđas. Land values ranging from $\$ 500$ to $\$ 28,000$ per acre as shown in the previous table are not as low as land values along highways in rural areas. For evaluating trees on land purchased for highway right-of-may, the following Table 2 is presented, with land values ranging from $\$ 50.00$ to $\$ 10,000$ per acre. On $\$ 10,000$ per acre land maximum tree values approach the cost of replacing the tree with one of equal size. For example, a 12 -inch diameter tree with a basic value of $\$ 110$ as shown in Table 4 on $\$ 10,000$ per acre land, would be worth 250 percent of the $\$ 110$ basic value or a replacement value of $\$ 275$. As a rule, the replacement value should be considered the maximum value that should be placed on shade trees growing on highway right-of-way. On $\$ 50.00$ per acre land tree values tend to approach timber value. For example, on land of this value the same size 12 -inch diameter tree with a $\$ 110$ basic value would have a maximum value of 10 percent of the $\$ 110$ basic value, or $\$ 11.00$.

Table 2
Tree value for various highway right-of-way land values

Table 3
Simplified basis values
adapted from Table I

Tree size: Basic value of tree	
Dlameter	Dollars
6 inches	30
9 inches	60
12 inches	110
15 inches	180
18 inches	250
24 inches	450
30 inches	700
36 inches	1,000
12 inches :	1,400
48 inches :	1,800
54 inches	2,200
60 inches	2,800

Table 3 is suggested as a simplifled table of basic values given in round numbers for trees with dlameters from 6 to 60 inches. These values as shown in Table 3 have been used in subsequent table日.

It should be noted that in all the several methods, diameter and circumference measurements are taken at breast height or $4 \frac{1}{2}$ feet above the ground in accordance with standard practica.

Proposed formula for shade tree evaluation along highways - In developing a formula for evaluating shade trees along highways five factors are used, namely: species, location, condition, specimen (Aesthetic) value, and ratio to land value. The specimen (A) value factor is used only when a specimen tree is involved. It always has a percentage value above 100 , depending on the judgment of the appraiser. To be rated a specimen, a tree may be of any species and stand in any location, but it mast have a rating of 100 for condition and must be well above the average In appearance. The species factor may hava a percentage rating from 100 down but never reaches zero. The location and condition factors may be rated from zero to 100. The ratio to land value has a value ranging from 10 to 250 , as shown in Table 2.

The proposed formula is
$V=B\left(\frac{S+L}{2}\right)$ GAR where
$V=V a l u e$ of shade tree
$B=$ Basic value (This is the cross sectional area in square inches at breast helght with a value of $\$ 1$ per square inch on $\$ 2,000$ per acre land) (See Tables 1, 2 and 3.)
$S=$ Species in percent
$L=$ Location in percent
$\mathrm{C}=$ Condition in percent
$\mathrm{A}=$ Specimen or Aesthetic value in percent (always above 100 per cent but used only when a specimen tree is being appraised)
$R=$ Ratio to land value in percent
Using values of 100 for the various factors, we have
$V=B\left(\frac{1.00+1.00}{2}\right)(1.00)(1.00) \mathrm{R}$ or
$V=\mathrm{BR}$
When the specimen factor is not used it may be left in and given a rating of 100 , or omitted from the formula entirely.

Application of Suggested Formula - Thus a 12 -inch White Oak rating 100 for all factors would be worth $\$ 110$ on $\$ 2,000$ per acre land. The following Table 4 shows the value of various size trees rating loo for all factors, on land valued from $\$ 50$ to $\$ 10,000$ per acre.

Table 4 - Maximum Tree Values in Relation to Land Values
All Factors Rating 100

Land value per acre	Ratio of tree value to land value (R)	12-inch tree	24-inch tree	48-1nch tree
Dollars	Percent	Dollars	Dollars	Dollars
50	10	$1]$	45	180
100	20	22	90	360
200	30	33	135	540
500	50	55	225	900
1,000	70	77	315	1,260
2,000	100	110	450	1,800
4,000	150	165	675	2,700
6,000	200	220	900	3,600
8,000	230	253	1,035	4,140
$10_{2} 000$	250	275	1,125	4,500

These values may seem excessive, but very seldom does a tree rate 100 for all factors. Such a tree must be one of our best species, such as White Oak, must be ideally located such as in a front yard where it provides shade and improves the appearance of the house. It must be in perfect condition with no sign of disease or decay. A specimen tree would have a still higher valuo provided it rated 100 for all other factors.

When the several factors have ratings somewhat less than 100 , the tree valus falls surprisingly. For example, let us take a Cottonwood which is located away from the yard area. It is in only fair condition, having several dead branches. Under these conditions the values for the various factors may be $S=30, L=50$, $c=50$ (A is not considered).

We then have

$$
\begin{aligned}
& \nabla=B\left(\frac{.30+.50}{2}\right)(.50) \mathrm{R} \text { or } \\
& V=.2 \mathrm{RR}
\end{aligned}
$$

It is immediately evident that by using the factor ratings above, the value of V dropped much more than the average value of S, L and C. Whereas their average value is 43.3 , the ∇ value is only 20 percent of the value obtained when all factors rated 100. Thus a 12 -inch Cottonwood on $\$ 50$ per acre land is valued at 20 percent of $\$ 11$ or $\$ 2.20$, a 24 -inch Cottonwood 20 percent of $\$ 45$ or $\$ 9$, and a 48 inch Cottonwood 20 percent of $\$ 180$ or $\$ 36$.

Table 5 indicates tree values obtained by using the factor ratinge used above as a comparison with tree values in Table 4 where all factors were rated 100. Tree sizes in both tables are identicil.

Table 5 - Tree Values in Relatión to Iand Values
Where $S=30, L=50$, and $C=50$

Land value per acre	Ratio of tree value to land value	12-Inch tree	24-Inch tree	48-inch tree
Dollars	- Percent	Dollars	Dollars	Dollars
50	10	2.20	9.00	36.00
100	20	4.40	18.00	72.00
200	30	6.60	27.00	108.00
500	50	11.00	45.00	180.00
1,000	70	15.40	63.00	252.00
2,000	100	22.00	90.00	360.00
4,000	150	33.00	335.06	540.00
6,000	200	44.00	180.00	720.00
8,000	230	50.60	207.00	828.00
10,000	250	55.00	225.00	900.00

These values of course are only one-flfth the values shown in table 4 .
It should be noted that the lower the average value of the factors, the greater is the proportional difference between that value and the ∇ value* For instance, if all factor values rate 90 , the V value is 81 or about eight-ninthe the average factor value of 90 . If all factors rate 10 , the V value is 1 , or only onetenth the average factor value of 10.

In examining the formula, $\nabla=B\left(\frac{S+L}{2}\right) C A R$, it is evident that when C has A rating of zero, the reaulting tree value is always zero. Since $\$$ always has some value and L is the only other factor which may have a zero rating, ∇ (the tree value) will alwaye have some value unless the C value or condition of the tree is zero.

This is as it should be. The condition of the tree (C) is and should be the controlling factor in appraising value. For when the condition (C) is such that a tree has become a menace to human life or to the health and even life of other trees, or both, the tree has no value.

It is believed that this formula will aid in a more uniform appraisal, and $\pi 11$ give results accurate enough to have a practical use in evaluating trees on highway rigits-of-way. But it should be emphasized that no formula or method by itself will automatically produce satisfactory results. A person possessing good judgment and a knowledge of trees is more important than a good formula, but the combination of a qualified person and a workable formula should obtain reasonably trie values.

Table 6 js a sumary of data to be used with the proposed formala.
Table 6 - Data to be Used In The Proposed Formula

$$
V^{\prime}=B\left(\frac{S+L}{2}\right) \quad \text { CAR }
$$

List of Native Trees With Suggested Species or S Value - The following list of native trees is lidited for this paper to the cool humid region of the country, or northeastern United States. Several of them are found in the wild in only a limited part of the region, but grow well over a much greater area. A tentative S value in percent has been placed on each species. This value representa each species in the area where it grows best with the exception of American Elms. The future use of elm trees on highways is so uncertain that they have been rated lower than they would have been otherwise. The willows which have been listed are mostly of European origin but they have adapted themselves so well to this country that they now seem as mich native to us as our own trees.

feneric name	Common name	Species or S value
Lcer negando	Box Elder	20
nigrum	Black Maple	100
pennsylvanicum	Striped Maple	40
rubra	Hed Maple	80
saccharinum or dasycarpum	Silver Maple	20
saccharum	Sugar Maple	100
Aesculus glabra	Ohio Bu'ckeye	60
octandra	Yellow Buckeye	60
Amelanchier canadensis	Downy Shadblow	60
Iaevis	Allegheny Shadblow	70
Hetula lenta	Smaet Bjrch	80
Iutea	Yellow Blich	60
nigra	River Blrch	60
papyrjfers	Canoc Birch	100
populifolla	Gray Blirch	60
Carpinus caroliniana	American Hornbeam	80
Catalpa speciosa	Western Catalpa	40
Celtis mississippiensis	Sugarberry	70
occidentalis	Hackberry	70
occidentalis var. crossifolia	Bigleaf Hackberry	70
Cladrastis lutea	Yellow-Hood	80
Dlospyros virgindana	Persimmon	80
Fagus americana	Ame rican Beach	100
Fraxinus americana	White Ash	70
nigra	Black Ash	70°
pennsylvanica	Red Ash	70
profunda	Pumpkin Ash	60
Gleditala triacanthos	Honeylocust	70
Gymnocladus diolica	Kentucky Coffeetree	80
Hicoria alba	Mockernut	90
cordiformis	Bitternut	80
glabra.	Pignut	80
lacinioea	Shellbark Hickory	90
ovata	Shagbark Hickory	90
pecan	Pecan	90
Juglans cinerea	Butternut	50
nigral=	B.lack Walnut	90
Liquidambar styraciflua	Sweetgum	90
Liriodendron tulipifera	Tuliptree	80
Magnolia accuminata	Cucumbertree	80
Nyssa sylvatica	Sourgum	90
Ostrya virginica	Hophornbeam	80
Qxydenciron arborium	Sourwood	90
Platanus occidentalls	Anerlcan Planetree	90

Generic name	Common name	Species or Svalue
poputus balsamifera	Balsam Paplar	30
deltoides	Southern Cottonmood	30
grandidentata	Largetooth Aspen	30
heteriophylla		30
monilifera	Northern Cottomrood	30
tremuloides	Quaking 4 spen	30
Prunus serotina	Black Cherry	70
Quercus alba	- White Oak	100
bicolor	Svamp Thite Oak	80
coccinea	Scariet Oak	90
falcata	Southem Red Oak	100
imbricaria	Shingle Oak	90
lyrata	Ovarcup Oak	90
mserocarpa	Mossyeup Oak	100
marilandica	Blackjack Oak	90
michaurd	Swanm Chestnat Oak	100
mhalandbergi	Chinquapin Oak	80
Quercus		
nigra	Prater Oak	80
pelustrio	Pin Cak	90
phellos	Willow Oak	100
pxinus	Ohestnut Oak	100
rubra	Red Oak	100
atallata	Post Oak	100
velutina	Black Oak	100
Hobinia paeudoacacia	Common Locust	40
galix albe	White Willow	40
babylonica	Babylon Feeping Willow	50
fragilis	Brittle Willow	40
nigra	Black Hillow	40
nigra varofalcata		40
vitallina	Golden millow	50
Sassafres vamifolium	Saesafras	40
Sorbus americana	American Mountain-Ash	80
Syrulocos tinctoria	Common symplacos	70
Tilia americana	Amarican Linden	70
Ulmis amertcana	American Elm	70
fulva	Slippery 8 红m	60
racemoan	Rock EIII	60
serotins	Soptember Film	60

To this list should be added shade trees of foreign origin and evergreen trees both foreign and native which grow in the cool humid regions. A oomplete list of trees covering all of the climatic regions of the United States is also needed.

Conclusion - This revien of methods for determining the walue of trees along highways, and suggested "sg values for shade trees of the cool humid region are pren sented for introductory purposes. The Committee on Roadside Development will wolcome any suggeations or constructive criticisms for consideration at its next annual maeting. Specific examples of the use of tree evaluation methods are invited by the Congittee.

Proceedings of the Twentieth Anmal Meeting - Hew Jersey Federation of Shade Tree Cormisaions, December 5, 1945.

日Rat Estate Appraisingn $m a m e s$ D。 Henderson - Bankers and Fradesman's Fress, Cambridge, MassachusettB.

* * *

HIGHRAY zONING IN VIRGINIA

H. J. Neale and I. H_{0}. Turner
Virginia Departmant of Highways

The expitant cost involved in moving buildings and other structures for modern highway faconstruction has been of great concern to the State Highway Commisalon of Virginia. The Generral Assembly in 1944 instructed the Highway commission to propare a "Iwenty Iear Plan" far the development of the Virginia Primary Highmay System. An intensive survey and study of the needs for this modernization indicated an estimated cost of nearily five hundred million dollars. The plans for this modernization provide for four classes of roads. Class I and Class II are Interstate and intercity Class I being a four lane divided highway, requiring a 160 ft . right of way - Class II, two lane, requiring 110 ft . right of way - Ciass III involves heavy travalled local roads requiring an 80 ft . right of way, while Class IV is a lightly travelled road with a 50 ft . right of way. When it is considered that before the adoption of this plan, normal rights of way in Virginia for the Class I and II roads were from 60 to 80 ft . in width and other roads from 30 to $60 \mathrm{ft}_{\mathrm{f}}$, many built a decade or more ago, and all have, naturally, become built up with a ribbon development of houses, stores, garages, filling stations, and other structures. With no established setbeck IInes, most of these buildings have been built close to the edge of the present right of way and will be within the future right of way line. Whilo provision has boen made in the estimated cost of the modernization program for the moving of excating buildings, it is impossible to forecast the cost of handiling future oncroachments in this area.

Surveys of facroachment of Structures on Right-ofollay - A careiful atudy of 178 milles of recoristruction projects, built during the past seven years, in different eections of the State and under varying conditions portrayed an overall cost of $\$ 528$, 666 for the moving, purchasing, or rebuilding of structures. This is an average of $\$ 2,970$ per mile. Another rough survey was made mithin an area of ten miles of one of the leading cities, based on existing conditions and potential developments during the next decade, indicated that it would cost the State at

[^0]: Footnote: Kost of the information on the nine methods just outlined as well as Table I was obtained from Mro O. W. Spicer's paper presented at the December 5, 1945, Twentieth Annual Meeting of the New Jersey Federation of Shade Tree Commisaions: "Value of Trees to a Community."

