Vehicle Collisions with Roadside Objects

WILLIAM C. GREENE, Landscape Engineer
Connecticut State Highway Department

The National Safety Council predicted a minimum of 500 traffic fatalities on the Nation's highways during the 1961 Christmas holiday weekend. That prediction was only too true, for the toll was considerably greater than the forecast.

And so it goes; as it has for many years-and it is presumed will be evident for many years to comethe Nation's motorists operate their vehicles in such a careless manner that accident statistics receive more pronounced attention than the economic progress or the population growth of democratic society. Through the press and other news media all are made aware, that drivers must be alert to the many existing hazards, and that it is a privilege and an honor to operate their vehicles on the wonderfully built and maintained transportation arteries furnished for their use. If care, intelligence, and courtesy were observed, there would be a notable decrease in the many accidents that take countless lives, injure and disable many people, and damage many billions of dollars of property.

This paper presents statistics compiled regarding vehicle collisions with roadside objects. They raise the question how the planning, design, construction, and landscape treatment can be improved so that the number of fatalities will be reduced, the number of injuries lessened, and the property loss diminished.

On August 29, 1961, Robert M. Williston, Chief of the Ohio Highway Traffic Division, requested information as to the number of vehicle accidents with fixed roadside objects, for the period 1955 through 1959. The printed record form listed the following principal objects: highway guide rail, utility pole, tree, sign, bridge, culvert, bank or ledge, snow bank, fence or wall, curbing, fire hydrant, boulder, catch basin, building, median barrier and other. These were to be reported on as to type of road: two-lane highways; multilane, undivided highways; divided highways-no control of access; or divided highways-full control of access.

Again, this was broken down further as to whether the accident was on an urban or rural section of road, whether it occurred on the right, on the left, or on the median if it were a divided highway.

Further, it requested the number of all accidents, fatal accidents, injury accidents, and those involving property damage with the totals listed in each category for each year.

Twenty-nine States either reported information was not available, or did not reply. Some States (Tables 1 and 2) forwarded summary reports; others (Tables 3, 4, 5, 6) submitted more detailed reports.

An article appeared in the Hartford Courant on January 1, 1962, dealing with Connecticut accidents that took 800 lives in 1961 , of which 276 were traffic fatalities. The article points out that of the total fatalities listed, the majority were the result of single-vehicle accidents. Of the total of 33 deaths, 17 , or more than 50 percent, are listed as vehicular collisions with roadside objects and 12 of the deaths resulted from cars crashing into trees. Apparently, all these accidents were the result of driver failure: excessive speed, poor judgment, intoxication, fatigue, health defects, or some similar category; there might have been vehicular mechanical failures but usually this is not the case-the greatest cause is generally improper and unlawful vehicular operation.

From an analysis of some of the statistics from Connecticut it appears that of the 226 fatalities that occurred in collisions with fixed objects on rural highways in the five-year period 22 were with guide rails, 33 with utility poles, 3 with signs, 107 with trees, 33 with bridges, 12 with a bank or ledge, 7 with a fence or wall, 1 with a curbing, 2 with boulders, 4 with buildings, 2 with unknown objects. Nearly 50 percent of these were the result of crashes with trees. However, because they are more numerous than any other object along rural highways, it is understandable that trees are involved in the greatest number of roadside collisions.

Fatality records on divided highways, where full control of access is in effect, show that there were 30 fatalities during this period, with 11 occurring on the right, 5 on the left, and 14 in the median. Of this total, the greatest number occurred on the Merritt Parkway where many large shade trees had been planted over twenty-five years ago, and they are now reaching maturity. In other words, when there is an impact with one of these trees, it is usually severe. But how many lives have been saved because of those trees is unknown, for if the trees did not exist, there would be many more multiple fatalities listed, because, without trees, vehicles would be able to cross the median into the other lane.

There were 252 accidents with trees in the medians of divided highways, 125 resulting in injuries, 113 in property damage, and the 14 mentioned previously as fatalities. It is rather apparent that many lives have been saved, including those of operators of uncontrolled vehicles, which would have been mere vital statistics if those trees had not been planted.

The Merritt Parkway, which is still thought of as one of the safest and most beautiful sections of highway

State	Rural or Urban	Year	Total Accidents	Fixed Object Accidents (No.)			
				Fatal	Injury	Property Damage	Total
Del.	R and U	1955	5,712	4	78	253	335
		1956	6, 323	3	87	311	401
		1957	6,040	7	88	310	405
		1958	6,110	4	72	310	386
		1959	6, 195	9	99	321	429
		1955-59	30, 380	27	424	1,505	1,956
Fla.	R and U	1955	76,954	40	593	1,482	2,115
		1956	87, 329	52	566	1,560	2,178
		1957	97,401	41	584	1,698	2, 323
		1958	100, 497	53	549	1,662	2, 264
		1959	115,642	41	606	1,975	2,622
		1955-59	477, 823	227	2, 898	8,377	11, 502
Ga.	R	1955	-	95	485	837	1,417
		1956	-	152	757	1,457	2,366
		1957	-	100	1,022	1,966	3, 088
		1958	-	105	1, 021	1,983	3,111
		1959	-	94	1,052	2,170	3,316
		1955-59	-	546	4, 337	8,413	13, 298
	U	1955	-	20	24	52	96
		1956	-	26	47	106	179
		1957	-	27	472	1,008	1,507
		1958	-	18	450	789	1,257
		1959	-	20	184	326	530
		1955-59	-	111	1,177	2,281	3,569
	R and U	1955-59	-	657	5,514	10,694	18, 867
Idaho	${ }_{\mathrm{R}}$	1955	-	8	95	479	682
		1956	-	11	90	288	389
		1957	-	9	57	234	300
		1958	-	7	65	165	237
		1955-58	-	35	307	1,166	1,608
	U	1955	-	4	41	249	294
		1956	-	2	44	136	182
		1957	-	9	110	507	626
		1958	-	1	55	151	207
		1955-58	-	16	250	1,043	1, 309
	${ }_{\mathrm{R}}$	1959	-		113	387	506
Ill.		1955-59	-	57	670	2,596	3,423
		1955		140	1,070	1, 303	2,513
		1956	-	131	1,065	1,275	2,471
		1957	-	108	1,155	1,408	2,671
		1958	41,433	155	1,320	1,645	3, 120
		1959	44,090	125	1, 338	1,950	3,413
		1955-59	85, 523	659	5,943	7,581	14, 188
	u	1955		77	1,206	1,865	3,148
		1956	-	78	1,284	1,825	3, 187
		1957	-	75	1,336	1,839	3,250
		1958	165, 801	97	1,651	3, 384	5, 132
		1959	173, 400	70	1, 433	2,975	4,478
		1955-59	339, 201	397	6,910	11,888	19, 195
	R and U	1955-59	424, 724	1,056	12,858	19,469	33, 383
Mass.		1955	-	85	1,094	1,145	2, 324
		1956	-	66	1,317	1,424	2,807
		1957	-	63	1,126	1,132	2, 321
		1958	:	71	1,235	1,190	2, 496
		1959	-	71	1,444	1,381	2, 896
		1955-59	-	356	6,216	6, 272	12,844
N. H.	R , and U	1955	-	42	628	1,375	2,045
		1956	-	32	683	1,400	2,115
		1957	-	31	645	1,473	2,149
		1958	-	35	817	1,380	2,032
		1959	-	47	706	1, 714	2,467
		1955-59	-	187	3,279	7, 342	10, 808
N. Y.	F and U	1955	-	496	10,916	14,284	25,696
		1956	-	501	11, 193	15,056	26, 750
		1957	-	561	12,744	16, 456	29,761
		1958	-	531	12, 020	13,450	26, 001
		1959	-	604	13, 420	11,580	25, 604
		1955-59	-	2,693	60, 293	70, 826	133,812
N. D.Ore.	R and UR	1960	-	2	98	867	967
		1955	-	69	571	1,403	2,043
		1956	-	44	455	1,014	1,513
		1957	-	29	223	630	882
		1958	-	29	219	563	811
		1959	-	32	269	702	1,003
		1955-59	-	203	1,737	4,312	6,252
	U	1955	-	15	281	1,110	1,406
		1956	-	4	213	851	1,073
		1957	-	5	112	514	631
		1958	-	5	96	526	627
		1959	-	8	335	1,192	1,535
		1955-59	-	37	1,037	4,193	5,272
	R and U	1955-59		240	2,774	8,505	11,524
R.I.	R	1959	250	-	-	-	69
	U	1959	13,308	-	-	-	2,308
	F and U	1959	13,558	-	-	-	2,377
Utah	R and U	1955	-	10	148	380	538
		1956	-	,	139	370	518
		1957	-		116	510	${ }^{630}$
		1958	-	5	158	929	1,092
		1959	-	6	141	929	1,076
		1955-59	-	34	702	3,118	3, 854
vt.	R and U	1955	10,104	-	-	-	2,782
		1956	10,198	-	-	-	${ }_{993}$
		1957	10, 105	-	-	-	3,029
		1958	11,617	-	-	-	2,960
		1959	11,777	-	-	-	3,040
		1955-59	53, 801	-	-	-	12, 804
w.va.	R	1955	-	45	242	272	559
		1956	-	55	377	364	796
		1957	-	51	348	439	838
		1958	-	63	358	342	763
		1959	-	59	295	322	676
		1955-59	-	273	1,620	1,739	3, 632
	U	1955	-	4	4	5	13
		1956	-	5	1		12
		1957	-	7		1	10
		1958	-	14	1	2	17
		1959	-	8	10	27	45
		$1955-59$ $1955-59$	-	38 311	18 1,638	4, 1,780	$\begin{array}{r}\text { \% } \\ \hline \text { 97 } \\ \hline 729\end{array}$

TABLE 2
FIXED OBJECT ACCIDENTS ON VIRGINIA RURAL HIGHWAYS, 1959

Object	Accidents (no.)			
	Fatal	Injury	Property Damage	Total
Bank or ledge	23	387	573	983
Structure	36	188	289	513
Tree	30	277	236	543
Utility pole	8	221	302	431
Fence	5	110	352	467
Guide rail	6	102	210	318
Sign	2	67	180	249
Miscellaneous	12	195	486	693
Total	122	1,547	2,628	4,297
Total accidents	448	6,706	17,284	24,438

in the country, was built under the guidance of the Merritt Parkway Commission, and was intensively landscaped in accordance with the policy of those members. They dictated to a certain extent the planting design that best fit the picture at that time. The design speed was 50 mph and today the limit is set at 55 mph , with the bulk of the traffic, of course traveling 60 mph or more. The traffic volume is now three times more than the road was designed to handle, so there is some excuse for the few accidents that occur and for the plantings installed many years ago.

However, it is evident that if one were to design a functional planting for a relatively narrow median today, materials that would serve as crash barriers and decelerate the vehicle out of control would be used rather than plants that would cause damage or death at some future date.

Another incident comes to mind. In the fall of 1960 the highway commissioner ordered the installation of a section of chain link fence (with cables as developed in California) on one of the most accident-prone curves on the Merritt Parkway. The fence extended a distance of approximately 1, 000 feet from a heavily planted section of tangent median to a bridge. Soon after installation a car was enmeshed in the fence and prevented from crossing the esplanade. However, just to the east of the fence a vehicle traveling west at high speed bounced off a car traveling in the same direction, went several hundred feet through the planted median, barely missed several major and minor shade trees, tore up mature shrubs, and crashed head-on into a vehicle in the opposing lane; the result was four killed, including the operator of the rampaging vehicle, his lady companion, and two innocent victims traveling in the other car. The most devoted efforts to prevent this sort of thing are frequently not enough. And these statistics are not included in this compilation, for they were not collisions with fixed objects.

On a percentage basis, the total number of accidents involving fixed objects is given in Table 7.
It is obvious that the fixed object-collision frequency varies considerably between urban and the rural areas. Guide rails are heavy contributors in both areas, indicating their frequency along Connecticut's roads. However, the speed of vehicle operation in urban locations is generally reduced, which undoubtedly accounts for the approximately 15 percent lower rate.

The utility pole frequency rate in urban areas climbs about 15 percent above rural highways, which indicates they are more numerous in the cities than in the country-so, if there must be obstructions the operator of the uncontrolled vehicle certainly has a knack for finding an object to hit.

Trees are less frequent in the city than in the rural areas, but they certainly take their share of the impacts in both locations.

There is one more figure that might be mentioned. This is the one case under "Full Control of Access on Divided Highways, " in the "Bank or Ledge" category. This fatality was one of the Department's own men, and a very capable landscape foreman for many years. Early one foggy morning, while traveling in his pick-up truck along a section of divided highway where the lanes are separated by several hundred feet, a man driving a station wagon at high speed bumped the rear of the truck and forced him into a ledge outcropping on his right. The impact caused him to be thrown from the truck, landing head first on the ledge. (Had there been seat-belts furnished at that time, it probably would have been another matter.) A safety rest area has been established as a memorial to this man and his death has been the one and only fatality which occurred on this type of highway during the period of the report and in the situation described.

In concluding the author would like to cite the report given by Kenneth A Stonex, Assistant Director of the General Motors Proving Grounds, presented at the 39th Highway Research Board Annual Meeting in

TABLE 7
PERCENT OF TOTAL ACCIDENTS WITH FIXED ROADSIDE OBJECTS

	Object	Total Accidents (\%)	
		Rural	
Guide rail	44.0	Urban	
Utility pole	15.0	29.1	
Highway sign	1.7	31.7	
Tree	15.0	2.1	
Bridge	3.0	9.8	
Culvert	0.9	4.3	
Bank or ledge	8.0	0.3	
Snow bank	-	3.0	
Fence or wall	3.0	-	
Curbing	1.0	3.3	
Fire hydrant	-	2.5	
Boulder	1.6	1.5	
Catch basin	-	0.6	
Building	0.7	.-	
Median barrier	-	2.0	
Other-median	1.6	1.0	
Unknown	4.4	8.1	
Total	99.9	0.6	

1960. The figures in his report of vehicle collisions with roadside objects confirm his analysis and findings, and more and more attention must be given to the recommendations he has presented.

The figures presented here should emphasize to those who are engaged in the landscape development of highways the need to select plant materials carefully in order to utilize completely their functional values. By correctly choosing plant types, and by giving appropriate attention to landscape design principles, one can effect vehicular turning movements, guide traffic, provide crash barriers that will decelerate a vehicle out of control with minimum damage, and improve the aesthetics of roadsides.

Every effort possible can and must be employed to reduce the number of roadside objects, and to design and locate essential roadside appurtenances so that highways will provide transportation with safer, trouble-free roadside areas. If these principles are adhered to accident statistics in future reports will be considerably improved.

