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Heat conduction in granular materials varies with the conduc-
tivities and volumetric proportions of the constituents. Thermal 
conductivities prediëted by leading. equations that utilize these 
factors are compared with reported . values for quartz sand, 
glass beads, and lead shot, each saturated with various liquids. 
Only the equation of de Vries and a series/parallel flow equa-
tion proposed by.Woodside and Messmer approximate the data 
over a range of conductivity ratio and porosity. Neither equa-
tion, however, is based on a fully rational model. An equation 
proposed by Kunii and Smith utilizes a better physical model 
but is weakened by its dependence on the regular packing of 
spheres. 

The series/parallel approach is altered to incorporate three 
additional propositions: (a) the quantity of fluid that conducts 
heat in the series branch approaches zero at the extremes.of 
porosity; (b) interfacial material invariably resides between 
this fluid and a grain, or between two grains; and (c) the pos-
sibility of contact resistance (limited surface conductance) 
exists at each such interface. The resulting equation is tested 
against the literature data and is shown to give a better under-
standing of heat conduction in granular materials. The equa-
tion also serves to indicate areas in which further research is 
needed. 

'THERE IS a need for a rational theory to predict the effective thermal conductivity 
of granular materials found in conjunction with various fluids. Such a theory would be 
applicable to a wide range of engineering and geological problems, including the freez-
ing and thawing of soils beneath highways, the dissipation of heat from buildingfounda-
tions or from buried utility systems, the conduction of heat through water- or oil-bear-
ing sands, the design of insulating or refractory materials, and many others. 

Many of the techniques in use at present are openly empirical, while others of a 
more rational development incorporate matching factors that have only a quasi-phys-
ical basis. Moreover, apparently no approach has taken into account the effect of 
thermal resistance between grains and fluid. A recent study (1) indicated that the 
thermal conductivity of a mixture of .ice and sand was limited by poor thermal transfer 
across ice/sand boundaries. It is very likely, that thermal resistance is present to 
some degree at all boundaries between differing materials, and particularly where for-
eign substances are adsorbed. A rational theory of heat conduction should make pro-
vision for the influence of this factor on overall conductivity. 

Previous solutions for the thermal conductivity of granular materials have tended 
to fall into three major categories: 

Empirical averaging 'techniques, in particular modifications built on the weighted 
geometric mean of the conductivities of the phases; 

Modified parallel-flow equations based on Maxwell's electrical conductivity equa-. 
tion for spheres in a continuous liquid; and 	• 	. 

Series/parallel flow equations. 
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In this paper, leading equations in each of these categories are compared with con-
ductivity data of Woodside and Messmer (2). The data cover a large range of porosi-
ties and conductivity ratios and were obtained by means of the probe method of tran-
sient heating. This method is judged to be the most reliable technique for measuring 
the conductivity of multi-phase materials. All of the equationstake into consideration 
the conductivities and volumetric proportions of the.constituents, factors whichtogether 
constitute the first requirement of a rational theory. 

Other equations have been proposed that are not included here because they do not 
satisfy certain initial requirements; many of these have been reviewed elsewhere (2,3). 
Some have not considered the proportions of the constituents. Others have been em-
pirically involved or based on questionable assumptions (4). Still others have utilized 
geometrical models that incorporate dubious estimates of the contact area between 
grains (5, 6). 

The degree to which each equation predicts or fails to predict the experimental data 
is shown and the reasons analyzed. A conductance equation is then developed that at-
tempts to correct for the inadequacies of previous solutions. This equation is based 
on a series/parallel flow model; however, the development differs from previous ap-
proaches in that the existence of true solid-to-solid contact between grains is dis-
counted, while the possibility of interfacial resistance is recognized. 

GEOMETRIC MEAN EQUATIONS 

The basic geometric mean equation, attributed to Lichtenecker (7), is given by 

K= I141.KX 	 (1) 

logK= nlogKf+XlogK5  

where Kf and Ks are the bulk conductivities of a continuous fluid phase and a dispersed• 
granular phase, respectively; n is the porosity or volume fraction of saturating fluids; 
and X = (1 - n) is the volume fraction of solids. Asaad (8) proposed a variation to the 
geometric mean equation, 

K = Kf 
 pn 

 K51 " 	 (2) 

where p varies in the neighborhood of unity and has the effect of altering the porosity 
corresponding to a particular value.of K. Legg and Given (9)and Brown (10) proposed 
other variations. 

Hoot Flow 
Hoot Flow 

(a) 
	

(b) 

Figure 1. Schematic models of parallel flow (a) and series flow (b). 
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Each of these equations is an em-
pirical compromise between two physi-
cally limiting cases, namely, parallel 
(maximum) flow: 

K= nKf+XKs 	(3) 

and series (minimum) flow: 

0.2 	0.4 	0.6 	0.8 	1.0 	
K _ = nKf +XKs 	(4) 

Figure 2. Conductivity (K), mcal/deg C-cm-sec, vs 
Schematic diagrams of parallel and 

	

porosity (n); parallel, geometric mean, and series 	series flow are shown in Figure 1; no 

equations 	
simple diagram representing geomet- 
ric mean flow can be drawn. 

A comparison of Eqs. 1 through 4 
is shown in Figure 2. The curves 

were calculated for the case of water-saturated quartz sand (K5  = 20, Kf = 1.4 mcal/ 
deg C-cm-sec at 20 C; 0,  = K5Kf' = 14.3). The data are taken from Woodside and 
Messmer (2), Parts I and II, for quartz sands and quartzitic sandstones; both types of 
sands were found to give equal conductivities for equal porosities when water-satu-
rated and are therefore plotted together. Equation 2 was calculated with several values 
of p. This equation reduces to Eq. 1 when p is unity. 

Figure 2 shows the rather striking agreement of calculated geometric mean values 
with experimental data when the conductivity ratio (K5K(1) is less than 20. Neverthe-
less, the appeal of the approach is primarily based on convenience, inasmuch as little 
insight is provided into the physical processes involved. In a later comparison, the 
geometric mean equation is shown to overestimate conductivity by successively larger 
margins as the conductivity ratio is increased. 

MODIFIED MAXWELL EQUATIONS 

A second approach, and one that has received a great deal of attention, involves 
modifying Maxwell's electrical conductivity equation to fit presumably analogous heat 
conductivity situations. Maxwell's equation, rewritten in terms of conductances rather 
than the original specific resistances, is given by 

K = Kf  
K5  + 2Kf  + 2 X (K -K  f ) 

K +2K 
f 
 - X(K -Kf ) 

5 	 5 

(5) 

Equation 5 was derived by Maxwell to express the compound electrical conductivity 
of a mixture of uniform spheres dispersed in a continuous conducting fluid. An im-
portant stipulation of the derivation was that the spheres were of radii small compared 
with their distances, so that "their effects in disturbing the course of the current may 
be taken as independent of each other" (11, p. 440). Maxwell's equation is directly 
applicable only when the percentage of solids is well below 50 percent. 

Rayleight (12) derived a similar formula for spheres arranged cubically. The der-
ivation was extended by Burger (13) to ellipsoidal particles and by Eucken (14) to sev-
eral phases dispersed in a single continuous phase. Eucken was apparently one of the 
first to suggest an analogy with heat flow. Most recently, de Vries (15, 16) has applied 
the extended equation to the thermal conductivity of soils. De Vries' equation for a 
fluid medium with dispersed ellipsoidal solids is 

nK + FA K 
f 	5 	 (6) 
n + FA 
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where 

F= 	[i+ gx (TF i)] '  

(6a) 
and 

3 
1 	(6b) 

x= 1 
Figure 3. Conductivity (K) vs porosity (n); de Vries 

and Maxwell equations. 	 Equation 6 has the form of Eq. 3 for 
parallel flow, with the exception that 
the factor F is different from unity. 

It has been suggested that F is related to the ratio of the effective temperature gra-
dients in the continuous and dispersed phases. However, for packed granular mate-
rials, which are those to which Eq. 6 has been applied by de Vries, F is only slightly 
more than a weighting factor by which the equation can be fitted to a given set of data. 

The empirical nature of F becomes clear when the factor gx  is considered: gx = 
92, ga  expresses the axial lengths of the ellipsoidal particle. For spherical particles, 
gx  = '/, %, '/3, and Eq. 6 reduces to Maxwell's equation. Whereas Maxwell's equation 
typically underestimates experimental data for granular soils (Fig. 3), de Vries found 
that the assumption of g = /, /8 % results in good agreement with measured values. 
Nevertheless, the presumed particle, with a major axis six times the length of each 
minor axis, does not in reality approximate the particles of the soils to which the equa-
tion is usually applied. 

It is instructive to cast Maxwell's equation into the form of Eq. 6 and to compare 
Maxwell's F-value with that of de Vries. When this is done, Maxwell's factor is givenby 

—1 

F(1:1:1) = [1 +(a - 1)] 
= a+2 	 (7a) 

while de Vries' factor is 

4/ 11+13 ' 
F(1:1:6) = 3(32 + 22a + 7 

	
(m) 

As before, a = K5Kf'. The two F-factors 
are plotted against ci in Figure 4. With 
the exception of the point where K5 = Kf, 
de Vries' factor is everywhere larger 
than Maxwell's. Mineral soils fall into 
the lower right quadrant, where F is less 
than unity. For water-wet sand (a = 
14.3), F(1:1:1) is 0.184 and F(1:1:6) is 
0.28 1. In effect, de Vries finds the solid 
fraction in real soils more effective in 
conducting heat than Maxwell's equation 
would predict. This result is what we 
would expect for particles in close as-
sociation; however, the manner in which 
the result is obtained is to some degree 
arbitrary. 

—2.1 

.deVrie, 
I.I.6 

N 
M:SiieII 

0.1 	 1.0 	 10 	 100 

U = K 

Figure 4. F-factor (F) vs conductivity ratio (a); 
de Vries and Maxwell equations. 
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Heat Flow 
	

SERIES/PARALLEL EQUATIONS 

A third approach accounts more directly 

C 
proach is based on the - recognition of 

-
at 

least two distinct paths of conduction 
through a granular material: a continuous 
path through the major portion of the fluid, 
and a series path. through the solid parti- 

olids 

1 	 d 

des that are thought to be bridged by a 

Fi 

 small portion of the fluid. Many investi- 

S. 

	

S 	

- 	 gators have postulated a third path by way 
of solid-to-solid connections between par-
tides; however, as discussed later, it is 
un1ely that such a path actually exists 

1. 	 except in rare instances. 
The series/parallel approach differs 

Figure 5. Schematic model of the resistor 	from that of Maxwell and related equations 

	

equation. 	
. 	 in that a true 'series path is discerned. 

Properly applied, Maxwell's approach 
treats those cases where the continuous 

path is predominant; the series/parallel approach can potentially treat all cases from 
full parallel to full series flow with equal rigor. 

Figure 5 shows a schematic model of series/parallel flow as proposed by Wyllie and 
Southwick (i'i). This model has been called the equivalent resistor model because it 
was originally' proposed for electrical conductivity; the model has since been applied 
to the calculation of thermal conductivity. . In Figure 5 fluid areas are stippled and 
areas representing solids are white. It will be noted that the model incorporates a 
continuous path through the solids in addition to the series path. As illustrated, the 
volumes of the various elements are expressed in terms of four ratios, a, b, c, d. 

The equation for the resistor model as given by Wyllie and Southwick is 

aK f 
S 

	

K= 	
K 	

+bK +cK 	 (8) 
(1-d)K +(d)K 	

s 	f 
5 	f 

where 

a+b-i-c= 1 
	

(8a) 

Converting, to the symbols used earlier for the volumetric ratios of solids and saturat- 

	

ing fluids, we find respectively 	S  •' 	 • 

X=b+ad 

	

' S 	 • 	 • 	• (8b) 
n= 1-b-ad= c+a(1-d) 	S 

In practice, it is necessary to supplement relations 8a and 8b with certain experi-
mental measurements before the dimensions of the equivalent resistor model can be 
determined. To evaluate b, Wyllie and Southwick proposed evacuating the pores to 
make the fluid nonconducting (Kf equal to zero). Thus b was thought to be KvKs 1, 

where Ky  was the observed conductivity in, a vacuum. However, the relation is not 
ext because, with no fluid in the pores, radiation between grains is,  no longer neg1i7
gible; an experimentally determined value of Ky  will always be higher than conduction 
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would account for. Thus, a small but finite Ky  does not necessarily indicate the pres-
ence of a conducting path. 

Since the solids could not be made nonconducting, an empirical estimate of c was 
necessary. Kimura (18) assumed c = n1  and b = 0, but disregarded Eqs. 8b. Woodside 
and Messmer (2) also assumed b = 0, but calcu1atedthe value of c required to match 
the resistor model to experimental data. For porósities from 20 to 60 percent they 
found c to be virtually independent of the conductivity ratio and to take the value (n - 
0.03) to a close approximalion. Woodsi'and,Messmer concluded that when the fol-
lowing empirical relations were incorpafe-a, 

b=0 

	

c = n - 0.03 	
(8c) 

a= 1-c=i-n)+0.03 

d = (1x5'/a 

an equation resulted that predicted the thermal conductivity of granular materials with 
good agreement over the range studied. With the addition of Eqs. 8c, the resistor 
equation becomes 

_1 

K = 	I (n - 0.03 )Kf + (A + 0.03) 	 iç + 0.03 () + 0.03 A + 0.03 (*)] 

Equation 9 was termed the modified resistor equation by these investigations. 
It is evident from Figure 5 that the resistor approach does not take into account the 

geometry of the particles or the specific arrangement of the pore fluids that enter into the 
series flow. Kunii and Smith (19) proposed a series/parallel equation in which they 
made a semi-empirical estimate of the extent of the series fluid. This equation was 
an updated version of an earlier one proposed by Yagi and Kunii (20) that included a 
term for the contact area between grains but neglected the continuous fluid path. In 
the later equation, Kunii and Smith sought to provide for conductive heat transfer through 
actual contact surfaces by introducing an empirical coefficient; nevertheless, the coef-
ficient indirectly depended on contact area. Two other coefficients represented radia-
tive transfer between particles and between voids. The authors took all these coef-
ficients to be zero in a comparison with experimental data. 

Kunii and Smith' s. equation, neglecting radiation and possible contact area, is 

	

A1 
 (Kf 	i 

_!_ y 1 1_I K= nKf+ L)()i 	 (10) 

in which the parameters 9, y, and ' are ratios with the average diameter of a particle, 
D. Thus 0 D is the effective distance between centers of adjacent particles, y D is the 
effective length of a particle, and 0 D is the effective length of the series fluid. The 
value of each parameter was estimated through a comparison with open and close pack-
ings of uniform spheres: $ was assumed to be between 0.9 and 1.0, but was taken as 
unity in the authorst calculations; y was assigned the value of 2/  corresponding to the 
length of a cylinder having the same diameter and volume as a spherical particle; ,, 
as a function of porosity and conductivity ratio, was linearly interpolated between 01. 
and 2 calculated for the two packings. Outside the porosity range 48 to 26 percent, 
was assumed to retain the values (Pi and 02. 

The calculation of vi. and 92 represented an attempt to determine the amount of series 
fluid that would be effective in each of the reference packings. Although not wholly 
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the only known effort directed toward 
deriving such a value from basic 
principles. The calculation involved 
several steps. The first was the in-
troduction of a conductance equation 
derived elsewhere [presumably by 
Yagi and Kunii (21), in Japanese] 
that represented the integral heat flow 

0 	0.2 	0.4 	0.6 	0.8 	1.0 	within a circular column bounded by 
n 	 the external surfaces of two spherical 

particles in contact (P = 1). In this 

	

Figure 6. Conductivity (K) vs porosity (n); modified 	equation the conductivity ratio was 
resistor and Kunii and Smith equations. 	 taken as a variable but apparently 

was used only to determine the ratio 
of the temperature gradients in the 
fluid and solid phases. The limita- 

30 

20 

XK f  

to 

projected area of a particle for open 
packing (n = 48 percent) and 15 per-
cent for close packing (n = 26 per-
cent). That these areas were inde-
pendent of the conductivity ratio was 
an error arising from the assumption 
of parallel flow on each side of the 

________ ________ ________ 	spherical surface. The integral equa- 
0 	 uoö i000 	10,000 	tion was then used to calculate the 

KSK 	 equivalent length of a cylindrical 

Figure 8. Comparison of conductivity equations; 	prism of series fluid having the cross- 

n = 38 percent. 	 sectional area so determined, which 
gave the value of D required for 
each packing. Thus and 42 were 

functions of conductivity ratio—the larger the conductivity ratio the shorter the equiv-
alent column. According to this development, conductivity ratio altered the length of 
the column of series fluid but had no effect on its width. 

Kunii and Smith compared their equation with experimental data reported by nine 
previous investigators. These data covered a broad range of materials, but porosities 
varied only between 38 and 50 percent. One of their figures indicated that the calculated 
values fell within a band extending some 15 percent on each side of the observed values. 

Kunii and Smith's equation with 9 = 1 and y = % is compared in Figure 6 with Wood-
side and Messmer's data for water-saturated sand. The modified resistor equation is 

20 	
,.4 	 4+ 4 	 f,. 

6 

2 

K 8  

4 

tion placed on the extent of the con-
ducting column by the refraction of 
flow lines at the spherical surfaces 
was not considered, inasmuch as 
parallel flow was assumed throughout. 

The cross section of an equivalent 
series fluid column in each packing 
was estimated by weighting the total 
heat flow through a single hemisphere 

	

________ ________ ________ 	according to the number of contact 
tO 	 100 	 000 	0000 	points on that hemisphere, the direc- 

tion of the normal to the surface at 

	

Figure 7. Comparison of conductivity equations; 	
each contact point and the total cross- 

n = Fl percent. 
sectional area of the packing perpen-
dicular to each normal. The area of 
the average conducting column in the 
direction of general heat flow was 

1tii1ritei1 to  he 70 nevent M the 

20 

KKf' 

10 

Quarla sand I 	I 
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also plotted. It is apparent that at a conductivity ratio of 14.3 neither equation closely 
predicts the data over a wide range of porosities. For the most part Kunii and Smith's 
equation underestimates the data, except at a porosity of 26 percent where there is 
also an abrupt change of slope. The modified resistor equation lies both above and 
below the data but may be said to be a fair approximation, considering the whole scale 
of porosities. Neither equation reproduces the value K5  at n = 0, nor does the modified 
resistor equation predict the value Kf at n = 1. 

COMPARISON OF EQUATIONS AGAINST CONDUCTIVITY RATIO 

In Figures 7, 8, and 9, the conductivity equations are compared with experimental 
data for quartz sand, glass beads, and lead shot, as reported by Woodside and Messmer 
(2). The figures show the influence of the conductivity ratio, a, for three selected 
porosities: 19, 38, and 59 percent. The following equations are compared: 

Geometric mean (GM) Eq. 1 
Parallel flow (P) Eq. 3 
Series flow (5) Eq. 4 
Maxwell (M) Eq. 5 
De Vries (deV) Eq. 6 
Modified resistor (MR) Eq. 9 
Kunii and Smith (KS) Eq. 10 

The parallel and series results are included because they represent upper and lower 
limiting cases, although they do not actually approximate the data. 

Several relations are immediately evident. When a is less than 10 there is little to 
choose quantitatively among the equations (disregarding the limiting cases) inasmuch 
as they all converge to the value K = K5  = Kf. On the other hand, with increasing a the 
geometric mean and Kunii and Smith equations are concave upward, in a manner sim-
ilar to the parallel flow equation. The geometric mean equation agrees with the data 
up to a value of a approximately equal to the porosity in percentage, beyond which the 
calculated values diverge rapidly from the observed values. Kunii and Smith's equa-
tion lies below the data at low a, passes through at a between 50 and 500, and continues 
upward. The remainder of the equations show quite a different behavior; on a semi-
logarithmic plot they all have inflections beyond which they approach horizontal asymp-
totes. These latter equations are characterizedby series-type flow at high conduc-
tivity ratios. 

The series flow equation and Maxwell's equation consistently underestimate the data 
at all values of a Only the de Vries and the modified resistor equations may be said 
to approximate the data over a large portion of the conductivity range. Both equations 
fit quite well at a porosity of 19 percent. At the intermediate porosity of 38 percent, 
the combined data for 1.2 mm lead shot, 40/50 mesh glass beads, and 20/30 mesh 
quartz sand give the appearance of at least two relationships, portions of which seem 
to fit both equations. At a porosity of 59 percent, the de Vries equation lies well below 
the data when a exceeds 20, while the modified resistor equation continues to fit fairly 
closely. 

The reason for the failure of the 
de Vries equation when porosity and 
the conductivity ratio exceed cer- 	20 

 
tam 	limits lies with the F-factor and 	 Sond 

its dependence on gx•  Figure 3 in- 	 / 
dicated that the F-factor with gx = KKf 

 

1:1:6 is essentially correct for all 	 / 	
-- MR 

porosities when a is as low as 14.3.  
However, at a porosity of 59 percent  

I) 	 00 	 1Q00 	0,000 (Fig. 9), comparison with the posi- 	 I 	
(K- 

tion of Maxwell's equation indicates 
that an ellipsoidal particle even more 
strongly elongated would be required 	Figure 9. Comparison of conductivity equations; 
in order to approximate the data. 	 n = 59 percent. 
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Calculation gives gx = 1:1:10, which is obviously at variance with the actual particles 
of sand. The conclusion is inescapable that the de Vries equivalent particle is too 
slender precisely because Maxwell's stipulation does not hold: the particles do indeed 
disturb the course of the current, even at porosities as high as 60 percent. The ellip-
soidal shape is an empirical device for accounting for the large amounts of heat con-
ducted by the fluid between adjacent grains. 

De Vries, of course, has characterized his method as approximate (22). The re-
markable fact is that it approximates such a large body of data with relatively small 
changes in the shape of the presumed particle. This circumstance leads one to spec-
ulate that the flow lines derived from a truer physical model will in some way corre-
spond to those derived for the 1:1:6 particle. 

The resistor model and the model of Kunii and Smith each take account of the series 
bridging fluid and its thermal effect, the first model in a qualitative way and the second 
in an ingenious but not wholly satisfactory quantitative way. The Kunii and Smith 
method results in a volume of series fluid that is variable with porosity and conduc-
tivity ratio, but which because of certain assumptions is of incorrect magnitude. The 
modified resistor method assumes the volume of continuous fluid to be (n - 0.03), which 
has the effect of assigning a constant volume (3 percent of the gross volume) to the 
series fluid. Except for the ambiguity in the data at n = 38 percent (Fig. 8), this equa-
tion is a good approximation for all conductivity ratios when porosity is between 19 and 
59 percent. On the other hand, Figure 6 indicated that outside this porosity interval 
the assumption of constant series fluid volume was no longer valid, inasmuch as the 
end points were not reproduced. It is evident from a physical standpoint that the vol-
ume of series fluid should be zero at the porosity limits, independently of conductivity 
ratio. It follows, then, that if 3 percent is the approximate mean value over the entire 
range of porosities, there are some porosities for which the volume of series fluid will 
exceed this value. 

THE SERIES CONDUCTING PATH 

The foregoing illustrates that there is as yet no fully rational solution for the thermal 
conductivity of granular materials. Nevertheless, several of the equations currently 
in use produce strikingly close approximations to certain measured conductivities. 
There is therefore little purpose in proposing yet another equation that would perform 
the same function but in a slightly different manner. On the contrary, a new approach 
is needed that more closely describes the physical situation and thereby permits con-
fident predictions over a broader range of variables; in this connection, empiricisms 
utilized as a temporary expedient should be of such nature that they can also be made 
the subject of theoretical inquiry. It is in this context that a heat conduction equation 
for granular materials is developed here. 

It may be anticipated that such an approach will be generically similar to the series/ 
parallel approaches of Wyllie and Southwick or Kunii and Smith, in which the series 
path carries a major portion of the heat flow. However, a true series path will incor-
porate a feature that does not appear in any of the equations previously discussed, 
namely, the possibility of thermal resistance across the particle interfaces bordering 
the series fluid. 

Ingersoll, Zobel, and Ingersoll (23, p.  27) state, "In any practical consideration of 
heat transfer it is disastrous to overlook the contact resistance that is offered to heat 
flow by any discontinuity of material; here we have a phenomenon which is really a 
temperature discontinuity at the gas-solid boundary and which greatly increases resis-
tance." Similarly, Van Rooyen and Winterkorn (3, p. 200) state, "In granular systems 
the discontinuity of energy and temperature that exists on a solid-gas interface has 
been recognized and experimentally proven. It is reasonable to assume that a similar 
phenomenon exists between a solid and a liquid phase." Birch and Clark (24) took ac-
count of contact resistance at a gas-solid interface in measuring the thermal conduc-
tivity of rock. Sakiadis and Coates (25) took account of resistance at a liquid-solid in-
terface, stating that surface irregularities as small as 0.0005 in. (12 introduce 
considerable error in thin- liquid -layer apparatus. 
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Interfacial resistance (or equiv-
alently, low surface-layer conduc-
tance) is caused by the molecular 
discontinuity that occurs at the in-
terface where two differing materi-
als meet. Foreign molecules ad-
sorbed by the interfaces are also likely 
to reduce surface conductance. Thus, 
interfacial resistance and its effects 
must be considered a definite pos-
sibility in connection with surface-
active granular solids. The outward 
effect is a reduction in the overall 
conductivity of the mixture. The 
previously mentioned ambiguity in 
the data of Figure 8 most likely arises 
from this cause. 

A secondary result of the presence 
of boundaries and adsorbed layers in 
granular materials is that at every 
point of apparent contact there will 
remain two interfaces. Only in rare 

Figure 10. Series heat flow between grains, 	 instances, such as in out-gassed sin- 
tered materials where recrystalliza- 
tion has progressed across crystal 

boundaries, will there be an obliteration of original grain surfaces leading to a true 
molecular matching. In the great majority of granular materials the physical reality 
is that there is no point at which heat can pass from grain to grain without crossing 
two boundaries, no matter how compact the packing may be. In other words, there is 
in general no solid-to-solid contact; in the resistor model equation, for example, the 
factor b is identically zero. 

Figure 10 illustrates schematically a point of close approach between two grains in 
a saturated granular material. For clarity the grains are shown separated, with a 
finite fluid length, f 0, at the midpoint. Other fluid lengths, f1  and f2, occur at succes-
sively greater distances from the midpoint. Each of these lengths decreases as the 
particles are moved closer together, the distance f0  eventually becoming zero. Never-
theless, because of the presence of the grain boundaries the flow path at the midpoint 
continues to be of the same character as each of the others. All flow paths between 
grains are therefore similar, the only variables being the distance across the inter-
vening fluid and the angle at which a flow line Intercepts the grain surface. No solid-
to-solid connections are postulated. 

A calculation made by Maxwell (11, Art. 312) indicates that currents passing through 
the grains will for the most part be contained by the granular boundaries, breaking 
through only at discrete points of high potential. Maxwell's example was that of a thin 
spherical shell of conductivity different from that of the media enclosed by it and sur-
rounding it. His calculations led him to conclude that if the shell is a better conductor 
than the rest of the medium it tends to equalize the potential around the inner sphere; 
if it is a poorer conductor, it tends to prevent currents from reaching the inner sphere 
at all. In either case, the shell acts as a barrier to currents that would otherwise 
cross the space occupied by it. In the present context, the surface of the particle and 
the adsorbed layers constitute the shell of differing conductivity; the granular particle 
is analogous to the region within the shell. 

Woodside and Kuzmak (26) demonstrated that the points of highest potential are pre-
cisely those where another grain comes into near contact. Using a large model com-
posed of marble hemispheres surrounded by silica gel (simulating quartz grains in 
moisture-saturated air) they found that temperature gradients within a radius of 1/4 

grain diameter from the midpoint were more than 20 times greater than the average 
gradient as measured in the remote fluid. It is therefore apparent that only a small 
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portion of the total fluid in the system will be spatially situated to contribute to the heat 
flow between the grains. 

The lateral extent of the series conducting fluid was considered by Kunii and Smith 
(19) as previously mentioned; however, these investigators failed to take into account 
the refracting influence of the conductivity ratio of the solids and fluid. According to 
the law of refraction of flow lines (11, Art. 310), 

tanG 	K 

tanG1  - Kf  

where O and Gf are the angles that the flow lines in the solid and fluid, respectively, 
make with the normal to the surface of separation. With a > 1, Eq. 11 indicates that 
a flow line in passing from solid to fluid to solid will be refracted as shown in Figure 
10. For a given value of a there is a flow line, fc,  for which the angle of refraction in 
leaving the fluid equals the inclination of the solid surface; the flow surface of which 
this flow line is a part does not penetrate the interior of the solid and therefore marks 
the lateral limit of the series fluid for that region. The higher the ratio of conduc-
tivities the closer will 1c  be to the midpoint, and hence the smaller will be the total 
volume of fluid (for a given porosity) that can be utilized as a series connection for 
heat passing through the grains. With a < 1, the reverse will be true, but this situa-
tion does not generally occur with mineral solids. 

THE BASIC CONDUCTANCE EQUATION 

The general condition of heat flow through a granular material saturated with fluid 
is taken to be as shown in Figure 11. The paths of the series flow in an internal sheet 
one-half grain diameter in thickness are shown by solid flow lines; the paths pass 
through successive points of near contact, shown schematically at the near surface of 
the element. The mean temperature on the upper surface of the sheet is T2, and on 
the lower surface T1; the mean temperature gradient in the direction of the general 

heat flow is -(T1 - T2 )/4L, which fOr AL 
sufficiently large is equal to the average 
temperature gradient between the remote 

g 	

external surfaces. 
In addition to the series paths there are 

continuous paths through the fluid, indi-
cated by dashed flow lines passing into 
and out of the sheet. Maxwell's analogy 
of the thin shell indicates that these latter 
paths do not intercept the particles but in 
all likelihood lie entirely within the fluid. 
There are thus two main paths for the con-
duction of heat through a granular material. 

A general equation describing the heat 
flow in Figure 11 will be of the form 

K = f(n) Kf + f(X) Kgs 	(12) 

where f(n) and f(X) are volume functions of 
the fluid and solids respectively, Kf is the 
conductivity of the bulk fluid, and Kgs  is 
the apparent conductivity over the granular 
series path; Kgs  will be a function of the 
bulk conductivities of solids and fluid, the 
porosity, the amount of fluid involved in 

LN 

Figure 11. General heat flow through an 
aggregate of grains. 
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the series flow, and the interfacial resistance. An expression for Kgs  may be derived 
with the aid of Figures 10 and 11. 

In Figure 11, between the upper and lower surfaces and along a single flow line 
traversing several grains, there will be a total temperature differential ATn  across 
the solids, ATn ' across the intervening fluid, and ATn' across the interfacial regions, 
such that 

ATn +ATn'  +ATn" = T1  - Ta = AT 	 (13) 

Assuming steady flow with no internal sinks or sources, the heat flow in a single flow 
tube will be given by 

AT 	 AT 	 AT 
q =K 	 =K •-. 	= K. .- 
n s s n f f n 1 i 	n 

fl 	 n 	 n 

s 	+f 	' 
-K 	

AT • nn nn 
- gs s +f 	s n n 	n n 

-'- 
where Sn and fn  are the actual lengths of the flow tube in the domains of the solids and 
fluid, respectively. The thickness of the interfacial regions, in, is taken to be negligi-
ble compared with the values of 5n  and  fn.  The mean areas of the flow tube are 
n' and in" in the solid, fluid, and interfacial domains. With a >1, an  will be gen-

erally larger than an',  whereas a' an" for a single flow tube. K1  is the inter-
facial conductance. 

The volume of the flow tube in each of the domains is given by 

	

vn = an 5n  vn' = an' f'; Vn" = an" in 	 (15) 

where the series interfacial volume, vn", is very much smaller than vn  and vn'. Sub-
stitution into Eq. 14 gives, for the heat flow in a single tube, 

AT v 	AT v' 	AT v" 
n n 	

n ' =K..--------- q = K. -. - = Kf. 	f 	1 1 	1 
n n 	n n 	n n 

v 	' 
-K 	

AT 	n 
+v 

 n 	 (16) 
- gs s +f s 

n n n n 

The heat flow in the entire volume of N flow tubes is then 

N 	 AT v 	AT v 	AT. v. 

n1 	
K. -- . -  = 	 K.—j--.- 

V V 
=K - AT 	5+ f 	 (17) 

gs 	s + f s+f 
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where ATs, ATf, and AT1  are the overall mean temperature differentials across the 
various phases; s, f, and i are the overall mean lengths of the flow tubes in these phases; 
vs, v, and vi are the actual volumes of solids, series fluid, and series interfacial ma-
terial. Again, i and vj are very small. 

IfATi represents the summation of the interfacial temperature differentials in the 
volume considered, then 

AT +ATf = AT - AT 	 (18) 

which may be combined in the following way with Eq. 17 to yield an expression for Kgs. 
From Eq. 17, 

ATf=ATs.a.—(1) 	
(19) 

'If 5 

Substitution into Eq. 18 gives 
-i 

5  AT5 	(AT - AT) 	+ . v 

(L)2] 
(20) 

and a combination of Eqs. 20 and 17 results in 

El 
Sf 

v 

( 
Kgs(1j)KS 

	 ( 

)2I 	
(21) 

l+L) 
1+ 

s( v 
S 	 .  

A comparison of the first term of Eq. 21 with Figure 10 shows that the effect of AT1  
is to reduce the mean effective temperature gradient along the series path. When in-
terfacial resistance is negligible owing to a high surface conductance, 4T1  approaches 
zero and Kgs approaches its highest value as determined by the other variables. Con-
versely, as interfacial resistance increases, AT1  approaches AT and Kgs  approaches 
zero. The quantity (1 - AT/AT) thus modifies the series heat flow irrespective of K5, 
Kf, or the geometry. It is convenient to specify an interfacial efficiency applicable to 
the series path through a granular material as follows: 

AT. 
(22) 

AT 

With the incorporation of this relation, Eq. 21 becomes 

( 	f\2 ( 

	

vf)l [i 
	

V5  /f\2 
1 

s 	v K 	= 	.1 
 +-) 	

1 + - 	
+ a• - -) j 	

(23) 
Vf  

Equation 23 is the basic equation for the compound conductivity, of the series path. The 
values of s andf are in general unknown, inasmuch as they depend on the geometry of 
a given system. However, the following approximation may be nearly correct in many 
instances: 

(24) 
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where nc is the volume fraction of fluid 
utilized as a series member. Substitution 
of Eq. 24 into Eq. 23 results in a macro-
scopic approximation of Kgs  in terms of 
the conductivities and volumetric propor-
tions of the constituents: 

nc 	
X + nc

Kgs= Ks 	 (25) 

This expression is equivalent to a linear 
relation in terms of resistances, 

i_il X 1 
Kgs 	E Lx+ 11c K5  

Figure U. Schematic model of the saturated 
conductance equation. 	 nc 	1 1 

	

X] 	
(25a) 

+nck  

Thus, the total series resistance is in- 
creased when E is less than unity. 

Referring again to Eq. 12, it remains to add the contribution to overall conductivity 
of the continuous paths through the fluid. Equation 25a indicates that the fractional 
volume of material utilized in the series path is (x + nc); the remainder of the fluid 
volume is therefore (n - nc). Hence, with the approximation of Eq. 24, Eq. 12 becomes 

K= (n-  nc) Kf+(X+nc)Kgs 	 (26) 

Equations 25 and 26 together describe the macroscopic heat flow in the mixture. They 
may be combined to give the following expression for the thermal conductivity of a 
saturated granular material: 

eK(X+n) 
5 	 (27) 

C 
K= (n - nc) Kf + (X + nc) 	

X+crn 

where a= K5  Kf. 
Equation 27 is similar in form to the modified resistor equation with b = 0. How-

ever, there are two important differences: (a) the effects of interfacial conductance 
are accounted for, and (b) the volume of series fluid is as yet unspecified, being free 
to vary with grain size and shape, porosity, and the conductivity ratio. A prismatic 
model of Eq. 27 is shown in Figure 12, which may be compared with Figure 5. 

Derivations of nc  and E should be possible. However, the first step will be to gain 
some idea of their values for particular materials. The manner in which this may be 
accomplished is discussed in the following. 

DISCUSSION 

Experimental data reported by Woodside and Messmer (2) for quartz sand, g'ass 
beads, and lead shot were previously compared with selected equations for thermal 
conductivity. In Figures 13, 14, and 15 these data are compared with Eq. 27. The 
data presented are for seven different saturants at three porosity levels. In the order 
of increasing conductivity ratio, the saturants are water (H20), hydrogen  (H), helium 
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Figure 13. Comparison of the conductance equation with reported data; n = 19 percent , € = 1. 

(He), n-heptane (Oil), dry air (Air), argon (A), and Freon-12 (Fr), all at atmospheric 
pressure. 

The figures show familes of curves corresponding to the calculation of conductivity 
with two variables, nc and a; e was taken to be unity. If in the physical system inter-
facial resistance is negligible, the value of nc  read from the curves is the correct value. 
If in reality E is less than unity, the actual value of nc is lower than the apparent value. 
Curves corresponding to the parallel and series combinations of the constituents are 
also included. These curves are the upper and lower limits of conductivity, respec-
tively, for E = 1. They are also solutions to the conductance equation when nc = 0 and 
nc = n, respectively. The parallel and series relationships are therefore special cases 
of Eq. 27. 

The curves labeled nc = 0.030 are solutions to the modified resistor equation, Eq. 9. 
Clearly a constant value of nc does not fit all the data. An envelope has been drawn 
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Figure 14. Comparison of the conductance equation with reported data; n = 38 percent, E = 1. 
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Figure 15. Comparison of the conductance equation with reported data; n = 59 percent, C.  = 1. 

through the composite data of Figure 14 for 38 percent porosity. The position of this 
envelope is remarkably similar to the position of Kunii and Smith's estimation in Fig-
ure 8. Considering the variety of mixtures involved, it may be presumed that the en-
velope corresponds approximately to an efficiency of unity, and therefore to the true 
values of nc.  It is apparent that, at a single porosity, nc decreases with conductivity 
ratio, a result that is consistent with the deduced influence of refraction. In addition, 
there is evidence that E for dry air, argon, and Freon is less than unity; the experi-
mental data for all three types of particles with these saturants falls below the envelope. 

Envelope curves have not been drawn in Figures 13 and 15; Figure.. 14 illustrates 
that data from than one type of particle will normally be needed to define the 
position of the nc-envelope for a given porosity.  

Figure 16 shows thevariation of nc 
with n for water-saturated quartz sand 
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the solution of Eq. 27, with, E = 1,that 
fits the data shown in Figure 2. As 
anticipated, nc  is zero at both extremes 
and reaches a maximum of approximately 
0.05; the mean value over the entire 
porosity range is very close to 0.03 for 
this combination of materials, as was 
expected. Also shown is a partial rela-
tionship for quartz sand and oil (a = 67), 
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Figure 16. Volume of series fluid (nc)  vs 
porosity (n). 
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Figure 17. Volume ratio (nc/X)vs porosity (n). 
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assuming E = 1. For sand saturated with oil, the mean value of nc  is approximately 
0.02. 

F'igure 17 shows the variation of the volumetric ratio, nc/X,  with porosity. For 
porosities greater than 40 percent this ratio is proportional to n, being 0. 20n for sand 
with water and 0. 14n for sand with oil. The relationship is different for porosities 
less than 40 percent. As particles become more tightly packed, proportionately less 
connecting fluid is utilized. 

A final remark may be made concerning the conductivity of unsaturated materials. 
Although Eq. 27 was derived with the assumption of full saturation, the adaptation to 
unsaturated conditions should require only a few additional considerations. One of the 
most important is the proper assessment of the volume of fluid taken up by adsorbed 
films at low degrees of saturation. Most of the adsorbed fluid will be part of the con-
tinuous fluid network, with only a small fraction contributing to the series connections. 
It may therefore be anticipated that tue total volumetric water content necessary for 
full development of the series paths will be somewhat in excess of the actual series 
fluid. 

SUMMARY AND CONCLUSIONS 

Selected equations for calculating the thermal conductivity of granular materials 
have been analyzed and compared with experimental data. None of the equations was 
found to have a truly rational basis, although the de Vries equation and the modified 
resistor equation predicted the data to a fair degree. An equation by Kunli and Smith 
seemed to be the closest to a physical solution in form but was encumbered by em-
pirical estimates that made it a poor approximation. 

A conductance equation was then derived for saturated granular materials, based on 
the hypothesis that there are only two paths for heat flow through these materials: a 
series path through the granular network, aided by a portion of the pore fluid that acts 
to transfer heat from grain to grain, and a continuous path through the remalnder of 
the fluid. A third path through continuous solid material connected at grain contact 
points was considered to be generally nonexistent. Every series path was assumed to 
cross two interfacial regions in passing from one grain to another; temperature dif-
ferentials across the interfaces had the effect of reducing conductivity. The series 
and parallel flow equations were found to be special cases of the derived equation. 

The volume of fluid brought into action as a thermal connection was found to vary 
with porosity and the conductivity ratio of the constituents. For systems in which the 
bulk conductivity of the solids exceeds that of the fluid, the maximum amount of series 
connecting fluid effective in any condition appeared to be approximately 5 percent by 
total volume. 

At constant porosity, the effective volume of connecting fluid decreased with the 
conductivity ratio (solids to fluid). At a single conductivity ratio (14.3) the volume of 
connecting fluid varied from zero at porosities of 0 and 100 percent to a maximum at 
a porosity of 50 percent. 

A transfer efficiency coefficient was defined to express the influence of thermal 
resistance at fluid-grain interfaces. Transfer efficiency appeared to vary with the 
saturating fluid. Water, hydrogen, helium, and oil had an efficiency of unity with quartz 
sand, glass beads, and lead shot. Dry air, argon, and Freon were less efficient with 
each of the three solid materials. 
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