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.IN GENERAL, clays behave viscoelasticlly under external stress and, moreover, 
such behavior is affected by temperature. I There is some type of clay whose stress-
strain relation can be expressed by a linear relation with a parameter of time, as long 
as the applied external stress is less than a certain critical value or the upper yield 
value. The viscoelastic behavior of the clay skeleton can be analogized with the be-
havior of the mechanical model. The writer has previously proposed (1) a model that 
consists of an independent Hookean spring E. connected in series with a modified 
Kelvin element as shown in Figure 1. -The latter element is composed of a Hookean 
spring E2, a slider at, and a dashpot whose coefficient is obtained from the following 
equation applying the theory of rate process: 

a2 	 a2  
77 = d 2 /dt = 2A . a20  sinh (Ba2 /ci20) 	 (1) 

where a2 is the axial compressive stress distributed on the dashpot, a2o is the magni-
tude of a2 at the initial time when external stress is applied, and E2 is the axial strain 
produced in the dashpot. Aand B are rheological constants expressed as the following 
relations: 

A=A02. exPT ) 
	 (2) 

B= Bo -— 

where A0  and B0  are constants dependent on soil structure, x is Boltzmann's constant, 
h is Planck's constant, T is the absolute temperature of the clay, and E0  is the free 
energy of activation. As represented by Eq. 1, this viscosity of clay is a non-Newtonian 
viscosity or a kind of structural viscosity. This model showed good agreement with 
the experimental results on undisturbed Osaka marine clay, but further adaptability 
for other types of clay will be checked in the future. 

The influence of temperature on the mechanical behavior of clay has been theoreti-
cally explained by several investigators (2, 3), mostly from the point of view of the 
thermal dependence of the viscosity of clay, but that of the elasticity of clay does not 
seem to have been thoroughly investigated yet. In these circumstances, the purpose 
of this study is to investigate the thermal effect on the elasticity of clay, expressed as 
the independent Hookean spring E1 and the Hookean spring E2 in the Kelvin element, 
by applying the theoretical relations existing under the stress relaxation test. 

In the process of mobilizing clay particles, the particles are subjected to the ap-
parent elastic resistance due to the imbalance of the attractive and repulsive physico-
chemical forces induced by the surrounding particles as well as the viscous resistance 
due to the adsorbed water interposed between the particles. Therefore, the elasticity 
of a clay skeleton represented as the spring elements in the mechanical model may be 
partly due to the flexure of thin plate-like clay particles, but a more effective cause of 
such elasticity is rather supposed to be due to the physicochemical interparticle force. 
Moreover, according to the Gouy-Chapman theory, an increase in temperature reduces 
the double layer thickness and this in turn causes the reduction in the electric repulsion 
between clay particles (4). Therefore, it may be expected that the elasticity of clay or 
the elastic constants of the springs in the model can be influenced by temperature. 
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THEORETICAL RELATION UNDER 
STRESS RELAXATION 

The critical compressive stress below 
which a linear stress-strain relation holds 
is denoted as the upper yield value au

. 

The model shown in Figure 1 is valid when 
o< u . IfB~2, or 

B > B 2 /o20 2t 2 	(3) 

the following approximation holds for Eq. 
1 within an error of 2 percent: 

	

S 	 2 sinh (Ba2 /0'20) exp (Bo2/ 20) 	(4) 

Therefore the mechanical behavior of the 

Figure 1. Mechanical model of clay skeleton. 	
model can be expressed by the following  
equations: 

E + E 	 I 

E 1 T/E1 	 I 

de2/dt = A 	exp (Bi2/0'20) 	 (5) 

where 
- 	 a2 =c-a,-E221 c20=c- a

t,
) 

The relaxation of stress in a clay skeleton under a constant axial initial strain(0 
can be analyzed through solution of Eq. 5 under the following condition: 

E = C1 + E = 	 - 	 (6) 

Since E is zero at t = 0, stress in a clay skeleton at t = 0 is obtained as 

(7) 

Substituting the second equation of Eq. 5 and Eq. 6 into the fourth equation of Eq. 5 
becomes 	 - 

or? = £(E1 + E2 ) cy - E1ci - E1E20] /E1 	 (8) 

Similarly, from Eqs. 5 and 7, a20 becomes 

(9) 

By substitution of Eqs. 8 and 9 into Eq. 3, the validity condition for cy is transformed 
as 	

(OEia~E, 	 --)] 	
(10) 

The fundamental equation of stress relaxation is obtained by eliminating from the 
third equation of Eq. 5 as follows, provided that B is large and exp (- 'B) is negligibly 
small: 	 S 	- 

	

cy=F 

	[(C0
+) 

- 
(E _j)'og (Rt)] 	 (11) 

where - 	 - 

R=A-B(E+E2) 
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If a is beyond the limit expressed by Eq. 10 and at t -, a is obtained by substitut-
ing a2  = 0 into Eq. 8 as follows: 

at 	= E1+E2 (E0  + 	
) 	

(12) 

It is shown from Eqs. 11 and 12 that the stress a decreases linearly with the loga-
rithm of time until a reaches the limiting value expressed by Eq. 10 and finally it re-
laxes to a finite value of at _.. Because this relation is valid only when a s au,  the 
critical initial strain Eoc beyond which the instantaneous axial stress exceeds au  is 
given by 

Oc = au/Er 
	 (13) 

Eliminating eo from Eqs. 7 and 12, we obtain 

E2= 
at 	

. E1 a.E1 	 (14) 
at = 

By differentiation of Eq. 11, we obtain 

/ 
cia 	- 	E1 2 	i _L' 	 (15) 

dlogt - B(E1 + E2) tQ E1 ) 

Substituting Eqs. 2, 7, and 14 into Eq. 15, we obtain 

- da at. O at- T  ata T 
	 (16) 

dlogt 	Ba 	 a. Bo 

If a certain temperature Ta  deg K is adopted as a standard, Eq. 16 is transformed 
as 

k.a.Bof cia \ 
at 	Ta 	\ dlogt ) + 

(17) 
where 

kTa/T, ce = E2/Ei 

From Eq. 14, at, is given by 

	

__ 	 1 
at,a,=l+aat=O+1+aa. 	 (18) 

When the second term a,J(1 + o) of the right-hand side of Eq. 18 is negligibly small 
compared with the term of the left-hand side, Eq. 18. can be written approximately as 

(19) 

STRESS RELAXATION TESTS UNDER UNIAXIAL STRAIN 

The specimens used for stress relaxation tests were of undisturbed clay obtained 
from the Osaka diluvial layer. The results of physical tests of the clay are as follows: 
specific gravity, 2.57; L. L., 76.2 percent; P. L., 30.7 percent; contents of clay, silt, 
and sand, 45, 38, and 17 percent respectively. 

The maximum preconsolidation stress measured by oedometer tests is 3.8 kg/cm2. 
The lower yield value aj, measured by flow tests is 0.01 kg/cm2. The upper yield value 
au is determined as the stress corresponding to the first inflection point of the stress- 
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strain curve on logarithmic paper, which 
is obtained by a stress -controlled undrained 

- 	 test whose load is added in equal increments 

/ 	 at uniform time intervals. By this pro- 
06: 	/ 	 cedure , is determined as 1.75 kg/cm2  cy 	 at 35 C, 

b 	
,/ 	 as shown in Figure 2. The cylindrical clay 

04 	/ 	e=35c 	 specimen (height 8.0 cm, diameter 3.57 
cm) was covered by a thin rubber membrane 

02 
QI 02 	06080 	20 	

and was placed in a triaxial compression 
cell of a plastometer. This plastometer (2) 

(%) 	 consists of a triaxial compression testing 

Figure 2. Logarithmic relation of stress vs strain 	
unit and a recording and controlling unit. 

in stress-controlled compression test to determine 	
In the case of the stress relaxation test, a 

upper yield value, 	
constant axial deformation applied on the 
specimen can be read on the scale indi- 
cator of the plastometer and its response 
in the axial stress is automatically and 

continuously recorded by the recording unit. In the cell of the testing unit, water of 
definite temperature but of ho pressure was circulated to keep the specimen at con-
stant temperature. After the temperature of tile specimen reached the equilibrium 
state, constant axial strain was instantaneously applied on the specimen under un-
drained condition, then the axial stress a was recorded electronically with the time 
by the plastometer. 

Examples of the results of the stress relaxation tests at 30 C for various initial 
strains (E = 0.25, 0.5, 0.75, 1.00, 1.50, and 2.00 percent)reproduced from the recrods 
are shown in Figure 3. This figure shows that the axial stress a decreases proportion-
ately with the logarithm of time for some period and finally approaches a finite value 
at.= as predicted by Eqs. 11 and 12. Therefore from the record of the plastometer 

t (mn) 

Figure 3. Curves representing axial stress vs elapsed time relation during stress relaxation. 
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the initial axial stress at = o caused by the instantaneously applied strain can be read 
and from Figure 3 the rate of stress relaxation doy'dlogt  and the final axial stress at 
can be measured for each applied initial strain €0  and each temperature 0 C. 

EXPERIMENTAL RESULTS 

The similar stress relaxation tests indicated in Figure 3 were performed under 
various temperatures, namely e = 10, 20, and 40 C. From these tests, values of 
at = o at-., and da/dlogt were observed in the various cases of c and 0. The follow-
ing consideration will be developed on the basis of these values. 

If the standard temperature Ta (Ta = 273 + a) defined in Eq. 17 is adopted as 313 
(0a = 40 C, Ta = 273 + 40 = 313), the value of K in Eq. 17 is given by 

K_Ta_ 313. 
- T 	9-1-273 

According to the theoretical consideration, the relation between da/d logt and at. 
and that between at =0  and at 	can be represented by Eqs. 17 and 19, as long as the 
applied initial strain € is less than the critical strain expressed by Eq. 13. Therefore 
i'f observed values of A (— da/d log t) and at = 0 are plotted against at -. on a natural 
scale, these relationships are expected to be represented by straight lines extending 
to a certain limit. Figure 4 shows these relationships obtained by plotting all the 
observed values. Since the plotted points within a certain limit will lie along two 
straight lines starting from the vicinities of the origin of axes as predicted by Eqs. 
17 and 19, the experimental relations can be expressed by the following linear equations 
independent of temperature: 

at 	= (2/3). 01 = 0 

	

at.-a9.5[K( 
	dor 
- d log t 	

(20). 

0.01 kWcm2  

Referring the first equation in Eq. 20 to Eq. 19, a is given by 

a 	2 (where a = E2/E1) 	 (21) 
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Figure 4. Relationship among K - (- da/d log t), 	and at 	under various temperatures. 
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This relation shows that the values of elastic moduli E1, E2  are proportional to each 
other irrespective of temperature. Moreover,, in Figure .4. the experimental relation-
ship between t = 0 and at , . is represented by a straight line for whole value of at = o 
From this result, therefore, the linear relation between E1  and E2  seems to be still 
valid even if co  exceeds the critical strain Eo  

While the linear relationship between K(— a/d log t) and at 	is valid only within a 
certain limit of the straight line as shown in Figure 4, in the region beyond this limit 
the relationship deviates from this straight line and is represented by a short, gently 
inclined line. Therefore the relation between da/d log t and at 	seems to be affected 
by the applied initial strain 

In order to investigate the effects of c on the values of at = o at 	, and da/d log t, 
these experimental values are plotted against EO as shown in Figures 5, 6, and 7. These 
figures show that these relationships are linear within the same strain range up to 
about 0.95 percent of 	where they deflect to become a gentler gradient. Since the 
strain corresponding to the deflection point should be the critical initial strain Eoc,  it 
can be said that the value of coc  is kept constant independent of temperature. 

In order to observe the influence of temperature on at = 0' at 	, and da/d log t, 
Figures 5, 6, and 7 are rearranged as shown in Figures 8, 9, and 10, respectively. 

From each set of at = 0 lines in Figure 5 and at 	lines in Figure 6 corresponding 
to the same temperature, the elastic moduli E1  and E2  at this temperature can be com-
puted through Eqs. 7, 19, and 21. In Figure lithe elastic moduli thus computed, are 
plotted against co . From these figures, it is observed that E1  and E2  at a certain tem-
perature are kept constant within the limit of coc, but beyond this limit they decrease 
with the increase of E0. This suggests that the fracture in the clay skeleton proceeds 
with the applied strain exceeding the value of coc,  The effect of temperature on the 
elastic moduli is shown in Figure 12, in which the constant elastic moduli shown in 
Figure 11 are plotted against their respective temperatures. From-these figures it 
can be concluded that the elasticity of clay decreases with the increase in temperature. 

As stated, the value of EOC  is kept constant independent of temperature and E1  at a 
certain temperature is also kept constant as long as c is less than coc, and therefore 

the value of E1  at a certain temperature 
can be calculated by the data shown in 
Figure 2. In Figure 2, since the upper 

	

3.O 	
e- oc 	yield value of this clay is 1.75 kWcm2  at 

	

I 	 35 C, the value olE1  at this temperature 

Figure5. Relationship between initial axial'stress 	Figure 6. Relationship between final axial stress 
atO and initially applied axial strain E. 	 at 	and initially applied axial strain 
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Figure 7. Relationship between rate of stress re-
laxation dc/d log t and initially applied axial 

strain 

can be calculated by Eq. 13: 

€.Q25 % 
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O(°c) 

Figure 8. Relationship between initial axial stress 
at=O and temperature 9. 

E1  = au/Eoc = 1.75/0.0095 = 185 kg/cm2 	 (22) 

Referring the theoretical equation of Eq. 17 to the experimental relations of Eq.21 
and the second equation of Eq. 20, a rheological constant Bo can be obtained as follows: 

Bo= 9.5 Ta 
= 2 Ta = 4.75 Ta 	 (23) 

Q25% 

b 

0.I 

0 	10 	20 	30 	40 

0 (0c) 

Figure 9. Relationship between final axial stress 
and temperature 9. 
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e t 

Figure W. Relationship between rate of stress re-
laxation dci/d log t and temperature 0. 
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Figure 11. Elastic moduli related to initially ap- 	Figure 12. Relationship between elastic moduli 
plied strain under various temperatures. 	of the mechanical model shown in Figure 1 and 

temperature. 

Hence B is expressed as 

B = B0/T = 4.75 313/(e + 273) 	 (24) 

Computed values of B from Eq. 23 for 0 = 10, 20, 30, and 40 C are 5.25, 5.07, 4.90, and 
4.75 respectively. This relation is represented by a curve in Figure 13. 

RELATION BETWEEN THE RESULTS OF STRESS RELAXATION 
TESTS AND FLOW TESTS 

Solving Eq. 5 under the condition of a = constant, the equation for normal flow is 
obtained as 

=j- ++ BE2 log(A B E2 • t) 	 (25) 

By the differentiation, we get 

1_ de 	1 	
26 

dlogt 	—ci 

The uniaxial compression flow tests under undrained conditions were performed on 
the same clay sample used on the stress relaxation tests. Figure 14 is the relation-
shipbetween dE/d log t and applied stress a obtained by the flow tests at 20 C. From 
this figure, the lower yield value a, is read ad 0.01 kWcm2.  Figure 15 shows curves 
representing the flow strain E against time t relation obtained by the flow test of ci = 1 
kg/cm2  under various temperatures (e = 10, 20, 30, and 40 C). Applying the value of 
d€/d log tin Figure 15 to Eq. 26, BE2 can be computed. 

In the flow test shown in Figure 15, the initial axial strain ct = 0 when the load is 
applied was also observed for each temperature condition. Measured values of q = 0 
for 0 = 10, 20, 30, and 40 C were 0.393, 0.419, 0.623, and 0.705 percent, respectively. 
Applying these initial strains to Eq. 7, values of E1  are obtained. Besides, since Eq. 
21 may also be valid for this clay under the flow testing, E2 can be obtained by multi-
plying the El  obtained above by a. From the yalues of BE2 and E2, B can be computed 
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Figure 13. Relationship of rheological constant B 
vs temperature e. 
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Figure 14. Relationship between rate of flow strain 
dE/d logt t and applied a obtained by flow tests 

(20 C). 
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Figure 15. Curves representing axial strain iE vs time t relation during flow under various temperatures. 

for each temperature condition, and the computed values of B. are plotted in Figure 13 
as points. In the figure, these points .do not lie well on the line obtained by the stress 
relaxation tests. . But this discrepancy may be supposed to be due mainly to the hetero-
geneity of the undisturbed diluvial clay sample. 

CONCLUSIONS 

Because clay is a viscoelastic material, it is necessary to investigate its mechani-
cal behavior from the point of view of its elasticity as well as its viscosity. The me-
chanical behavior of the clay skeleton whose stress and strain are expressed by a 
linear relation with a parameter of time has been simulated by the model shown in 
Figure 1. The viscosity of clay is influenced by temperature as suggested in the flow 
behavior at various temperatures. Similarly, the effect of temperature on the elasticity 
of clay can be investigated by the behavior on the stress relaxation tests at various 
temperatures. In this study the effect of temperature on the elastic moduli in the 
model is investigated. The main results obtained are as follows: 

1. The behavior of Osaka marine clay under the stress relaxation test is well pre-
dicted by the mechanical model proposed by the writer. 
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As the value of the rheological constant B obtained by flow tests practically 
concides with that obtained by stress relaxation tests, the equations of Eq. 5 are veri-
fied to express the behaviors in both testing procedures, irrespective of temperature. 

Elastic modulj E1  and E2  are kept constant within the limit of a critical initial 
strain Loc,  but beyond this limit they decrease with the increase of initial strain. The 
latter behavior suggests the occurrence of a fracture in a clay skeleton 

The critical initial strain coc is kept constant independent of temperature. 
Ratio of E1  to E2  is constant independent of temperature and also seems to be 

constant independent of the magnitude of applied initial strain C
o. 

Elastic moduli E1  and E2  measured within the limit of eoc  decrease with the in-
crease in temperature. 
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