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That construction and operation of successful pavements predates the dream of a 
"rational" method of design can hardly have escaped the attention of engineers or lay-
men. The present state of the art is the product of a long history of successes and fail-
ures, the former fortunately overshadowing the latter. In fact one may well ask the 
question: Why does the engineer want a "theory" of pavement design, inasmuch as the-
ories invariably are wrong, have limited applicability, or are too complicated when put 
to the test of real experience? The answer seems to lie in the observation that, in the 
present milieu of rapid change, experience quickly becomes obsolete or is often totally 
lacking. Examples of this are rampant in the pavement field; e.g., witness the increase 
in traffic volume, the change in construction costs and methods, and the potential prob-
lems arising from disappearance of high-quality raw materials with concomitant in-
creased use of new and sometimes marginal substitutes (would you believe crushed glass 
bottles?). The Via Appia was a first-class Roman road; but, as any tourist can tell you, 
the service life has long been exceeded. Thus, it appears that this workshop was based 
on the implicit assumptions that a rational method of pavement design exists, is im-
portant to acquire, and is accessible to the minds of engineers. In reviewing the papers 
prepared for the workshop, I have drawn the conclusion that these assumptions are 
shared by the speakers, and I expect they are held plausible by most of the participants. 
However, as we are often painfully aware, sharing a common set of assumptions does 
not imply any uniqueness for subsequent application and action. This I believe is what 
needs very careful examination during the workshop sessions. We must cast aside our 
denominational prejudices and try to examine what indeed we are trying to accomplish 
from our common point of departure. We will then be in a much more favorable position 
to discuss the organization of research and development work directed toward sucessful 
design and management of pavement systems. In this regard the following quotation 
from Bertrand Russell's "Unpopular Essays" is quite relevant: "So whenever you find 
yourself getting angry about a difference of opinion, be on your guard; you will probably 
find, on: examination, that your belief is getting beyond what the evidence warrants." 

Let me now return to the "implicit assumptions," which in a sense form the basis for 
my subsequent remarks. It seems to me that the existence of a rational method of de-
sign has to be established a posteriori; i.e., it is the task of the engineer to observe, ac-
quire, and organize information and experience obtained from operational physical sys-
tems. This point of view, incidentally, is strongly supported in Finn's paper (9). 
However, these steps are in themselves insufficient, for we must perform the extremely 
difficult job of "pattern recognition" to visualize the structure of a model that, postfacto, 
seems to "fit" our observations. Such a model, given an adequate mathematical struc-
ture, can then be employed to carry out simulation tasks to seek the "best" among 
alternatives —this being the pragmatic task to which we customarily attribute economic 
importance, whether in terms of dollars or expenditure of other resources. In turn, 
this step leads to the development of the final assumption, accessibility of the rational 
method to the engineer. The kinds of models and methods to be discussed here are from 
a practical viewpoint accessible only. through a digital computer, arising from experience 
with operating pavement systems. 

Finally, before we turn to a more systematic examination of the ideas sketched earlier, 
it is well to note that, even though we accept the existence of a rational design formula, 
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we do not pretend to believe that, like the commandments of Moses, the formula is un-
changeable with time. Man (especialy engineers) by nature is a creature who likes 
to modify his systems, adapting them to suit his needs. Pavement design and manage-
ment are problems of adaptive control, a concept that is found to be extremely useful 
in development of models of system design and behavior. We shall, in fact, try to in-
dicate how insight into design and management of pavement systems may be enhanced 
by viewing the task as a multistage decision process, utilizing Bellman's dynamic pro-
gramming techniques as a vehicle. Let us turn now to certain preliminaries and ter-
minology needed to describe the problem under consideration. 

A FLEXIBLE PAVEMENT SYSTEM 

As a point of departure we adopt the terminology used in HRB Special Report 113 (1). 

A flexible pavement is a pavement structure that maintains intimate contact with 
and distributes loads to the subgrade and depends on aggregate interlock, particle fric-
tion, and cohesion for stability. 

Pavement structure is the combination of subbase, base course, and surface 
course placed on a subgrade to support the traffic load and distribute it to the roadbed. 
To this I would add the qualifying phrase, "under a history of environmental conditions." 

Serviceability, which embodies the function of a pavement, is the ability ofapave-
ment to serve traffic with safety and comfort and with a minimum of detrimental effects 
to either vehicle or pavement. 

The present serviceability index, which is the current (present) measure of the 
effectiveness of the pavement, is a numerical index of the ability of a pavement in its 
present condition to serve traffic. 

Performance is the measure of the accumulated service provided by a pavement, 
i.e., the adequacy with which a pavement fulfills its purpose. I would add here that per-
formance implicitly includes "service per dollar" or some other type of economic measure. 

These definitions taken together constitute what we may call a flexible pavement sys-
tem: a set of interacting components subject to various inputs (traffic, environment), 
producing various outputs (as yet unspecified). System performance measures adequacy 
over the operational lifetime. At this stage there is little to be gained from a more 
formal definition; however, there is a great deal of conceptual mileage to be gainedfrom 
this intuitive picture. For example, it makes clear that performance is the real goal 
of design and operation (through proper management) of the system. Yet, relatively 
little information concerning pavement behavior, in which performance is the dependent 
variable, can be found in the literature. This is of course understandable because per-
formance is somewhat ambiguous to define, in spite of its conceptual importance. 

Perhaps it is easier to deal with distress, which is really absence of serviceability, 
and to invent measures of distress, along with a normalizing requirement that "service-
ability plus distress equals unity" during the pavement lifetime. No matter what defini-
tion prevails, the point here is that one must acquire sets of "systematic and continuous 
observations of performance (or distress) of full-scale pavements" (9). Itisonlythrough 
such a data acquisition program that any hope of pattern recognition will emerge to guide 
the formalization of operational rules leading to rational design. For example, without 
this, mathematical simulation of pavement systems, no matter how fascinating a game 
in itself, will remain precisely a game with very little payoff to pavement systems. 
Whether one adopts distress (a structural or mechanistic, designer-oriented concept) 
or performance (a user-oriented concept), as a practical matter it is expedient to attempt 
to divide traffic -associated performance from environment -associated performance 
wherever possible. In this connection frequency of occurrence studies of types of dis-
tresses serve to emphasize the behavioral aspects of the pavement system deserving 
the most detailed study. Such observations necessarily are global in nature; i.e., they 
constitute integrated or averaged values of pavement response variables, as opposed to 
local values of the variables. This is in fact an extremely important point that strongly 
influences the development.of mathematical models, as will be seen. 

Finally, it may be appropriate here to consider the advantages of dealing with the pave-
ment system problem in two separate, yet highly related, stages: (a) the problem of 
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observing and controlling (managing) an existing pavement system to achieve optimum 
performance, and (b) the problem of simulating a pavement system by mathematical 
modeling so that an optimum design configuration can be achieved. These problems 
cannot really be separated either in planning a research program such as isour task 
here or in implementing a policy for design and control. As noted previously, asepara-
tion of these problems leads to the probability of two separate games being played rather 
than one; thus caution must be observed. When these problems are examined, it is use-
ful from both conceptual and operation viewpoints to use block diagrams to describe the 
system under consideration. Figure 1 shows the basic elements of a system whose 
output is analyzed and evaluated by performance criteria so that control operations 
(maintenance) can be effected to provide a certain level of serviceability. No attempt 
is made at this point to inquire in detail into the subsystem components constituting the 
system, nor to select quantitative measures to describe the system. Obviously, this 
is a crucial matter for the success of mathematical modeling, and it will be examined 
more fully later in this paper. 

A similar diagram can be constructed for the second problem of mathematical sim-
ulation of a pavement system. The emphasis in this problem is on selection of the pa-
rameters of the system itself; i.e., for a given range of inputs and desired performance 
criteria, a policy leading to an optimum selection of model parameters is desired. This 
is the classical inverse problem of design, a problem whose complexity invariably re-
quires that a certain family of model structures be examined, from which the "bestT' 
choice of parameters is selected. (An example is the selection of layer thicknesses 
and elastic .moduli using elastic layered system theory as the mathematical model.) A 
diagram of the basic phases of mathematical simulation is shown in Figure 2. 
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Figure 1. Pavement system control. 
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Figure 2. Simulation of pavement system. 

A treatment of the design and management of pavement systems as a control problem 
can be found in the paper by Hudson (10), as well as in an earlier report by Hudson et al. 
(4). These papers call attention to the need to view the problem in the context just de-
scribed. In addition, however, they suggest a structure by which quantitative results 
can be developed. Because of the extreme complexity of the system, the method is neces-
sarily rather primitive (even if somewhat involved). Nevertheless, it should be con-
sidered an important step forward. What I wish to emphasize in referring to this work 
here is the need to develop a general systems model not only describing the broad prob-
lem of design and management but also looking critically into the "black box" so that 
each subsystem is understood and described in the most comprehensive way possible. 
This workshop provides the opportunity of bringing together people who look at various 
"black boxes," and it is incumbent on us to bind ideas together into a cohesive view of 
the real problem. Short of this we will return to playing our own games of solitaire. 

The systems viewpoint described in this section is drawn from ideas presented in a 
report by Hudson et al. (2), which in part grew out of an earlier version of pavement 
systems analysis (3). Since that report, substantialprogress inapplications has been 
made, notably by Hudson and his colleagues (4) and in the very interesting works of 
Lemer and Moavenzadeh (5) and Moavenzadeh (11). What seems most appropriate to 
the writer at this time is to exploit to the fullest the structures and methodologies cur-
rently existing in the field of "systems." I use this term advisedly, because there is 
often a certain hesitation or snickering among engineers at mention of the word. Let 
me make clear my intentions. First of all, the notion of a system has been helpful to 
organize and place into proper interrelationship the myriad factors influencing behavior 
of a pavement structure. Furthermore, as more is learned about actual pavement per-
formance through systematic field observation, systems engineering provides the fabric 
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on which an interaction matrix can be constructed, i.e., the possibility of assigning 
weighting factors to system subcomponents so that more enlightened research and de-
velopment can be undertaken in areas with highest payoff. This phase of the applica-
tion of systems theory can be qualitative or semiquantitative (e.g., the insights gained 
by examining block diagrams, categorizing the type of distress, and the like) and still 
be of considerable value in guiding design practice and in orienting research and de-
velopment. 

The second aspect of systems, one to which I wish to devote attention later in the 
paper, is that commonly associated with system control processes and dynamic pro-
gramming. The notion of pavement design as a feedback control process is given in the 
paper by Hudson (10), while Nair (12) points to the probable desirability of examining 
applications of dynamic programming. With this encouragement I believe it worthwhile 
to examine briefly the mathematical theory of control to see what light may be shed on 
our design problem. The formulation of a workable model will require the utmost sup-
port from each of the areas represented in this workshop. However, I hope to avoid 
the mistake of adding a new game to the plethora already at our disposal for entertain-
ment of highway engineers and researchers. Let me first review in more detail the 
modeling of pavement system simulation (the second problem), which in turn leads log-
ically to the first problem of management through control. 

MATHEMATICAL MODELiNG OF THE DESIGN PROCESS 
FOR A PAVEMENT SYSTEM 

The essential ingredients of design by mathematical simulation are as follows: 

A description of the configuration and the input-output relations of the system 
along with a "parameterized" structure defining these quantitatively; 

A statement of the operating conditions (input); 
An algorithm for predicting the evolution of the system, i.e., its output or per- 

formance; 
A criterion function by which performance can be judged; and 
Modification of the system to seek an optimum performance. 

The task of the designer is that of searching to select values of parameters of the 
system (within logical constraints), which in turn lead to optimum performance as 
judged by the criterion function. However appealing this view of design may be con-
ceptually, it implicitly contains the seeds of its own destruction. Except for the most 
trivial cases it cannot actually be made operational at this time because of our lack of 
understanding of realistic input-output relations for the system (13, 14, 15), the dif-
ficulty in finding a prediction algorithm (12), and the problem of defining a criterion 
function (10, 11, 16). These are the subsystem black-box problems to which I previ-
ously referred. They deserve our careful attention. In the meantime we have to be 
content with the best of a bad situation, but we should be careful that our modeling is 
done by appropriate principles. 

Historically the principles used to develop models of pavement behavior have come 
from continuum mechanics, particularly mechanics of solids, and there does not appear 
to be any serious challenger at this moment. Let us review briefly how reality appears 
to a solid mechanician. First, certain state variables must be introduced for the sys-
tem, in our case, the stress matrix a, the strain matrix Z, temperature T, and possibly 
moisture content M. Because stress and strain each require six components for their 
description, we have 14 local state variables, i.e., 14 scalar functions of time at each 
and every particle (point) in the pavement system. These variables must satisfy cer-
tain basic principles of mechanics, such as balance of momentum, conservation of mass, 
balance of energy, and the entropy production inequality. In addition, when a process 
is defined for a particular kind of material, a constitutive equation must be identified. 
The kinds of processesf interest to us here are primarily mechanical—e.g., deformations—
although temperature and moisture content may also change. Constitutive equations 
tell us how these state variables are related during such processes. Different kinds 
of materials have different kinds of constitutive equations for the same process. The 
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task of "material characterization" is that of determining the nature of the constitutive 
equations for materials of interest in pavement design. Unfortunately, the processes 
for which these equations must be found are not known a priori. Thus, the problem of 
characterization must be attacked iteratively; i.e., assumed equations are used to pre-
dict the output (process) of the system so that these processes can in turn be used for 
characterization experiments, from which data assumed versus actual behavior can be 
adjusted iteratively, by changing the constitutive model, to a desired degree of accuracy. 

Two points need further amplification here: What guidelines are there for selecting 
constitutive models, and how can the system output be predicted? These questions are 
discussed in more detail by Westmann (13) and Nair (12), so I will include only a brief 
statement. Constitutive equations are expected to satisfy a fundamental principle of 
determinism; i.e., the past determines the future. In solid mechanics this means that 
the (local) stress state at the present time may depend on all the past states up to the 
present (history) of strain, temperature, and moisture content. Symbolically, this can 
be written 

s=t 
g(x, t) = 	 s), T(, s), M(, s); Lc, t] 	 (1) 

S 

Without going into many detailed points that may be raised (see any modern book on 
solid mechanics), we can say that we have here a statement that the stress matrix at 
a particle, , and the current time, t, depends on all past strain states, temperatures, 
and moisture contents at the particle. The constitutive rule (functional), Ei, may de-
pend on the particle, x, and on time, t; this is clearly so in a layered system and in 
cases where asphalt properties degrade with time. Generally, it is assumed that, while 
stress depends on M and T (moisture content and temperature), they can be determined 
separately from diffusion equations unaffected by input fluctuations of stress. The lit-
erature is replete with work reported to have completed the task of finding F1; how-
ever, the facts do not support this contention. One cannot verify most of the work simply 
because the actual process (sequences of states) in a pavement system is unknown. What 
one can measure is only a set of selected output variables such as surface deflection 
under wheel loads, an output known to be notoriously insensitive to constitutive model 
parameters. 

I do not wish to deprecate serious attempts to understand and model constitutive be-
havior. These are urgently needed to provide the comprehensive subsystem support 
to which I referred earlier. I wish only to caution against the overenthusiastic approach 
often used by those seeking support for games and to emphasize that it makes no sense 
to use additively a set of measurements taken in part with a micrometer and in part 
with a yardstick. Our resources will be better used if we try to measure the entire 
problem with the yardstick first and then try to determine the size of the components 
more accurately, to speak analogically. 

Troubles do not vanish with the constitutive problem. We must next confront the 
task of developing an algorithm for predicting the evolution of the states of the system. 
In mechanics this is accomplished through the device of an initial-boundary value prob-
lem. The term initial suggests that the evolution of the pavement state variables will 
depend on a starting point in time, whereas boundary suggests that the geometrical con-
fines of the system are acted on, in our case by traffic loads and environment. The 
solution of such a problem depends on mathematical analysis—primarily numerical 
analysis performed on a digital computer. The output of the computer corresponds to 
the output of the pavement system in the sense that states of the system are determined 
from the input as functions of time and location in the system. Unfortunately this in-
formation by itself is inadequate; one must append a criterion function by which output 
can be judged good or bad. This raises very serious questions that are addressed in 
the papers by Moavenzadeh (11) and McCullough (16): What is a suitable criterion func-
tion? How does one define "failure" locally? How does failure (or distress) propagate 
in space and time? When does an accumulation of local failures constitute global failure 
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(distress) in the system? These questions deserve a great deal more attention than 
they have received, and it will only be through serious cooperative efforts of theoreti-
cians and field engineers that any hope of solution will emerge. In symbolic terms one 
can pose the question: How can the local distress be calculated as a function of time? 
A possible form is 

s=t 

	

D(, t) = F2 	s), e(, s), T(, s), M(, s)) 	 (2) 
s= - 

The scalar-valued functional F2  at each particle Z assigns a value, 1, at time, t, to the 
set of stress, strain, temperature, and moisture content histories. That number is 
called here the distress. The structure of the functional Fa is unclear; some structures 
appear in the paper by Moavenzadeh (11). The second important question relates to the 
the propagation of distress from particle to particle, leading to global and often observ-
able damage in the pavement. This notion is embodied in the definition of a second func-
tional defined now over all particles in the system at time t: 

D,(t) = F3 [D(, t)1 over all xES 	 (3) 

This formalism calls attention to the idea that D5(t), the distress in ths system at time 
t, depends on the accumulation of histories of distress at all particles in the system; 
i.e., it is some kind of spatial influence function. D(x, t) is related to the notion of (local) 
distress index defined by Hudson et al. (2), whereas Eq. 3 is a measure of present dis-
tress, or perhaps of a volume density of distress, in the system as a whole. In this 
sense it is complementary to the definition of present serviceability index referred to 
earlier, and one could write 

D,(t) + PSI(t) = 1 	 (4) 

if a suitable normalization is performed. System performance, PF, an integrated (over 
time) concept suggests the definition 

t 	 t 
PF(t) = f PSI(s)ds = f [1-D,(s)]ds 	 (5) 

	

0 	 0 

This view, even if it could be implemented through appropriate mathematical structures, 
still has the disadvantage that it is mechanistically oriented; i.e., the user is excluded 
from influencing the evaluation of performance. More sophisticated qualitative incor-
poration of the user is mentioned in other papers (4, 5). These aspects of performance 
need much more attention than they have received. At the moment it would appear that 
very limited progress has been made in quantifying the concepts described by Eqs. 2 
and 3. One could mention several examples: 

For linear elastic and viscoelastic layered system models, calculation of maxi-
mum surface deflections under simple wheel load patterns is an example of a "func-
tional defined over all particles." If this deflection is limited by an inequality, a crude 
distress model corresponding to Eq. 3 is obtained. Surface curvature can be treated 
similarly. 

For certain types of linear viscoelastic layered system models, permanent sur-
face deflections can be calculated. These would represent a model similar to Eq. 3, in 
which history is incorporated. 

When one moves beyond linear elastic and linear viscoelastic models, a substantial 
amount of empiricism is introduced. Although there is no evil in empiricism, it should 
not be listed under the rubric of mechanics. It is a useful procedure that one must 
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employ to obtain a solution of a real system problem in the face of complexity. This 
leads to the next consideration, that of introducing an element of "external disturbance" 
into the design process. What has been done to date seems to fall into the pattern of 
using rational, yet inadequate, models of pavement behavior, observing that these sim-
ulations do not correspond to real system behavior and that no rational criteria for dis-
tress (or performance) exist and then making the best of a bad situation, namely, allow-
ing the engineer to use his judgment to assign criteria required to achieve as near an 
optimum as possible for the system design. In other words, the engineer is a short-
circuit of the rational design process. Our attempts should be directed toward using 
the engineer in this role but supplying him with the best possible data on which to base 
his judgments, thereby minimizing the possibility of irrational short-circuits. The 
engineer is a finite, fallible control system. In spite of improvements in modeling sub-
systems and in developing more sophisticated models of the pavement system, pre-
dicted performance will seldom match actual performance of a pavement system. In 
other words, the real system performance leaves something to be desired. This is 
precisely what constitutes the notion of control in a decision process. Because we do 
not like the manner in which the system is evolving, we intervene to change its perfor-
mance. Such control may take the form of patching, seal coats, overlays, or, in an ex-
treme case, complete replacement. We shall now try to sketch more abstractly the 
mathematical structure of this type of system and indicate a possible direction of re-
search in this area. 

PAVEMENT MANAGEMENT AS A MULTISTAGE DECISION PROCESS 

We have examined the manner in which mathematical simulation can be carried out 
in the areas shown in Figure 2. In this section we turn our attention to the problem of 
observing and controlling an existing pavement system to attain optimum performance 
along the lines shown in Figure 1. Much of what has been said already pertains to this 
problem; however, it is necessary to adopt a more modest view of measure of perfor-
mance in order to expect numerical results, a fact already noted in connection with 
work reported by Hudson et al. (4). The complexity of the system with which we are 
dealing suggests the desirability of beginning with a qualitative discussion of the prob-
lem and proceeding to incorporate more factors into the model in order to approach a 
more realistic simulation of the pavement system. 

The basic idea in treating the control of a dynamic system as a multistage decision 
process (6) can be most easily grasped geometrically. Suppose that X(t) denotes the 
position vector of a particle moving along a space curve. The trajectory of the particle 
is to be determined in such a manner that the "cost" of moving the particle over its 
trajectory is minimized. Intuitively, such a process can be thought of as a guidance 
(control) process in which continuous "steering" directions are required. Thus, a 
multistage decision process is defined to consist of the following operations: 

Observing the system state X(t) at time t; 
Processing this information and making a decision utilizing a control rule; and 
Modifying the evolution of the system by exerting the control. In the example 

chosen, at a point P(X, t) along the particle trajectory we wish to determine dX/dt, i.e., 
the "steering direction" as a function of position (state) and time, such that the cost of 
the trip is minimized. In symbolic form we can pose this problem by seeking a function 
G(X, t) such that 

dX 
= G(X, t), with the initial condition X(0) = C 	 (6) 

along with 

K[X(t)i = minimum, 0 :9 t :~ T 	 (7) 



71 

V The problem, as shown in Figure 3, can 
also be posed in a slightly different manner 
to emphasize the aspect of control, leading 
to an algorithm of dynamic programming. 
Figure 3 shows that the direction dX/dt 
represents the control variable, which we 
define as 

Y(t) - dX 
	

(8) =-dr 

Figure 3 also shows that the cost K 
will depend on the initial state C and the 
"life" of the trajectory, T. Therefore, 
we replace Eq. 7with an equivalent state-
ment 

F(C, T) = Y(t) K[X(t)] 
(9) 

Equation of Evolution 	 In words, we seek a set of "controls," Y(t), 
which minimizes the cost of a trajectory, 

G(X,t) 	 parameterized by the initial state and life 
(duration) of the process. [As pointed out 

Initial Cond.ttion 	 by Bellman (6), this is equivalent to def in- 
ing a geodesic inthe trajectory space in 

X(0) 	c 	 terms of its tangents.) Dynamic program- 
ming provides the computational algorithm 

criterion Function 	 for determining the set of controls for the 
process. This set constitutes an optimal 

IC [x(t)] - Mm. , o <t c T 	 policy for guidance of the process, which 
must satisfy the requirement that the cri- 

Figure 3. Trajectory controlled for minimum cost. 	
tenon function K attain a minimum value. 

In applications to pavement systems 
two things are apparent: (a) the state and 
control vectors, as well as the criterion 

function, are extremely complex; and (b) observations and decisions are made at a finite 
number of times, i.e., the process is discrete. This leads us to consider a model of 
discrete deterministic multistage decision processes, in which we now consider a se-
quence of states X1 , X2 , ..., X. and a sequence of control vectors (decisions) Y1 , Ya, 

YN. We define the evolution of the N-stage process by the equation 

X. = G(X,,_1, Y-), n = 2, 3, .. ., N 	 (10) 

The meaning of Eq. 10 is that, at the initial state X1  of the process, a decision Y1 is 
made. This results in a new state Xa  given by Eq. 10: 

xa  = G(X1, Yi) 
	

(11) 

and so on, each new state depending on the immediately previous state and decision. 
Equation 10 corresponds to Eq. 6 in the continuous case. The set of decisions must be 
chosen such that the criterion function K is minimized, i.e., if 

K = K(X1, X2, . . ., X,,; Y11  Y 21  . . ., YN) 	 (12) 

the purpose of the decision process is to choose the Y. so as to minimize Eq. 12. At 
this point the structure of the transformation function G is unspecified, except that it 
must lead to a unique state. (Although Y. in Eq. 10 depends only on the previous state, 
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it is possible to extend the structure to 1liorporate hereditary effects, at the expense 
of computational complexity.) It may depend on the age of the process. The criterion 
function is presumed to possess a so-called Markovian property so that after k decision, 
the effect of the remaining (N - k) decisions on the value of K depends only on the sys - 
tern state at time k and the subsequent decision. An additive cost function K satisfies 
this requirement, i.e., 

	

K = f(X1, Y1) + f(X2, Y2) + . . . + f(XN , Y ) 	 (13) 

Principle of Optimality 

We now consider how to establish the optimum set of decisions (optimal policy) for 
the problem posed by using dynamic programming. Bellman (7) states: "An optimal 
policy has the property that whatever the initial state and the initial decision are, the 
remaining decisions must constitute an optimal policy with regard to the state resulting 
from the first decision." The proof of this intuitive concept is virtually sell-evident. 
Figure 3 shows that, if AB constitutes an optimal path, having arrived at P, PB must 
also constitute an optimal path. By using this principle we can deduce a recurrence 
equation for constructing an optimal policy, given the transformation function G, cri-
terion function K, and the initial state of the system. Given (X1, Y1) the system is 
transformed to state X2  according to Eq. 10; i.e., X2  = G(X1, Y1) and the N-stage pro-
cess is reduced to an (N - 1)- stage process. Analogous to Eq. 9, Eq. 14 has the 
minimizing condition embedded in the initial state X1  and "duration of process," N: 

mm 	 miii 

F. (x1) = Y (K) = Y [f(x1+Y1) +... + f(X, YM)J 	 (14) 

From the principle of optimality, and the Markovian structure of K, the cost of the last 
(N - 1) stages after making the first decision Y1  will be 

FM - 1(x2) = FM 1 [G(X1, Y1fl 	 (15) 

Thus, it follows that 

FM (x1) = f(X1 , Y) -f FM — I [G(x1 , Yi)] 	 (16) 

From Eq. 14 this choice of Y1  must be such that the right side of Eq. 16 is minimized. 
Thus, 

lin  

	

FM (x1) = Yj lf(x1, Y0 + F. —i [G(x1, Y1)] } 	 (17) 

Allowing N to range over the values 2, 3, ... produces a recurrence relation connecting 
members of the sequence [FM (X1)1, thus specifying an optimal policy. We note the im-
portant result: The problem of selecting N decision vectors Y. in an N-dimensional 
policy space is reduced to sequential selection of N vectors in a one-dimensional space. 
The computational significance of this result is obvious. One may well ask why dynamic 
programming should be selected over a straightforward search procedure that explores 
all possible policies and selects the policy leading to minimum cost. The answer is 
that the principle of optimality limits the choice of policies to those in the neighborhood 
of the policy for a minimum of the criterion function. Policies of no importance are 
thereby eliminated, along with attendant savings in computational time, a factor of prime 
importance in multidimensional state vector problems. 

We turn now to a simple example chosen to illustrate application of the dynamic pro-
gramming algorithm (Eq. 17) and associated concepts. 
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Example: An Elementary Model of Management as a Multistage 
Decision Process 

Let us suppose (contrary to the consensus of speakers at this workshop) that per-
formance serviceability index can be measured and is in fact the sole performance state 
variable X. Furthermore, it is supposed that the state variable is observed over the 
life of the pavement at some specified number of times. If no control over the system 
is exercised, a history of traffic and environmental inputs will cause a monotonic de-
crease in PSI, which is symbolically shown by Eq. 10 with Y. 0, 

Xa =G(X_i),fl=2,3,...,N 	 (18) 

and is also shown in Figure 4, labeled 0 to denote zero cost of control. The initial state 
of the system Xi, normalized to unity, and the structure of the transformation G be-
tween states clearly depend on the initial design of the system. Furthermore, the trans -
formation G also depends on the load and environmental inputs carried between state 
observations,. Such a function clearly has to be born of field and road test experience. 
In order to "manage" our model system let us now introduce the notion of control via 
Eq. 10, where the set of decisions, Y,,, constitutes alternative maintenance, repair, or 
replacement operations. We seek an optimal policy for selecting these decisions in 
the face of certain restrictions, which are in part arbitrary but essential. Here, for 
simplicity, we choose as our criterion function minimum cost (Eq. 13). In Eq. 13, K 
represents the accumulated cost of performing the 'YN control operations. (The added 
effect of "cost of money" can also be included here.) As an added constraint to the 

1.0 

P0  

Pseudo-time (wheel ioncl, environiient) 

Decision 

Cost of decision 

0 	Policy For No Control of Wstem 

Figure 4. Routing graphof system performance model. 
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problem, we stipulate that the performance of the system be such that the mean value 
of the PSI exceeds some minimum value P0, i.e., 

+ E Xt) ~ P. 	 (19) l  

where again T denotes system life and 	denotes an interval between states, both mea- 
sured in some pseudo-time. We must now select a sequence of decisions (Y0 ); i.e., 
find an optimal policy such that Eq. 13 is minimized subject to-the constraint (Eq. 19). 
This is a straightforward problem in dynamic programming using the algorithm shown 
in Eq. 17 modified by a Lagrange multiplier to handle the constraint (7). One forms 
the modified function obtained by combining the criterion funcjion K in Eq. 14 with the 
constraint condition in Eq. 19, using an undetermined Lagrange multiplier, A. 

FN(Xj) = Y 	[x1, y1) +... + f(XN, YN)] - 	
ni 

x0(t0) - P. 	(20) 

when a value is chosen for A, the dynamic programming algorithm (Eq. 17) is used to 
obtain a policy for the decision sequence Y. After this the inequality (Eq. 19) is 
checked. The process is then repeated by selecting values of A and repeating the same 
process until a policy is found for which Eq. 19 is best satisfied; this constitutes the 
optimal policy. The parameter A is an important index of price of the contr-ol process; 
in this case it shows the trade-off in cost per unit of performance required to maintain 
a certain average value of PSI during the pavement life. Other types of constraints can 
be treated in a similar fashion. In such problems, certain concepts associated with 
graph theory can be helpful (8). One can view the choice of decisions as a routing prob-
lem. At each state, a set of points denotes new states produced by decisions (Fig. 4). 
The paths from state to state can be associated with costs of control, and one must 
select the path of optimal control, bearing in mind that the minimum performance cri-
terion has to be satisfied for the set of decisions. 

The model considered is clearly an elementary one, but it can be considerably em-
bellished. When the mechanics of management of systems are better understood, the 
initial design (inverse) problem might be incorporated as part of the decision process. 
In this instance the optimal policy is to be found over a set of parameters describing 
control variables as well as design parameters of the system itself. An example of 
this type can be found in the report by Hudson et al. (4). 

Uncertainty 

Thus far we have made the tacit assumption that all aspects of the systems with which 
we are working are deterministic. This applies equally to input, system model, and 
control. In other words we are certain of the input, which in turn leads to a certain 
output, and a control applied to the system produces a certain change of state. Use of 
the term certain is equivalent to assigning a probability of unity in each of these in-
stances. It is a euphemism to assert that pavement system analysis and design is an 
uncertain problem. Aspects of this overall problem are discussed by Sherman (15) and 
Moavenzadeh (11), and a suggested treatment of the overall systems problem is men-
tioned by Lemer and Moavenzadeh (5). 

In concluding I wish only to call attention to the need to examine the modeling prob-
lems of design and management of pavement systems in the light or, perhaps better, the 
darkness of uncertainty. The root of the problem is the notion of determinism-cause 
and effect, combined with the perversity of nature and man. For example, the input 
variables, traffic and environment, are clearly nondeterministic (stochastic) in the 
sense that one must attach a probability distribution to these inputs. Similarly, the 



pavement system itself, by virtue of its constituent materials and methods of construc-
tion, possesses a stochastic character; even a deterministic input to such a system will 
produce a stochastic output. Furthermore, application of a control likewise leads to 
an uncertainty in outcome. 

How does all this uncertainty 'affect our efforts to develop a rational basis for design 
and management of pavement systems? Briefly, we can consider the previous apparatus 
used in this section only with reinterpretation of the primitive elements. We can define 
a discrete stochastic multistage decision process by asserting that a decision Y. de-
termines a set of possible outcomes (states) instead of a unique outcome. The state 
vector X. is now a stochastic vector in the sense that its components are probability 
distributions. Furthermore, the transformation leading to state changes, i.e., G( ) in 
Eq. 10, is a stochastic transformation. In addition the criterion function, depending 
now on stochastic variables, is itself a stochastic quantity, as are the decision vectors, 
which depend on the system states. The condition of "minimum of the criterion func-
tion" can be replaced by minimum of the expected value of the stochastic criterion func-
tion, which leads to the notion of an optimal policy for a discrete stochastic process: 
Select a sequence of decision vectors [Y(X,,)] such that the expected value of the cri-
terion function is minimized. For the special case of a Markov process this problem 
has been studied in some detail (7). Whether a Markov model is adequate for the pave-
ment system problem is another matter. This is an area needing considerable exploration. 

SUMMARY 

In this brief review of the status of research primarily associated with development 
of a more rational basis for design and management of flexible pavements, I have tried 
to emphasize two basic ideas: (a) the need to develop an overall structure for the en-
tire pavement system, an assembly of many black boxes; and (b) the need to explore in 
some detail the contents of the various boxes to develop mathematical models of each 
subsystem, leading eventually to a model of the system in its entirety. A number of 
suggested directions in each of these categories have been discussed, and a more de-
tailed treatment is given in other papers. I have separated the problem of design from 
the problem of management only for purposes of clarifying their treatment. One can 
and must eventually regard the two as one problem when more reliable models of sys-
tem behavior become available, recognizing that this activity is a pattern recognition 
problem of special complexity. 

What seems to me to be incumbent on those attending this workshop, as well as man-
agers of research and development funds in general, is the development of a systems 
model for management of state and federal programs directed toward the problem under 
consideration. One needs to examine carefully the matter of "sensitivity" of various 
black boxes with regard to system performance. Although it may be commendable to 
study one box alone in the name of science, it is surely poor engineering practice to 
channel a lot of support to a subsystem with a low sensitivity factor vis-à-vis the total 
system performance. Such decisions regarding support should be made in the light of 
information and reason: They are difficult and agonizing, but that is what managers are 
expected to live with. 
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