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One of the practical objectives of the theories of mechanics is to assist in the solution 
of engineering design problems by providing the theoretical basis for determining the re-
sponse of a system to a variety of prescribed inputs. This is done through the formula-
tion and solution of boundary value problems. There is one major factor that has, during 
the last decade, changed the entire approach to the solution of boundary value problems. 
This is the development of numerical techniques that, in conjunction with the availability 
of high-speed digital computers, permit the solution of complex boundary value prob-
lems. The availability of operational computer programs has made it possible for the 
average practicing pavement engineer to conduct analyses that only a fewyears ago 
would have been considered impractical. One of the major thrusts in achieving progress 
in pavement design is the use of this capability. 

In writing this paper, I find there is the dilemma of whether to strive for complete-
ness in the theoretical aspects or to try to answer in broad terms the two questions of 
what is the present state of the art in this area and of where the future effort should be. 
This paper takes the broad approach. It is felt that those whose interest is in the de-
tailed theoretical aspects are sufficiently familiar with recent developments and that a 
relatively brief summary is not likely to provide them with new information. Further-
more, inclusion of a detailed theoretical discussion is likely to make the paper less 
readable to those whose major interest is application. The paper attempts to point out 
those solutions and solution techniques available at the present time in a form that can 
be used in design. Because one of the major objectives of the workshop is to look toward 
the future and encourage an exchange of ideas with regard to future research and re-
search in progress, this paper also discusses directions of future research and devel-
opment. However, before proceeding to a discussion of various methods of solution, I 
should comment briefly on the formulation of a boundary value problem. 

FORMULATION OF THE PROBLEM 

The formulation of a boundary value problem involves idealizing the real physical 
problem and casting it into mathematical form. For the class of problems representa-
tive of pavement systems, the mathematical form of the boundary value problem is a 
set of partial differential equations subject to various initial and boundary conditions. 

There are three essential components to a boundary value problem: (a) governing 
equations, (b) constitutive equations, and (c) boundary and initial conditions. For the 
analysis of pavements, the governing equations are the equations of equilibrium, motion 
(for dynamic problems), and compatibility. These equations are derived from the basic 
laws of classical physics and from continuity considerations in the material. Various 
approximations can be introduced at this level (e.g., small strains to obtain linearity 
and symmetry of the stress tensor). It should be recognized that the governing equations 
are independent of any material properties. 

Constitutive equations are representations of the properties of the particular mate-
rials under consideration and represent idealizations of actual material behavior 

Boundary conditions may consist of prescribed displacements and stresses on various 
boundaries. (For thermal and hygro stresses it is necessary to define the temperature 
and moisture contents as functions of space and time.) For static problems this 
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is sufficient; for dynamic problems it is necessary to specify the conditions at 
some arbitrary time, generally at t = 0, when they are called initial conditions. The 
governing and constitutive equations can only be solved in general terms; it is boundary 
and initial conditions that make the general solution specific for the problem under con-
sideration. The boundary and initial conditions also represent various levels of ideali-
zation. For example, the actual time variation of load might be approximated by a 
simple analytic function (e.g., sine), or nonaxisymmetric loads might be approximated 
by axisymmetric load distributions. 

It is appropriate to comment briefly on how these three components are accounted 
for in modeling a pavement section. The governing equations are of general applicabil-
ity. The materials composing the various layers have to be represented by appropriate 
constitutive equations. This aspect is discussed in a separate paper. (See the Appendix 
for bibliography.) In addition, the loading conditions and the geometry of the problem 
have to be approximated in order to make the problem amenable to solution. 

The loads are dynamic and can be considered to be applied randomly with regard to 
both space and time. All current methods of pavement analysis and design treat the 
loads deterministically. The other basic assumption on loading conditions is whether 
to treat the loads as static or dynamic. All design methods in use at the present time 
treat the load as static. Analytical solutions for dynamic problems have been developed 
on the assumption that inertial effects can be neglected. Analyses have shown that for 
highway traffic this is a reasonable assumption. These solutions are only of interest 
when the materials in the pavement system are rate-dependent. 

In practice, multiple loads are applied to the pavement. For linear problems the 
fundamental problem is based on the application of the single load; the multiple load sit-
uation can be treated by superposition of single load solutions. The shape of the loaded 
area and the distribution of the load over this area depend primarily on the tire, the in-
flation pressure, and the characteristics of the surface layer. All current design meth-
ods using analytical solutions make the assumption that the load is distributed uniformly 
and can be considered axisymmetric. If the physical geometry of the problem is axi-
symmetric, then nonaxisymmetric load distributions can be analyzed for linear prob-
lems. 

Assumptions regarding the geometry of the total structural problem depend primarily 
on the location of the loads relative to the edges of the pavement. This leads to the two 
assumptions that have been used in the structural analysis of pavements: the layered 
system theory and the thin plate theory. If the loads are sufficiently distant from the 
edges of the pavement, in that the effects of the boundary on the stresses in pavement 
can be neglected, then the problem can be treated as a layered system in which each 
layer is of infinite horizontal extent. When edge effects are important the extent of the 
pavement layer has to be considered finite in extent, and the thin plate theory is used 
because it is not possible to handle the general three-dimensional problem. This 
latter approach has been used almost exclusively for the design of concrete pavements. 

The increased availability of computer programs, which utilize various numerical 
techniques to solve boundary value problems, has resulted in a tendency to decrease the 
attention paid to the formulation of the problem. The importance of a correctly formu-
lated boundary value problem cannot be too strongly emphasized. No solution technique, 
irrespective of the degree of sophistication, can provide adequate answers for design if 
the problem has been formulated incorrectly. 

METHODS OF SOLUTION 

There are two basic techniques for obtaining solutions to boundary value problems. 
These are analytical (sometimes referred to as classical) and numerical. Because the 
final objective in the case of a practical problem is a numerical result, no solution relies 
entirely on one of these techniques. A numerical solution technique will use a problem 
formulation that will be directed toward a computational procedure from the outset, 
whereas an analytical technique will carry the solution as far as possible before resort-
ing to numerical calculations. 
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Numerical techniques require that various approximations be made in developing the 
solution to boundary value problems. Because of the increased availability of "ready-
made operational" computer programs, there is a tendency to ignore the effects of pos-
sible errors from making discrete and rounding off and questions of instabilities and 
convergence. Whereas the available programs are satisfactory in the solution of most 
linear elastostatic problems, these effects must be considered in the analysis of non-
linear and dynamic problems. Possible errors and questions of stability and conver-
gence are discussed briefly in terms of the finite difference and finite element tech-
niques. 

As pointed out earlier, the formulation of a boundary value problem is in terms of 
differential equations. In the finite difference approach, the basic principle is that the 
derivative can be represented in discrete form. The 'differential equations are then rep-
resented by difference equations. A difference equation approximation must satisfy 
the requirement that as the mesh size goes to zero the differential equation is obtained. 
Furthermore, as the mesh size decreases the numerical solution should approach the 
"exact" solution. In a numerical solution there are errors due to discretization that 
are dependent on the mesh size and errors due to rounding off that occur because of the 
truncation of numbers in a computer. An important consideration in numerical tech-' 
niques is stability; this applies specifically to step-by-step procedures. Because there 
is some error with each step, the computational scheme should be such that the error 
does not grow too rapidly. 

In the finite element technique, the physical problem is approximated by dividing the 
solid body into a series of elements. This method, like the finite difference method, 
produces solutions that have discretization and rounding-off errors. A balance must 
be obtained between the need for accuracy, which requires a large number of elements, 
and the need for minimizing computer time, which increases with an increase in the 
number of elements. For dynamic and nonlinear problems, where step-by-step pro-
cedures are used, stability considerations are important. 

When available solutions and solution techniques are examined, it is possible to sub-
divide them into a variety of categories. Because of the emphasis of this paper it is 
appropriate to consider them in the following two categories: (a) solutions and tech,-
niques for linear problems, and (b) solutions and techniques for nonlinear problems. 
Although this division may appear artificial in that techniques for solving nonlinear prob-
lems are generally applicable to linear problems, the subdivision is particularly appro-
priate when past achievements and future goals are considered. 

SOLUTIONS AND SOLUTION TECHNIQUES FOR LINEAR PROBLEMS 

Elastic Layered Systems 

Analytical Solutions—The geometrical domain of a layered system, i.e., the semi-
infinite domain, and the regularity or "at-rest" conditions that exist at the boundaries 
make the problem particularly suited to analytical treatment. To obtain a solution to 
a layered system problem requires that the boundary condition be satisfied as well as the con-
tinuity conditions between the various layers. In principle, once the two-layer problem 
is solved, the methodology for solving the general multiple-layer system problem is 
established. It should be recognized that each layer is considered homogeneous and 
isotropic. 

Since the original work by Burmister, the layered system problem has been analyzed 
extensively with a view toward obtaining numerical results and recasting the solution 
into a more general form. Satisfying the continuity conditions at the interface requires 
the solution of a number of algebraic equations, which include evaluation of infinite in-
tegrals. For most problems, involving more than two layers, the only practical method 
for obtaining a solution is to use a digital computer for the solution of the algebraic 
equations and the evaluation of the integrals. Practicing engineers should note that 
computer programs are now available for'sblving layered system problems formulated 
in accordance with the methodology first dUtliied by Burmister. The number of layers 
these programs can handle covers the range of all practical problems. Because these 
programs have been "debugged" and are operational, their use in routine design is a 
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practical proposition. These programs provide information on stresses, strains, and 
displacements throughout the pavement system. 

Numerical Solutions—There are fundamentally two numerical techniques currently in 
use for the solution of boundary value problems that are representative of the pavement 
system: the finite difference technique and the finite element technique. Of these two 
techniques, the latter appears to have the greatest potential. Details of the methodhave 
been discussed in the literature (see Appendix). The development of the finite element 
technique is directed toward a computational method, and the objective, from a practical 
standpoint, is to obtain a computer program that can efficiently solve pertinent boundary 
value problems. At the present time there are available, for general use, operational 
computer programs that can be used to solve anisotropic and nonhomogeneous linear 
elastostatic problems under axisymmetric conditions. It should be noted that, in com-
parison with the layered system formulation, the finite element technique is not subject 
to the restriction that each layer be homogeneous and isotropic. This property is of sig-
nificance when it is necessary to include the effect of stress level on material proper-
ties. The cost of doing such analyses is minimal in terms of computer time, and the 
output provides information on stresses, strains, and displacements throughout the 
pavement section. Because of the rapidity with which these problems can be solved, it 
is relatively simple for the designer to study different designs. 

In the analysis of thermal problems, it is assumed that the distribution of tempera-
ture can be obtained by solving the diffusion equation independently. This implies a de-
coupling of the temperature and stress effects. Finite element and finite difference 
programs are available for solving the diffusion equation to obtain the temperature dis-
tribution. Once the temperature distribution is obtained, its influence both in the form 
of a change in material properties or in introducing thermal stresses can be readily ac-
counted for. Available finite element computer programs for the analysis of axisym-
metric solids have the capability to analyze these temperature effects. 

If inertial effects are neglected, the solutions to the moving load problem can be ob-
tained by superposition of static solutions. Although it has been shown that inertial ef-
fects can be neglected at conventional highway traffic speed, it should be recognized that 
the finite element technique provides a means for analyzing dynamic problems and that 
operational computer programs are available. 

Although computer programs for the axisymmetric case are generally available and 
are operational, it should be recognized that the actual problem belongs to the general 
three-dimensional class. Programs for solving such problems have been developed; 
however, they are not available for general use at the present time. The cost for con-
ducting a three-dimensional analysis is far greater than that for an axisymmetric anal-
ysis. A possible technique for overcoming this disadvantage is to treat the problem in 
a general three-dimensional sense in the area in the close vicinity of the load and in an 
axisymmetric manner at a sufficient distance away from the load. Another possible al-
ternative is to invoke St. Venant's principle and, instead of at-rest boundaries, to use 
the results from closed-form solutions of simple loading conditions at boundaries that 
can be located at much smaller distances from the loaded area than the at-rest bounda-
ries. This would decrease the number of elements required to model the problem, re-
ducing the computer time. 

Thin Elastic Plate Formulation 

As pointed out, the thin plate formulation is primarily used to consider the effect of 
edge loading conditions. The formulation has been used almost exclusively for the de-
sign of concrete pavements. It is a two-layer system, i.e., a plate and a supporting 
medium. 

Analytical Solutions - The fundamental problem of concentrated load acting on a thin elas-
tic plate resting on a foundation was solved by using the integral transform approach by 
Holl. Since that time numerous solutions have been developed for plates on various 
types of supporting media. The use of the thin plate theory to the design of pavements 
was first proposed by Westergaard; modifications based on theoretical and experimental 
considerations have been proposed by numerous investigators. Available analytical 
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solutions for use in practice,do not consider nonhomogeneous and anisotropic material 
properties and do not adequatelyaccount for joints, cracks, and possible loss of sup-
port. 

Numerical Solutions— The finite difference technique has been used fairly extensively in 
the analysis of plate problems. However, because of the difficulties in handling corners 
and because of the physically motivated formulation of the finite element method, most 
of the new developments in the analysis of plate problems are likely to be with the use 
of finite element techniques. Currently available operational computer programs can 
analyze plates resting on an elastic foundation under fairly general conditions. These 
include orthotropy nonhomogeniety in the soil and plate and localized loss of support. 

Viscoelastic Layered Systems 

As in elasticity, the boundary value problem consists of solving the governing differ-
ential equations subject to the appropriate boundary and initial conditions that represent 
the physical problem to be solved. The boundary conditions may be in the form of pre-
scribed boundary stresses and displacements with regard to time and position, and the 
initial conditions indicate the conditions at time t = 0. 

Because time occurs in both governing equations and boundary conditions, it is pos-
sible that the boundaries of prescribed stress and displacement may vary during the 
loading history. Such situations arise in the Hertz problem where with time the sphere 
indents the material, resulting in a change of the area of contact, thus varying the areas 
of prescribed displacement and stress. The total volume or surface area of the mate-
rial may also change with time. Such situations occur in the case of crack propagation 
and in the case of ablating rocket propellents. 

For pavement problems it is assumed that variations of surface and volume do not 
occur and that areas of prescribed deflection and stresses do not vary during the load-
ing process. The formulation of the boundary value problems in viscoelastic systems 
is identical to that in elastic systems with the exception that stress-strain laws are time-
dependent. 

Analytical Solutions—Except for the simplest problems, solutions to boundary value 
problems in viscoelasticity rely on the extensive use of digital computers. The early 
emphasis in analyzing problems used the Laplace (or Fourier) transform technique, rec-
ognizing that a viscoelastic problem couldbe compared to some equivalent elastic problem 
in the transformed domain. The elastic solution has then to be inverted to obtain the required 
time -dependent solutions. This inversion can be extremely difficult and is only practical for 
simple representations of viscoelastic response in the form of differential operators. For 
realistic representations of viscoelastic response, it is necessary to use integral represen-
tations of the stress -strain-time relation of the materials based on experimentally measured 
creep or relaxation functions. In this case the Laplace transform technique leads to 
considerable difficulties, and it is more convenient to proceed directly with a spatial 
transform. The satisfaction of the continuity conditions at the interface leads to a set 
of simultaneous integral equations. Numerical solution of these equations and numeri-
cal evaluation of the spatial inversion result in the required solution. By using these 
techniques, we can apply experimentally obtained curves directly in the calculation. So-
lutions to the moving load problem, neglecting inertial effects, and a load applied peri-
odically have been obtained by superposition of the static load solutions. The influence 
of the velocity and the period of application are of significance because of the time-
dependent character of viscoelastic materials. Available solutions permit the computa-
tion of cumulative deformations as a function of load application and time. All currently 
available solutions are for the axisymmetric case. 

For the practicing engineer it is necessary that operational computer programs be 
available for use in design. A number of computer programs using this approach have 
been developed. However, the dissemination of the information has been slow. It is 
necessary to present this information in a gianner that will encourage its use by prac-
ticing engineers. This has not been done. 
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Numerical Solutions—The finite element technique has been applied to the solution of 
linear viscoelastic problems. Operational computer programs are now available, though 
their use has not yet become prevalent. It should be recognized that the computer time 
involved is far greater for solving viscoelastic problems than for solving elastic prob-
lems. 

SOLUTIONS AND SOLUTION TECHNIQUES FOR NONLINEAR PROBLEMS 

Although the importance of nonlinear analysis in the context of the total structural de-
sign of a pavement system has not been established, nonlinear problems must be solved 
if more realistic constitutive equations are to be used. It should be recognized that non-
linearity can also be introduced by large displacements, i.e., kinematic nonlinearity. 
Obtaining solutions to nonlinear problems depends almost exclusively on numerical tech-
niques. 

A number of ad hoc modifications of linear elastic theory have been used to solve 
"more realistic" boundary value problems. These modifications include a dependence 
of the modulus in a linear elastic analysis on stress. The problem is solved by iteration 
until a solution within some specified degree of convergence is obtained. Computer pro-
grams using the finite element technique to solve these ad hoc nonlinear problems are 
available, and their use does not present any more difficulty than does the use of linear 
programs. 

It would appear at the present time that the finite element technique has the greatest 
potential for solving nonlinear problems. For illustrative purposes, consider the case 
of a nonlinear elastic constitutive law under the assumption of small strains. 

Two methods of analysis commonly used for nonlinear problems are the incre-
mental method and the Newton method with constant or variable slope. 

The incremental load method breaks up the applied loads into n increments; a linear 
elastic solution is then sought for each increment, and the final solution is the sum of 
the increments. This procedure can use an incremental representation of the nonlinear 
elastic law along with a standard finite element computer algorithm for the solution of 
axisymmetric linear elastic boundary value problems (or any other method of solving 
linear boundary value problems). As an example, consider a layered system subjected 
to a uniformly loaded circular area. The pressure is divided into n increments and ap-
plied incrementally. The response of the system to the first increment can be obtained 
from the usual linear elastic theory. This will make possible the determination of prin-
cipal strains throughout the layered systems. 

From these known principal strain states the incremental moduli Sij  can be obtained 
for the next linear problem arising from the application of the second increment of ap-
plied pressure. The same procedure is repeated until the total load is applied. In terms 
of finite element nomenclature, the procedure requires that a new stiffness matrix be 
calculated for each load increment. By examining the range of principal strain states 
(both in magnitude and in ratios of components), we will be able to select the types and 
numbers of experiments required to characterize the nonlinear material behavior. This 
will in general vary with the particular problem (loading, layer thickness, or layer me-
chanical properties) and will require considerable cooperation between analysis and ex-
perimentation, perhaps ultimately linking the two into an integrated device for perform-
ing characterization and analysis. 

The incremental approach can be used for conducting an elastoplastic analysis. It 
will be necessary to include a yield criteria to determine whether the material is in the 
plastic range. In addition, it will be mandatory to keep track of the stress path to de-
termine whether loading or unloading is occurring. The same principles of incremental 
characterization and solution can be used for nonlinear viscoelastic solids. However, 
both the characterization of materials and the stress analysis algorithm are considerably 
more time-consuming. 

The constant slope method places the nonlinear portion of the stiffness on the right 
side of the governing equation as a forcing function. The stiffness (slope) is the same 
for all iterations. The, solution is then obtained by iteration. The variable slope method 
differs only in that the slope is updated after each iteration. 
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Finite element analyses based on the theorem of minimum potential energy are known 
to yield very accurate solutions for the displacements but frequently yield poor results 
for stresses. The few nonlinear solutions that have been attempted by using this method 
have not behaved well when the nonlinearity exceeds about 10 percent. However, the 
Hellinger-Reissner variational theorem provides a solution to these difficulties. Be-
cause both the displacements and stresses are included as primary variables, the re-
sulting stresses are of a much improved accuracy and do not possess the spatial oscil-
lations often found in displacement methods. The governing equations become the stress 
equations of equilibrium and the stress-strain law; whereas in the displacement formu-
lation, the governing equations are the displacement equations of equilibrium. This is 
significant because the stress equations of equilibrium often are independent of the ma-
terial properties, even for physically nonlinear materials. Thus, it is possible to ob-
tain accurate solutions by using Newton's constant slope method with the above-mentioned 
method of analysis in a very few iterations. Displacement methods generally require 
many iterations that use more sophisticated models and that still fail at moderately high 
nonlinearities. Research done in this area indicates that the constant slope method has 
been found to be superior to the incremental load method when the mixed model is used 
and sufficiently convergent to give accurate results in a few iterations. 

Another solution technique that may be of considerable significance in developing so-
lutions for nonlinear boundary value problems is the technique of quasi-linearization 
developed by Bellman and his colleagues. The technique has been applied primarily to 
the solution of ordinary differential equations. In this context it is of considerable sig-
nificance to problems in system identification, which are an important aspect of mate-
rial characterization. The application of quasi-linearization to nonlinear partial differ-
ential equations, though limited, does indicate that it might be a powerful tool for the 
solution of such problems. It is claimed that the method has very good convergence and 
stability characteristics. 

It is extremely important to recognize the problems associated with convergence 
when solution techniques are developed and used for nonlinear problems. It is not pos-
sible to check all facets of a computer program by comparison with known analytical 
results. Therefore, the use of solution techniques for nonlinear problems requires ex-
perience and judgment. It is important to realize the interdependence of the material 
characterization and solution techniques. If progress is to be made in the area of non-
linear analysis, research in these two areas will have to be closely coordinated. A 
great deal of work is needed in developing solutions for nonlinear problems before they 
can be used in practical designs. 

SOLUTION TECHNIQUES—THE GENERAL PROBLEM 

If, as is currently being advocated, a systems approach to the design of pavements 
is used, then it will be necessary to consider solution techniques for aspects of the prob-
lem other than the structural aspect. In this brief paper one can only call attention to 
certain tools that should be considered in an analysis of the pavement problem. 

Dynamic programming in its application to optimization problems will be of consider-
able significance if optimum designs are to be developed. This will include the applica-
tion of quasi-linearization techniques. One approach to the optimization of a design of 
the pavement system is to treat the system as an adaptive control process. In suchpro-
cesses we consider the problem of optimizing a process where our knowledge increases 
during the process. Dynamic programming is particularly suited to handling such prob-
lems. It should be recognized that dynamic programming is readily applicable to sto-
chastic problems. 

A great deal of work needs to be done in the application of these techniques to the 
pavement design problem. 

FINAL REMARKS 

- 	In assessing where we are and where we are going with regard to solutions for bound- 
ary value problems, we should consider practical application and research separately. 
For routine structural design, operational computer programs for analyzing the 
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axisymmetric linear elastostatic problem under very general conditions are available. 
The stresses, strains, and deflections in pavement sections can be determined and, in 
conjunction with various theories on modes of failure, e.g., fatigue, can be used in 
practical design. Because of the speed with which calculations can be performed, the 
designer can examine many combinations of materials and thicknesses. It can be con-
cluded that the researcher has finished his task in the area of axisymmetric linear 
elastostatic problems and that the burden is on the designer to use this information. 

In the area of linear viscoelasticity, sufficient theoretical work for axisymmetric 
linear analysis appears to have been completed for use in design. It remains now to dis-
seminate the information to the practicing engineer and to provide guidance in its use. 

From the research standpoint, there are a number of areas where further work ap-
pears necessary. 

Conduct general three-dimensional linear elastic analysis. At the present time 
finite element computer programs are available to conduct such analyses. However, 
these programs cannot be considered operational in the sense that they can be used in 
routine design. Certain modifications will be necessary to tailor the programs for the 
efficient analysis of pavement systems. 

Develop solution techniques and solutions for nonlinear problems. Considerable 
progress in this area has been accomplished; however, there has been little application 
to the pavement problem. The work to be done in the area cannot be done independently 
of nonlinear material characterization techniques. 

Include stochastic and probabalistic concepts in analysis. The variability of ma-
terials and the nature of loads lead to the conclusion that complete analyses will require 
the inclusion of stochastic and probabalistic considerations in the solution of boundary 
value problems. 

Develop solution techniques for the total pavement system problem. In consider-
ing the total pavement problem, researchers have spent a great deal of effort in devel-
oping various diagrammatic models of the pavement system. However, very little quan-
titative work has been done. It is now time to devote some effort in this direction. A 
possible avenue of future research is in the application of dynamic programming to the 
optimization of a pavement design system. 

Before proceeding with research in various specific areas, we should direct the first 
effort toward integrating available solutions for boundary value problems with the other 
available information necessary for the development of a working structural design sys-
tem and toward making it available for general use. There has been more progress in 
research than is generally realized. Once such a working design system is established, 
research needs for structural design can be better defined by sensitivity studies. 

A major objective of engineering research is practical application. Therefore, it is 
imperative that the profession examine its needs for research in terms of significance 
in the context of the total system. For example, does it matter if materials are char-
acterized as linear or nonlinear in the context of the variability in materials due to con-
struction techniques? Has the structural design reached a degree of refinement that is 
sufficient in terms of the design of the total system? Perhaps this is a time for consol-
idation and integration of past scattered efforts and for evaluation of what is needed. 
However, we should not fall into the trap of trying to fit the needs to our capabilities. 
Rather we should expand our capabilities to fit the needs. 

APPENDIX 
BIBLIOGRAPHY 

The purpose of this appendix is to provide a partial bibliography on the available so-
lutions for layered systems and related problems. In addition, a few basic references - 
on dynamic programming and quasi-linearization are also listed. 
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