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AN ABSOLUTE METHOD OF DETERMINING THERMAL CONDUCTIVITY 
AND DIFFUSIVITY OF SOILS 

Dr. A. D. Misener, Department of Physics, University of Western Ontario 

Synopsis 

The most common methods for measurement of thermal conductivity of 
poor conductors, e. g. , earth or insulating materials, are based on the fact 
that the sample is in a steady-state condition. For poor conductors this re-
quires a long period before the heat flow through the sample becomes steady. 
During this period the heat source must be held constant. Prolonged heating 
aggravates such undesirable processes as moisture migration and changes in 
structure. Furthermore, the necessity of removing samples for measure-
ment from their normal situation introduces uncertainties and experimental 
difficulties. 

These methods have two more fundamental defects. First, steady-state 
measurements will give no information on thermal diffusivity, a constant 
equal in importance to conductivity in many heat-transfer problems. Sec-
ond, the actual experimental devices, hot-plates, divided bars, etc., are 
calibrated by using materials of presumably known conductivity to either 
establish quantity heat flow or determine instrumental constants, such as 
contact resistance with the sample. 

The method described here uses measurements during heating or cooling, 
which may be taken rapidly and will give both thermal conductivity and dif-
fusivity. The mathematics are rigorous and therefore the effect of assump-
tions made in the theory can be calculated. With heat sources of appropriate 
shape and dimensions, the measurements may be made absolute, i. e. , they 
are independent of the particular measuring device and are not affected by 
the thermal properties of the materials used to construct the source. The 
limits within which this condition is fulfilled can be calculated accurately. 
The method is applicable to a variety of different forms of apparatus. 
When a suitable form has been selected and a particular apparatus built, 
the necessary calculations may be made once and presented as graphs from 
which the desired results are read off as rapidly as readings are taken. A 
general description of the method will be followed by two particular applica-
tions, a spherical heater buried in the material and a linear heater or probe 
inserted into the material. 

A heater, usually electric, is surrounded by the material whose thermal constants 
are to be measured. A temperature measuring device, usually a thermocouple or re-
sistancethermometer, attached to the surface of this heater indicates the change in its 
tempeiature while a constant, measured, energy output is maintained. The temperature 
rise at two selected intervals is recorded. These intervals are pre -determined to min-
imize the effects of certain assumptions made in applying the theory to the particular 
instrument and are controlled by such factors as physical dimensions, power output, 
and the temperature rise considered as allowable without affecting the material under 
investigation. 

Using tables of the appropriate functions involving the dimensions of the apparatus 
and the selected time intervals, a graph is constructed showing the relation between the 
ratio of the two temperature differences and the thermal diffusivity. If the graph is 
constructed to cover the range of diffusivities encountered in the type of material being 
tested, the diffusivity is read directly from the graph as soon as the temperature dif-
ferences have been recorded and their ratio calculated. Entering another graph at the 
value of the diffusivity and using the measured power output and the temperature rise 
at either of the selected intervals, a single multiplication gives the value of the thermal 
conductivity. Once the graphs have been constructed, they are used with a particular 
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apparatus and will give rapid results over a 	 -- - 

reasonable range of the thermal constants. 
This simple method will give results ac-

curate to within 3 percent. A slightly more 
complicated method of calculation, using the 
same basic principle, can be used to reduce 
this error, which arises in the application of 
the theory to actual apparatus. 

The physical shape and dimensions of the 
heater determine the type of function used in u 
constructing the graphs. The cases of a 
spherical heater treated as a point source and 
a cylindrical heater of small diameter treat-
ed as a linear source are discussed below. 
Other cases, such as a cylindrical heater 
treated as a cylindrical source, may be dealt 
with by the same method, but calculations 
required are more complicated and improve-
ment in accuracy attained is of doubtful value 
in view of the inhomogenieties usually en-
countered in the substance being measured. 

It should be stressed that no novelty is 	 ' 	r .5 	to 	2 14 

claimed for the heat conduction equations 	 = 
used. These are to be found in the standard 	Figure 1. Values of Function U(q) for 
texts on the subject (Carlslawand Jager, Heat 	q = r/J 	up to 1.4 
Conduction in Soils; Ingersoll, Zobel, and 
Ingersoll, Heat Conduction, McGraw-Hill, 1948). They involve no mathematical approx- 
imations affecting the accuracy of their application to cases studied. The magnitude of 
the errors introduced in applying the idealized theory to actual conditions can be evaluated. 

Application to Spherical Heaters 

Aluminum spheres 4 in. in diameter were fitted with small, centrally-located, re-
sistance heaters and with copper constantan thermocouples soldered to their surface. 
These were buried to a depth of 5 ft. in the ground and allowed to attain temperature 
equilibrium with their surroundings. This was indicated by the constancy of the thermo-
couple readings over a period of 48 hours. Energy was then supplied to the heaters at a 
constant rate of about 25 watts and the temperature of the surface of the heater recorded 
every few minutes. From the graph of temperature versus time, the temperature rise 
after heating intervals of 1 hr. and 2 hr. were recorded. 1/ The magnitude of the tem-
perature rise was of the order of 30 to 40 degrees F. 

This case may be considered as an approximation to that of a point source of heat 
immersed in an infinite homogeneous medium. The limits of validity of this approxi-
mation will be discussed later. 

The temperature rise in time t at a distance r from a point source of heat immersed 
in an infinite homogeneous medium is given by the expression 

	

T= 4 [1+j2T  exp(-x2)dx] 	 (1) 

where T is the temperature rise above the initial uniform temperature 
Q' is the rate of heat energy output of the source 
K is the thermal conductivity of the medium 
cL is the thermal diffusivity of the medium 

= (thermal conductivity) 
(specific heat) (density) 

/ The continuous reading of temperature was done to provide a check for certain aspects 
of the theory. For satisfactory calculations of conductivity and diffusivity, read— 
ings taken at 1 hr. and 2 hr. from the start of heating would be sufficient. 
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For convenience, equation (1) is written in 	81 

the form 

T=*U(f) 	 (2) 

where
Qf  
- 

B =--- 
4irr 

T L  '78 

and Ti is a function the numerical value of 
which has been tabulated in the texts for dii 	.76 - 
ferent values of the argument. For conven- 
ience, a graph of the function U for'välues of 	'74 
the argument from 0 to 1. 4 is given in Figure 
1. 	

' 	 2 
Considering the temperature at the surface 

of the spherical source (r = rs) and two spe- 
cific time 'intervals b and t2 we obtain: 	 .70 

T1  = BU ( 2j) 	 (3) 

and 	- B 	.. 	 .05 020 .015 030 '035 '040.045 
T2  =j-U 2J_. 
	

(4) 	 ,' L7IFFU'IVITY, o(f.ph.'UNITS) 

and, by division ' 	r 	Figure 2. Values of Ratio T1/T2  
T1 	U(2) 	

S 	 '(5) T2 	U(.2 rs S  

By assigning particular values to a. which cover the expected rang, the magnitude of 
the right-hand side of equation (5) may be computed at a number of points and a graph 
drawn between a. and the ratio 	 S  

'7 

IS / 

Figure 2 is this graph for the case discussed 
here. In use, Figure 2 is considered as 
showing the variation of T1/T2  witha. Once 
the temperature rise after 1 hr, (T ) and the 
temperature rise after 2, hr. (T2) have been 
observed, their ratio is computed and the 
value of for the material surrounding the 
heater is read from Figure 2. 

To determine the value of the thermal con- 
ductivity K, Figure 3 is used. This gives 
the variation of 

S I 
U (-h) with a 

'015 '020 025 '050 -035 '040 '045 	 and of 	U (-a-) with a 2/. 
PFFUSIVITY, o (f.p.h. UNITS) 	 21i 	- 

Figure 3. Values of Function U(r/2) 	Using the value of cx determined above, the 
for the Particular Heater Used for 	corresponding magnitudes of the two functions 

Range of uiffusivities 	 are read from the graphs. These magnitudes, 

This graph requires no new computation but is simply a replotting of the values al—
ready calculated for Figure 2. 
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together with the observed values of T1, T2 , and B, are substituted in equations (3) and 
(4) to obtain two values of K. The agreement of these two values affords a good internal 
check on the accuracy of the calculations. 

As an illustration of the method, we consider the results of a particular test with a 
spherical heater for which the graphs were calculated. The observed values were 
Ti =30 F., T2  = 38 F. with B = 40. 2 Btu. perhr. -ft. 

The ratio T1/T2 = 0. 790; thus, from Figure 2, cx. = 0. 0320 f. p. h. units 
r5  

From Figure 3 	U(2/ 1 )  = . 502 

and 

and 	 B/Ti  = 1. 340, 	B/T2  - 1.058 

Substituting in equations (3) and (4): 

K = 1.340 x .502 = .671 f.p.h. units 
K = 1.058x.634 = .670f.p.h. units 

Application to Cylindrical Heaters 

Stainless-steel or brass tubes 3/16 in. in diameter and 10-in, long were fitted with 
axial resistance heaters and thermocouples at the middle of their surface.' The ends 
were closed and these probes inserted into various samples of insulating material. An 
adequate sample was roughly a foot or foot-and-a-half cubed. For measurement of the 
thermal properties of the ground more robust probes 1-1/2 in. in diameter and three 
feet long were used. 

This case may be considered as an approximation to that of a line source of heat in 
an infinite homogeneous medium. The rise of temperature (T) at a radial distance (r) 
from such an ideal source is given by 

T=——I(rn) 	 (6) 
2 irK 

where Q' is the rate of heat energy output of the source 
K is the thermal conductivity of the medium 

(a 
I(rn)=) 3exp(-x2)dx 

rn 
1 

cx is the thermal diffusivity of the medium 
t is the time from start of heating 

If Ti and T2  are the increases in temperature after intervals of t1  and t2  respectively, 
we may proceed as in the previous application and form the ratio 

T11(rn1) 	
(7) 

T2  1(m 2) 

Values of the function I (r n) are to be found in tables so we can calculate the right 
hand side of equation (7) for selected values of cL and plot the results as Figure 4a. 
Using the same calculations we also plot Figure 4b, 4c showing the variation of I (r n1) 
and of I (r n,) with cx. The values for the particular calculation used here are 
r = 3/32" = '. 82 x 10 3ft. , t1  = 4 mm. = 0. 0667 hr. and t2  = 10 mm. = 0. 167 hr. 

The method of using these graphs is entirely similar to that described in the case of 
the spherical source. As an illustration we consider the results of a particular test on 
a sample of silica aerogel. Theobserved-vaiues were T1  = 61 F, T2 = 80 F, with 

= 3. 29 Btu. per hr. 
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The ratio T1/T2  = 0. 762; thus from Figure 4a, = 0. 0073 (f. p. h. units) 
From Figures 4b and 4c,. I (r ni) = 1. 44 and I (r n2) = 1. 90. 
Substitution of these together with Q' and the appropriate values of T in equation (6) 

gives the two values of 
K = 0. 0123 (f. p. h. units) for T1  and I (r ni) 

and K = 0. 0124 (f. p. h. units) for T2  and I (r n2). 

Errors Introduced by the Assumptions 

There are no assumptions in the mathematical development of equations (1) and (6) 
which limit them to restricted ranges of application. They should hold for all values of 
r, 	, t, Q', etc. This mathematical rigor is not present in some other methods of de- 
termining thermal constants by using heated probes. 

In applying the rigorous theory to the actual conditions certain assumptions have been 
made. Because the theory is rigorous, the magnitude of the errors introduced by the 
assumptions can be calculated. The most serious assumption is that a finite heater (a 
sphere or cylinder) of different thermal properties from the surrounding medium may 
be treated as an ideal source (point or line). This assumption will undoubtedly introduce 
a large error at the start of the heating when the output of the heating element is largely 
used in raising the temperature of the heater itself. The error will be small after a 
longer period of heating when the heat flowing into the surrounding medium will be very 
nearly equal to the output of the heater, very little being used to raise the temperature 
of the source. The problem is to determine the period after which this error will have 
been reduced to allowable limits. This may be done as follows (the case of a cylindrical 
source is taken for illustration): 

Consider a cylindrical shell in the medium just outside the probe. When the heat flow 
through this shell is the same for the actual probe (radius = r) as it is for an ideal line 
source, then the probe is producing all effects in the medium as if it were a true line 
source. The theory of the ideal line source which gives equation (6) may be extended to 
show that such a source of strength Q' is equivalent to a cylindrical source (radius = r) 
of strength Q = Q' exp (-r2  n2). For the probe described above, after 4 mm. , Q = 0. 98 
Q'. In other words, at 4 mm. the probe was giving results within 2 percent of those 
which would be given by the true line source assumed in the theory. Similar reasoning 
may be applied to the point source case. 
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-- IO'I 	 .1 k._._L ....... equauon, ij or ku), a sconu iieaiiig eurve 
ftdeal) can be calculated. A comparison of 
the agreement between these two curves 
quickly shows whether or not the selected 
intervals for measurement have been chosen 
to give a sufficiently good approximation to 
the ideal conditions assumed. Such a com-
parison for the case of the spherical heater 
is shown in Figure 5. The selected intervals 
of 1 hr. and 2 hr. are well within the range 

	

(HouRs) 	 of good agreement between the two curves. 
Figure 5. Comparison Between Observed 	Once such a check has been made, the se- 
and Theoretical Heating Curves from a 	lected intervals may be used for any other 

	

Spherical Source 	 substances which do not differ too greatly 
in thermal properties. 

The theory is developed for a medium infinite in extent which is obviously not the 
case in practice. However we can calculate the thermal effects (temperature rise, 
heat flow, etc.) at any point in the ideal infinite medium for any-period of heating. When 
these effects are negligible at the distances corresponding to the actual physical bound-
aries of the substance being studied, the behavior of interior points is the same as if 
the substance were infinite in extent. With substances of low conductivity and with the 
short heating periods used in this method, this requirement is satisfied by quite small 
samples. The validity of this assumption may be proved experimentally as well. In 
the case of the spherical heaters buried in the ground, a thermocouple was placed 2 ft. 
from the heater. This thermocouple gave no indication of a temperature change greater 
than 0. 05 deg. F. during the 3-hr. heating period. In a continuous run for 72 hr. the 
temperature rise at 2 ft. was only 2. 0 F. It is therefore safe to assume that the surface 
at a distance of 5 ft. does not affect the temperature rise at the heater during a short 
heating period of a few hours. 

The assumption that the medium is homogeneous is required by the theory but is 
most certainly not the case in practice. However, the results obtained must be inter-
preted as those for a homogeneous medium which would show the same average thermal 
properties as the actual substance used. This places no restriction on the usefulness of 
the method, since it is precisely the result desired in heat transfer considerations. In 
effect, the measurements give the average thermal constants for a limited region sur-
rounding the heater. Averages for larger samples must be obtained by measurements 
at a number of locations. 

Discussion 

The particular. merit of the method is that it provides a rapid and absolute measure-
ment of both thermal conductivity and thermal diffusivity. The degree of error of the 
results may be assigned a mathematically rigorous upper limit without knowledge of 
the thermal properties of the apparatus used. For extremely accurate work this error 
may be reduced by more detailed calculations than those given here, but the simple 
method is apparently accurate to within 2 or 3 percent which compares favorably with 
other methods. 

The construction of the graphs used is not particularly laborious and once obtained 
they are used for the life of the particular heater. The size and shape of heater is a 
matter of choice, influenced to a large extent by the type of material tested, the degree 

The time interval after which the ideal and the actual sources give sufficiently close 
agreement may be determined by another method which will have more appeal to those 
who prefer experimentally determined limits of error. If a complete heating curve has 
been obtained (not just two readings at selected times), this may be plotted. It repre-
sents the behavior of the actual source. By using the two selected values and the above 
theory (ideal source behavior) values of the thermal constants are calculated. By sub- 

stituting these values in the appropriate 

TEMP. RISf., 

T. (r) 
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of accuracy desired, and the time available for an individual measurement. 
Wide variations are possible in the suitable application of the method. For instance, 

if it is desirable to have a very small increase of temperature, say 8 to 10 F.-. rather 
than the 40 to 50 F. used in the applications above, this may be done with no loss of 
accuracy provided the sensitivity of the temperature measuring equipment is suitably 
increased. If very rapid readings are desired, a heater design which gives a rapid 
approximation to the ideal case can be used. If a value which is representative of a 
large volume of the sample is desired, a heater which has a low output and which can 
be operated for a long period without giving excessive temperature increases- is used. 

The general method, here illustrated by the point source and the line source, can be 
extended to other types of sources if desired. Because of its flexibility and the rapidity 
with which results may be obtained, it is being further developed for studies of thermal 
properties of poor conductors. 	- 	 - 

THE THERMAL CONDUCTIVITY PROBE 

F. C. Hooper, Lecturer in Mechanical Engineering, University of Toronto 

Interest in the thermal properties of soils has recently increased because of the in-
troduction of the ground-coil heat pump, and through an awakening to the necessity for 
an accurate understanding- of heat flow in soil freezing and associated problems. How-
ever, the determination of thermal conductivity and of thermal diffusivity, the two 
thermal properties of principal interest, is complicated in the case of natural soils by 
two factors peculiar to. this material. First, soils normally occur in a moist condition 
and are subject to large seasonal and locational variations in their moisture content. 
Second, soils have a definite structure which, once disturbed, is difficult to restore. 
These factors cause test methods adequate for the testing of manufactured bulk mate-
rials to be unsatisfactory when applied to soils. 

The difficultires associated with obtaining structurally undisturbed soil samples of 
suitable size and shape for laboratory apparatus are ipparent. The difficultires arising 
from the presence of,  moisture .require- some explanation. - 	- 	- - 

When a temperature difference exists between two points in a moist soil, avapor-
pressure difference will also exist. Water will tend to vaporize in the warmer position, 
flow or diffuse to the cooler position where the vapor pressure is lower, and condense 
in the cooler position. Thus, a migration of moisture will occur which will not only 
continuously alter the distribution of the moisture within the soil by-drying the warmer 
position and wetting the cooler position but will-also account for a separate mechanism 
of heat transmission by virtue of the latent heat carried by the vapor. Any apparatus 
depending upon a steady-state heat-flow principle will not be able to yielda result until 
a moisture equilibrium has been established,-  at which time the specimen-will not be 
uniformly wetted and the moisture migration mechanism of heat -transmission will not 
be operative.  

To overcome -these and other difficulties, the thermal conductivity probe has been 
developed at Toronto. Because the new instrument is portable, it can be carried.to  the 
site and no disturbance of the soil is involved. By utilizing a transient heat-flow prin-
ciple, the tests are accomplished in a few minutes, before the moisture migration :has 
significantly disturbed the Original distribution, while at the same time including this 
mechanism as a contributing factor in the measured properties. - 	- 	- - - 

The Instrument 	 - 	- - - - - - 	- 

The thermal conductivity probe is detailed in Figure 1 and the measuring circuit in 
Figure 2. The probe itself consists of an aluminum tubeapproximately -18 in., in length. 
Inside of the tube is stretched an axial constantan resistance wire which serves as a 
constant strength heat source. Near the center of the tube length in contact-with the. 
inner wall are the hot junctions of several thermocouples arrañgedin series with ex-
ternal cold junctions. The tube:  is closed by a steel tip at the: -lower end and the, wiring 


