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BASIC DATA PERTAINING TO FROST ACTION 

HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN SOILS FOR 
TRANSIENT HEAT FLOW DUE TO CYLINDRICAL SOURCES AND SINKS 

Y. S. Touloukian, Assistant Professor of Mechanical Engineering; J. D. Bottorf, 
Graduate Westinghouse Fellow, School of Mechanical Engineering; and Thor Harsen, 

Graduate XR Fellow, School of Mechanical Engineering; Purdue University.  

Synopsis 

Several methods of solving problems of transient temperature distribu-
tion and heat flow in the earth surrounding embedded heat sources and sinks 
in which the temperature is suddenly changed from that of the surrounding 
medium to a new value and maintained at this new level are presented. 

Solutions of the differential equations for the temperature distribution and 
heat flow for the idealized case are evaluated in terms of dimensionless para-
meters. A numerical method is used in the study of the problem with real 
boundary conditions obtained from experimental observations. The method 
of electrical analogy is also presented as a rapid and accurate means of solv•-
ing this problem. The thermal recovery (recuperation time) of the thermally 
disturbed soil is also studied and results shown. 

The freezing or thawing rates of soils are a problem which can be studied by some of 
the methods used in the study of complex heat-transfer problems. The sudden change of 
thermophysical properties and the latent heat of transformation which results from the 
thawing and freezing of soils are not encountered, however, in the majority of heat-
transfer problems, and therefore, appropriate modifications must be made in existing 
solutions to account for such phenomena. The electrical analogy method and the numer-
ical methods are more readily adapted to include such phenomena than any other methods 
presently known. 

It is not the purpose of. this paper to solve any specific problem involving the freezing 
of soil but rather to discuss three basic methods of calculation which have been used in 
the study of transient temperature distribution in soils. In the examples used in this dis-
cussion the change of thermophysical properties of the soil which occur at the freezing 
temperature is not considered, since the work upon which this paper is based was of a 
preliminary nature and was concerned only with methods which would yield general so-
lutions regarding temperature distribution in soils. 

The exchange of heat between cylindrical heat sources or sinks and soil has attracted 
increasing interest lately by the recent attempts at a more rational solution of the prob-
lems involving the cooling of underground pipe lines and electrical tables and the use 
of the reverse-cycle refrigeration system for residence heating. Kafadar et. al. (1) 
presented a method for investigating the effects of freezing upon the temperature dis-
tribution in the soil around a cylindrical heat sink withdrawing heat from the soil at a 
constant rate. From the mathematical solution of the differential equation for this case 
they found a temperature gradient due to sensible heat withdrawal alone. Successive 
corrections of this gradient, which account for the latent heat withdrawal from the freez-
ing zone and a final adjustment for the thermal conductivity of the frozen soil, lead to a 
temperature gradient compatible with the physical phenomenon. 

Although the temperature gradients and the heat flow at any one point in the soil 
surrounding constant temperature heat sources or sinks are never invarient with re-
spect to time; they will approach in time a near steady-state condition where their rates 
of change are very small. The time rates of change of the temperature distribution and 
heat flow, both of which may be extremely large during the initial part of the transient 
flow period, are of the utmost importance in many fields of engineering applications. 



NOMENCLATURE 

Symbol Quantity Units 

A Area Ft2  

a Tube radius Ft 

C Heat capacity B F 1  

CE Electrical 	capacitance Farads 

Ce  Electrical 	capacitivity Sec Ohm' Ft 3  

C.1. Heat capacity B F 1  

C Volumetric heat capacity 13 Ft-3 	F 1  

c Specific heat B 1b 1  F' 

e Napierian Logarithm base Dimensionless 

J0  Bessel 	Function 	of the 	first kind 

and the zero order Dimensionless 

K Thermal conductance B Hr' F 1  

k Thermal conductivity B Hr-  
	
Ft-  'F' 

m Scale 	factor 	(in 	analogy) Ohm B Sec 1  F' 

No  Bessel Function 	of the second kind 

and the zero order Dimensionless 

n Time 	factor 	(in analogy) Hr Sec' 

q Rate of heat flow B 

RE Electrical 	resistance Ohms 

H Electrical 	resistivity Ohms Ft 

Thermal 	resistance Hr F B 1  

Rt  Thermal 	resistivity Hr Ft F B' 

r Radial 	distance Ft 

t Temperature F 

u Variable of integration Ft' 

V Electrical 	potential Volts 

v Variable of integration 	(au) Dimensionless 

x Distance 	. Ft 

X Radius parameter, 	(!) Dimensionless 

Greek 

a. Thermal 	diffusivity, 	5'"" Ft2  Hr-1  

aT 
Time parameter, Dimensionless 

Temperature difference parameter, 	q Dimensionless 

60  Difference 	between initial 	uniform 

temperature and tube 	temperature F 

8 Difference between 	initial 	uniform 

temperature and temperature at a 

given 	time 	and position F 

T Time flours 

p Density lb 	F 3  

subscripts 

1,2, -n refer to a particular region 

21, etc. effect of region 2 on region 1, etc 
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This paper deals with the transient temperature gradients in soil surrounding long, cy-
lindrical heat sources or sinks, the temperature of which is suddenly changedfrom thatof 
the soil and maintained constant at the newvalue. Thepaper also considersthe changes in 
temperature gradients in the soil alter the removal of the heat source or sink, that 'is, when 
the source or sink is no longer maintained at the constant temperature but is allowed to 
follow the soil temperature as the soil recovers towards its undisturbed thermal state. 

Three different methods of approach to the problem are used.' First, the exact 
mathematical solution of the differential equation of heat flow is evaluated. Unfortunately, 
this differential equation has been solved for only an idealized set of boundary conditions, 
but the complexity of this solution and its evaluation indicate that the solution for more 
practical boundary conditions would be too tedious to be practicable. Secondly, a nu-
merical method of solution is used in which small finite time and' space increments 
replace the corresponding quantities of differential magnitude. By means of this meth-
od practical boundary conditions can be embodied in the solution and the thermal re-
covery time of the soil can be investigated. The, numerical method should be the most 
easily adapted to the study of frost penetration and thawing in soils. Thirdly, the meth-
od of the electrical analogy to the flow of heat is applied to the study of the problem. 
Again by this method real boundary conditions can be treated and the time for thermal 
recovery of the soil can be investigated. 

Methods of Solution 

In the application of each of the methods used in this paper certain general simplify-
ing assumptions have been made. The soil surrounding the heat source or sink has 
been assumed to be homogeneous and isotropic. Although in only very few cases are 
soils reasonably homogeneous, the nature of the unhomogeneity is so unpredictible that 
such an assumption is advisable to enable the formulation of a manageable solution. 
The assumption of isotropicity seems to be generally sound. Heat flow in the soil is 
assumed to take place by conduction only, since in most dense, finely gramed soils 
the effects of convection and radiation are negligible. Further, the effects of the change 
of thermophysical properties of the soil due to freezing or thawing and of migration of 
soil moisture due to the thermal gradients have been ignored. Although the change of 
the thermophysical properties would be exceedingly difficult to incorporate into the 
mathematical and electrical analogue methods, it could be done quite easily in the nu-
merical method. The available data concerning moisture migration are inadequate, 
at present, to support an accounting for this effect; however, when such data become 
more plentiful the influence of moisture migration can be readily incorporated into the 
numerical method. 

Mathematical Solution of Differential Equation 

The differential equation describing the radial temperature history of the region 
surrounding a long cylindrical heat source is given by. 

80 	fa'o 	1 ao\ 
(1) 

Carsiaw and Jaeger (2) have solved this equation for the following' boundary conditions: 
(1) The heat source consists of an infinitely long cylinder of radius a; (2) the surround-
ing medium is homogenous, of infinite extent in all directions, and at a uniform initial 
temperature of zero; and (3) at time equals zero the cylinder is suddenly raised to 
the temperature o,, , after which it is maintained at this temperature. For these bound-
ary conditions the solution of the differential equation was found to be 

0 = , + 20 
	Jo (vr)No  (ua) - I'To(ur)Jo  (oa) dv 	 (2) 

,r Jo 	 J (ua) + Nl (ua) 	u 
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Using this equation for the temperature distribution in the general equation for radial 
heat flow, 

q= _k2rr() 	
(3) 

Carslaw and Jaeger found the heat flow across the' surface of the cylinder to be 

48,k r e 	du q=—t 	
2 a,r' jo 	u[Jl(ua) + N0 (ua)I 

In rearranging Equations 2 and 4 for evaluation Gemant (3) introduced the following 
dimensionless parameters: 

X =' 

	

a 	a2  
= 	, 	v = au, 

Substituting these parameters into Equations 2 and 4 the equation for the temperature 
distribution becomes 

o = i + ie' 	Jo(xv)No(v) — Jo(v)No(xv) dv 	
(5) irJo 	J(v)+N(v) 	v 

and the equation for heat flow becomes 

8 r- 	dv 
Oo/c 	or Jo ° 
	

v[J(v) + N(v)I 	 (6) 

For numerical evaluation the integrals of Equations 5 and 6 are broken down into 
three parts: 

= ++ 
	

(7) 

	

It has been shown by Gemant that if a value of v1  be chosen such that 	<< i and 
xv0  <<1 then the first integral of Quation 5, when reduced to the form of Equation 7, 
becomes 

..., Jo(xv)No(v) — Jo(v)No(xv) dv = 	In. x 
e 	

Jl(v) +Nl(v) 	v 	In. v1  — 0.116 	 (8) 

It was also shown that by choosing v2  such that 

3 

the third integral of Equation 5, when reduced to .the form of Equation 7, can be 
neglected. Equation 5' therefore has been reduced to 

mx 	2 (". _,, Jo(xv)No(v) — Jo(v)ATo(xv) dv 

	

0 = 1 + Inu + 0.116 + - J 	 Jl(v) + Nl(v) 	'T 	 (9) 

The integral of Equation 9 can be evaluated numerically between the finite limits v, 
and Vg 
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In a similar manner it has been shown that by choosing 

vi <<l, and 

Equation 6 can be reduced to the form 

= 	—2ir 	
+ r' - 	dv 

Ok 	mv, - 0.116 	,, e 	v[J(v) + N(v)] 	 (10) 

which also can be evaluated numerically. 
The transient temperature distribution in the medium surrounding a line source or 

sink can be deteriñined from Equation 9 and the heat flow at the surface of the source 
or sink from Equation 10. 

Numerical Method of Solution 

Numerical methods have been used in the solution of engineering problems for many 
years. Much has been written on the subject of these methods applied to special fields 
of interest (4), (5). The method applied to heat conduction as presented by G. M. 
Dusinberre (6) consists of dividing the thermal system into a number of reference 
regions and establishing simultaneous and independent heat balances between each re-
gion and its adjoining regions. This application of the method is based upon the follow- 

ing three assumptions: (1) Negligible 
error is introduced by using the tempera-
ture change of a central point many region 
in computing the change of heat stored in 
the region due to this temperature change, 
(2) a time interval can be chosen sufficient- 

T ly small that there is negligible error in 
t 	 2 	t6 	using the initial temperature gradient be- 

tween central points of adjoining regions 
in computing the heat flow between these 
regions during this time interval, and (3) 
during this time interval any region is 
affected only by those regions adjoining it. 

The rate of heat flow between any two 

	

Figure lÀ. Thermal System for One Dimen- 	adjoining regions is dependent upon the 

	

sional Heat Flow Through a Slab, 	overall transmittance, K, and the temper- 
I 	2 	3 	4 	5 6 	ature difference between the two regions. 

The rate of heat flow from a region 2 into 
a region 1 may be expressed as 

1 21 :1. 	T. 	 qu = 	- t,) 	(11) 
Figure lB. Electrical Circuit Analogous 

to Thermal System. 	 Similar equations may be written for the 
flow into region 1 from all other adjoining 

regions, so that the total rate of heat flow into region 1 becomes 

= K,,t, + K,,t, + 	+ K,.,t, -E K,,t, 	 (12) 

According to assumption 2 above, Equation 12 gives the rate of heat flow into region 1 
during the time intervalr. Duringthis time interval the temperature of the midpoint 
of region 1 changes from ti to ti' , hence, according to assumption 1, the rate of heat 
storage in region 1 during this time interval can be given as 

- t,) 

	

q, - 
-. 	 (13) 
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Since heat is stored in a region as a consequence of the net heat flow into the region, 
Equations 12 and 13 can be equated to give: 

, 	K21 A7t2 	K,, 13 	 K,, art. 	r 	K, r1 

	

+[1—_—JtI 	 (14) C.  

as an expression for the temperature, t1', of the midpoint of region 1 after the time 
interval 6T. In equation 14 it is apparant that the coefficients of the temperatures of 
various regions are constants depending upon the physical constants of the particular 
problem. These coefficients are known as weighting factors and Equation 14 can be 
rewritten as:  

ti = F 2,t2  + F,,t,  + - 	+ 	+ F,,t, 	 (15) 

If F11 were chosen to be negative, an erroneous oscillation or divergence in the 
calculated temperature would occur, since the new temperature of point 1 would depend 
upon its old temperature in a negative sense. The criterion for convergence must 
therefore be 	. 	. 

(16) 

or. . 
	 .: 	 . 	 (17) 

The maximum value of & permissible must therefore be 

. 	 Cl  
(18) 

If the temperature distribution in a medium in which heat conduction is taking place 
is known at any time, i-  , the temperature distribution at a time + i- can be found by 
subdividing the medium into appropriate regions and solving Equation 15 for each region. 
If any region undergoes a process involving latent heat it may be taken into accouflt by 
adding a latent heat term, q. , to Equation 12 which appears as the added term, 
in Equations 14 and:15. If a region. undergoes a change of thermophysical properties 
the weighting factors involving this region must of course be changed for subsequent 
steps of the calculation. 

Method of Electrical Analogy 	 . 

The mathematical laws expressing the conduction of heat in solids and the flow of 
current in certain noninductive circuits are identical, therefore, it is possible to con-
struct an electrical circuit in which the flow of current is analogous to the flow of heat 
in a solid and the potential distribution is analogous to the temperature distribution in 
the solid. The time factors In such an analogous electrical circuit can be so adjusted 
at will that a thermal process can be reproduced electrically in much greater or less 
time than would be required for the actual thermal. process to take place. For this 
reason the electrical -analogy method is to be preferred for the study of many heat-
transfer problems which involve long time periods. 

For a slab of infinite length such as is shown in Figure 1A, the temperature history 
can be described by the differential equation 

	

at 	8't 	 (19) 

In Equation 19 	 - 	. 	. 	.. 	. 	... 
k 
pc ! 
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If we let T = R, (thermal resistivity) and 
pc. = c (volumetric heat capacity) then 

a 	I and Equation 19 becomes 
RCg 

at_ '1 a2t 	 20 .-r, R4 C,az 

For an electrical circuit with uniformly 
distributed resistance and capacitance such 
as is shown in Figure lB the voltage hitory 
can be described by the differential equation 

ov 	ia'v 
är _. R.C. Oz 

The similarity of the flow of electricity and 
heat can be seen by comparison of Equations 
20 and 21. The heat capacities of the four 

- 	 -elements 2, 3, 4, and 5 of Figure 1A are 
- 	 represented electrically by the condensers 

Fiure 2. Temperature Gradients 'in Ground. - C2, C3, C4, and C5 in Figure lB. Similar- 
ly, the thermal resistivity between any two 

points of Figure 1A is represented by the corresponding section in Figure lB. 
A circuit can be constructed in which the values of the resistance and capacitance are 

numerically equal to those of the corresponding thermal quantities. In such a circuit 
the transient voltage changes occur in the same time in seconds as the analogous tem-
perature changes occur in hours.- Paschkis (7), has suggested that the electrical analogy 
can be made more -versatile in the following manner. 1f it is desired for the transient 
time factors in the electrical circuit to be different from those in the thermal circuit the 
., appearing in Equation' 20 may,  be reduced- by a factor, n, such that,, hr.. The denom-
inator of the right side of Equation 20 must also be reduced by the same factor, n. 
Equation 20 therefore becomes:  

- • aV 	1 81v 

a c 	- 	' 	.'. , 	 - (22) 

It is possible that the resistance and capacitance units which correspond in:  magnitude to 
the desired thermal properties may not be obtainable. The constant- m -may be introduced 
into the right side of Equation 22 in such a manner that the equation is not changed.---- 

'OV 	1 	81V 	 . • - - 	- 	-. 	• 	- 
97. (( 8x'. 	- , 	-. 	 -,- 	• -. (23) 

- 	- 	- 	- 	• 
It is evident that Equations 23 and 21 are identical if-the two conditions  

R,m 	- 	• - - 	-- 	- 	' -- 
- 	(24) 

-' 	.- 	
- 	•'• 	

'(25) 

are fulfilled. By proper' selectiän of the:-magnitude of n and m to satisfy the condition 
Tj  = ni-. 	as well as Equations 24 and 25 a convenient time increment and feasible sizes 
of,resistors and condensers may be obtained. The voltage Vcan be any convenient value. 
It must only be remembered that the total applied voltage V represents the over-all tem-
perature differenceand that' the voltage -at any pointinthe circuit represents 'the temper-
ature excess at the corresponding point in the thermal system 
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Application of the Methods 

The three methods of solving heat-transfer problems discussed in general terms 
above will now be applied to the study of a typical problem. It is desired to investigate 
the transient temperature distribution in the soil surrounding a single or a group of 
four horizontal tubes embedded 8 ft. below the ground surface. These tubes may well 

represent the ground coil of a reversed- 
cycle refrigeration system. Two conditions 
will be investigated: a winter condition in 

GROUND which the ground is initially at 45 F. and SURFACE 

the coil is suddenly changed to 20 F., and 
a summer condition in which the ground is 
initially at 64. 5 F. and the coil is suddenly 
changed to 110 F. The thermophysical 
properties of the soil are selected from 
data of Kersten (8). These data are appar-
ently the best available at the present time. 

The mathematical solution of the dif-
ferential equation which incorporates ideal-
ized boundary conditions and not the actual 
boundary condition of the problem is eval-
uated to be used as a reference solution and 
as a check on the accuracy of the electrical 
analogue. Even though this solution does 
not represent the actual problem specified 

Figure 3. Reference Network Used with The above, it could be applicable if the tubes 
Numerical Method. 	. 	were embedded 15 to 20 ft. deep where the 

ambient soil temperature is very nearly 
uniform and the influence of the ground surface boundary conditions are negligible. 
Equations 9 and 10 for the temperature distribution and heat flow respectively are e-
valuated by graphical integration. 

The study of the problem incorporating the actual boundary conditions is made by 
means of the numerical method of solution. From experimental data on ground-temper-
ature variation throughout the year (9), 
the maximum and the minimum ground 
temperatures were found to occur in 
August and March respectively, as shown 	8§ § 	§ § 	§ 
in Figure 2. The ground temperature 	-. 
passes through an annual cycle between 
these two gradients, but the extremes 
have been used in order to arrive at a 
conservative solution of the problem. 	- 
For the short period of time considered 
in this investigation (maximum 12 days) 
the change in ground temperature gradi- 
ents is negligible; hence to simplify the 	Figure 4. 3.ectrical Analogy Circuit For. 
calculations the gradients shown in Fig- 	 13/16-in. Diameter Tube. 
ure 2 are assumed to be steady state 
gradients. 

From the equation for steady-state heat conduction through a slab 
dt qkA 	 . 	 (26) 

it can be seen that the temperature gradient
AL  
d. must vary inversely as the conductivity 

k. Therefore if the gradients shown in Figure 2 are considered steady-state gradients, 
then the conductivity of the soil must increase with depth. In order to further simplify 
the calculations the actual gradients of Figure 2 have been approximated by the two 
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dashed straight-line segments shown, thus necessitating only two layers of different 
conductivity. The ratio of the approximating gradients in layers A and B are 1. 8 to 1 
for the summer gradient and 4 to 1 for the winter gradient. Hence, the ratio of the 
conductivities of layers A and B respectively must be 1 to 1. 8 for the summer and 1 to 
4 for the winter. From the data of therm- 
al properties of soils (8) the following 
values were chosen arbitrarily for the 	 ON 
purpose of this example: MEMO! i1IlUU 

Winter Conditions Sununer Conditions 

Region A 	Ic = 0.25 Ic = 0.28 

P=83 P83 

c 	= 0.18 c 	= 0.18 

iUIII Region B 	k = 1.00 	 Ic = 0.50 

P•= 135 	 p = 100 	
UUIE 

c =0.22 	 c =0.20 P 	 p 	 Figure 5. Tenerature Distribution For 
The reference regions used in this 	 Idealized Case. 

numerical method have been formed by 
superimposing a square grid onto the crosssection of the soil perpendicular to the tube 
using the center point in each square as a reference point (Fig. 3). With 1-ft. -square 
grids the thermal conductance between the reference points in layer A for the winter 
condition is 

kA = 	= 5(i) = 25 BHr'Y 

The heat capacity of each section is 
C = c9pV = .18(83)(I) nu 15 BF' 

ilIlIllUllIllIfi 
NEI!IIM-Mr 
UIIflhii!IUIII 

iI.IuI.IuII,iii 
Figure 6. 1ate Jlleat Flow at Tube 

Surface. 

From Equation 18 the limiting value of i.-r 
is 15/4(0. 25) = 15 hr. Similarly for layer 
B, K = 1, C = 30, andir= 7.5 hr. Since 
it is desirable to have the same&rin both 
layers and also for this value to be a mul-
tiple of 24 hr. , a time interval of 6 hr. is 
chosen. Usingr= 6 hr. the weighting 
factors for the temperature of each point 
in layer A surrounding the point in ques-
tion is 

- K,1i- - .25(6) 

The weighting factor for the point itself is 	P = I - 	= I - 4(1) = .6 . Similarly for 
layer B the weighting factors are found to be./',.1 .2 .2 and F = .2. Weighting factors for 
the points lying on the plane of discontinuity between layers A and B, the midplane, 
require special consideration. The factor Fil weighting the influence of the tempera-
ture of one point on the midplane upon another point on the midplane is based on the 
arithmetic mean of the physical properties of the two layers. For two points on the 
midplane then 

L.25 + 1.0016 - 
= 	

15+30 - .167 

Fu = I - .10 - 2(167) - .20 = .366. 

MOMMIS 4MILM 

UI uIIuhIi 

II 

The initial temperature distribution in the soil surrounding the tube is known from 
Figure 2. For the first step in the êalculations the grid point representing the tube is 
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Figure 7. Temperature Distribution After Three Jays Operation of 110 F Source. 

assigned the temperature 20 F. which is held constant throughout the remaining steps. 
The ground-surface temperature is fixed at a constant value of 29 F. although it could 
be varied at will. Equation 15 is now calculated for each grid intersection to find the 
new temperature distribution after the time incrementAT = 6 hr. This process is con-
tinued for 12 steps to find the temperature distribution after three days. To study the 
thermal recovery of the ground after the heat sink is removed, calculations are con-
tinued as above using as a starting distribution the calculated distribution existing at 
the time the heat sink is removed. The grid intersection representing the tube is now 
no longer maintained at 20 F. but is allowed to change as any other point and its tem-
perature calculated at each step. 

The method of the electrical analogy as used here serves two purposes. The data 
obtained can be compared directly with the results of the mathematical solution as a 
check on the electrical analogue results. Also, the data can be interpreted in such a 
manner as to afford a check between it and the numerical method of solution. 

The electrical analogue circuit itself is representative of the idealized boundary 
conditions which were assumed in the mathematical solution. The primary interest 
is the zone within 2 ft. of the heat source and from the results of the mathematical 
solution it is found that there is no disturbance of the temperature beyond 8 ft. from 
the source in the 12 days considered here. Consequently, the zone from the source to 
a radius of 2 ft. from the source is divided into eight concentric sections each 0. 25 ft. 
wide. The zone from 2 ft. to 8 ft. radius from the source is lumped into one section. 
Normally one second in the electrical analogue represents one hr. 'in the thermal' 
system, however, itisdesirable to let one second in the analogue represent 24 hr. in 
the thermal system, hence, 	 - 

rnr. 

241-Irs. = ,&X lSec. 

n = 24 

It is known that the amount of heat conduction through a hollow cylinder is given by 

,rkL 
q= - 2— (12—ti) 

-(27) 
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This equation may be written as 

	

q=—-(t,—tj) 	 : 	 (28) 

Comparing Equations 27 and 28 it is seen that the thermal resistance, R1 ,is.given by 

Rr   
Ti 

The thermal resistance for the first section in the A regián for the winter condition is 
found to be 	 25 

ifl68 
liT = ______ = 1.14 HrPB 

2irC28)(1) 

Based on Equation 24, 

m 	 1.14m 
or 	=11, 

n 	 24 

Choosingm = 11.3 X iO°gives R. = 534000 which is a reasonably sized maximum resistance 
unit. Checking this value of m to find what maximum size condenser is required we 
find that 

CT = c2pV = cp7r(r - r) L = .18(83) ir(.252 - .033682) = 2.88 BP' 

and on the basis of Equation 25 

C2 = 	
= 
	2.88 

106 = .26 X 1O faradá = .26 f 

This results in condensers of reasonable size. Continuing in this manner using m = 
11. 3 x 106  and n = 24, the sizes required.for the remaining resistors and condensers 
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Figure 9. Thermal Recovery of Soil After Three Days Operation of 110 F Source. 
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are determined. The electrical analogue circuit is shown in Figure 4. 
In order to use the same electrical circuit for the layers A and B, which have dif-

ferent thermophysical properties, the time factor must be different for the two regions. 
Since the electrical units are the same, the time constant must be changed by the same 
ratio as the thermal units. 

H.. C,. n8  H,B  C, 
R.4 C.a ha 	H.4  C,4  

or 	
= 

 
[k A 

[ 	]18 
R,4  C.4

= 24 	
(100 X .20) 

28 
Hence, from Equation 24 	

c.4 ) 	 (83 X .18) 

r, 	24H = - = 
fl8 	18 HrSec' = 1 Sec. 

The same circuit thus represents the layer B if the data are interpreted such that 
1-1/3 seconds in the electrical circuit are equivalent to 24 hr. in the thermal system. 

The thermal recovery of the soil after removal of the heat source is investigated by 
removing the applied voltage and allowing the condensers to discharge to ground poten-
tial at point J in Figure 4. 

To compare the results of the electrical analogue with those of the numerical method, 
the data obtained for layers A and B must be combined graphically. The data correspond-
ing to region B is combined by.  smooth curves with the data of region A and the result-
ing distribution is then superimposed graphically upon the assumed steady-state gradient 
which existed in the undisturbed soil. 

Discussion 

The results obtained by using the methods previously outlined are presented in 
Figures 5 to 11. Figure 5 shows the evaluation of Equation 9 for the temperature dis-
tribution around a cylindrical heat source embedded in a homogeneous medium initially 
at uniform temperature. These results are presented in terms of the dimensionless 
parameters and are applicable over a wide range of the variables involved. Similarly 
Figure 6 presents the data obtained by the evaluation of Equation 10. This curve rep-
resents the heat-transfer rate across the surface of a single tube. The rate of heat 
flow is theoretically infinite at the initial moment, but as seen, it decreases rapidly to 
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a finite value. The results obtained by using the numerical method for finding the tem-
perature distribution around a single tube placed 8 ft. under the ground surface and 
operated as a heat source at 110 F. for three days are presented in Figure 7. The fig-
ure also shows the temperature distribution around a group of four tubes when operated 
in the same manner. The extreme right portion of each part of the figure shows the 
horizontal extent of the distance of influence, and the temperature distribution here is 
that of the original undisturbed soil. Similarly Figure 8 shows the results corresponding 
to conditions of Figure 7 for the case of a heat sink operated at 20 F. for three days. 
Figures 9 and 10 present the results of the numerical calculations of the thermal re-
covery of soil after removing the sources and sinks respectively. Part (A) of each 
figure shows the temperature distribution along the vertical center line of the single 
tube during thermal recovery and 
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(B) the corresponding distribution for the 
group of four tubes. The initial gradient 
in each case is that which was found to 
exist after operating the sources and  
sinks for three days. It is seen that after 
operating the sources and sinks for three 
days, nine days are required for the soil 
at the depth of the tubes to return to with-  
in about 3 F. of the original undisturbed 
temperature, It was also found that after 
one and two days of operation of the heat 
sources and sinks a recovery time three  
times as long as the operation time was 
required. 

Figure 11 shows a comparison between 	E 
the results obtained from the electrical-.  To 

analogy circuit and the mathematical 
solution for a 13/16-in, diameter tube. 
As can be seen from the figure the re-
sults of the two methods are in good 
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sponding points in the system the electrical method gave a slower response to a change 
of tube temperature than did the numerical method. The more rapid response observed 
in the results of the numerical method is actually an error due to a violation of the first 
assumption upon which the method is based. The first assumption as given previously 
implies that the temperature of the central point in any region is the average tempera-
ture of the entire region. In the region that includes the tube this is not true, especially 
during the time immediately after the tube temperature is changed if the volume of the 
region is large compared to that of the tube. Since this assumption implies that the 
tube completely fills its own region the accuracy may be increased by choosing space 
increments near the tube much smaller than the 1 ft. used in this example. A check 
made using space and time increments much smaller showed that the temperature at 
a point 1 ft. away from the source approached more closely the temperature obtained 
by the electrical analogue. 

In this respect the advantages of the use of cylindrical coordinates for this particular 
problem are worth mention. By using cylindrical coordinates the space increments 
near the source or sink can be made small and increasingly larger further away from the 
source. This will improve the accuracy to a great extent but at the expense of more 
computational labor. 

The methods discussed in this paper should prove to be valuable tools in the study of 
the rates of frost penetration and thawing in soils. The application of all of the methods 
is considerably simplified when large, plane heat sources and sinks are concerned. 
Mathematical solutions are advantageous in only those cases in which the boundary con-
ditions are simply defined. The electrical -analogy method should prove very useful 
when one geometrical system is to be studied under several different sets of boundary 
conditions and thermophysical properties. If a single study incorporating complex 
boundary conditions is to be made, then in general, the numerical method should prove 
to be the most useful. 
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