RESULTS OF A QUESTIONNAIRE ON REMEDIES AND TREATMENTS Tilton E. Shelburne, Director of Research, Virginia Department of Highways, University of Virginia To secure pertinent information concerning the frost action problem throughout the country a questionnaire was prepared and circulated to all 48 state highway departments. The questionnaire was designed to secure information not only on the extent and seriousness of the problem but also to determine current practices employed in minimizing or eliminating this problem. A brief summary of the information received from the survey is shown in Table 1. #### Extent of Problem The question was asked, "Is damage caused by freezing of road bases, subbases, and/or subgrade soils a problem in your state?" The majority (40) answered in the affirmative. Only five southern states (Louisiana, Mississippi, New Mexico, North Carolina, and Oklahoma) indicated that it was not a problem. Twenty-two replied that the problem was a major one in their state. Some stated that the seriousness varied from year to year depending upon climatic conditions. Others indicated that the problem was more pronounced in certain areas, particularly those of high elevation. #### Base and Subbase Types The next question was, "What type(s) of base or subbase materials seems most susceptible to damage by freezing?" As might be expected, a variety of answers were received to this question. Some stated that they used base materials not susceptible to freezing and that the trouble was usually in the subgrade (or basement) soils. Two southern states mentioned limerock bases as being susceptible to freeze damage. Others reported that any permeable bases were troublesome. The majority indicated that soil bases containing predominatingly fine sands and silts were the worst offenders. ## Subgrade Soils A further question asked for information on the geological (or soil) formations or major soil types most susceptible to damage by freezing. Since a wide variety of soils exist it was anticipated that the information obtained in this respect would vary. Some gave pedological names of the soils, others gave physical test constants, and some H.R.B. soil classification. Still others gave general geological parent rock formations, or soil areas. For a complete tabulation of the replies to this question, the reader is referred to Table 1. In general, it appears that those soils most susceptible to frost heaving are those containing high silt contents. In one state they may be in the Coastal Plain, in another they are found as glacial lake deposits and in still a third as windblown or loessial materials. Another question, "In soil areas susceptible to frost action, is the damage related to profile development?", was asked. It was intended to read soil profile development; however, the word "soil" was inadvertently omitted and some of those replying referred to the profile of the road. The majority of those replying were of the opinion that damage is related to soil profile development. Some observed that damage was mostly in cut sections. The experience of at least one state indicated that any soil except corase sands and gravels are susceptible to frost heaving when underlain by a more impervious formation within a depth of about six feet of grade elevation. #### Current Design and Construction Practices In those states where road damage by freezing prevails the replies indicated considerable thought has been given to remedies and treatments in current design and ## TABLE 1. DATA FROM STATE HIGHWAY | | | | Base | | Subgrade | | | |--------|-----------------|---|---|---|--|--|---| | State | e . Reported by | Is damage caused by
freezing or road | What type or types of | % of State
area affect- | Give geological(or soil)
formations, or major | % of State
area affect- | In soil areas susceptible
to frost action, is the | | | : | bases, subbases, and/c
subgrade soils a prob
lem in your state? | | ed. (Est.) | soil types most sus-
ceptible to damage by
freezing. | ed. (Est.) | damage related to soil profile development? | | | <i>‡</i> | Yes No Major Minor | by freezing. | | | | Yes No Remarks | | Ala. | J.L. Land | x Very
minor | plastic-L.L. P.I. or P. | at intervals | Those derived from
disintegrated stone
and those over hard
pans or impervious
& inclined strates
of hard pan. | Practically
none-such
sreas are
corrected
by base or
subbase. | x For the most part soils that could be affected by frost are treated or covered sufficient to prevent their reaching low temps. | | Ariz. | H.H. Brown | x In high-
er ele-
vations | Those having a high per-
centage of material
passing No. 200 sieve. | 5-10% of
State
highway
mileage | Frost damage is con-
fined principally to
the base. | | × None | | | | • , | | | | | · | | Ark. | E. L. Wales | , x | • • | • | A-4 Type Soils | 50 % | | | Calif. | F. N. Hveem | x Very minor | Trouble is usually in basment soils . | se | Sendy clay | less than 5% | x Damage occurs
mostly in cuts. | | | | | | | | | • | | Colo | R.E.Livingston | n
* * * | Those in high percentage of No. 200 (15% or greater) | 40 % | All of the A-2 group
and the A-4 and 5
groups. | 40 % | x In snow areas, fill sections are much less aus- ceptible to dam- age than are cut areas which allow infiltration of snow moisture. | | Conn | Philip
Keene | x x | None. Boses and sub-
bases are clean bank
run gravel or clean
bank run sand. | • | Silt stratm (glacial
lake deposits)are
worst formations.
Clay stratm (glacial
lake deposits) are | | ome- In the older roads, excessive heaving often occurs in the "A" horizon at the grade points. | | | | | , | | next.Glacial tills (ground moraine deposits) are moderately bad - they contain 20 to 50% silt and clay. | | This has been largely eliminated in the newer roads by carrying the subbase 50 ft. into the fills and taking care to remove the "A" hori- | | | | | , | | | | move the "A" hori-
zone material. | | Del. | Frank Bowery x | : In severe
winters. | None. Bases and sub-
bases are dense frost
proof gravel-sand-
clay mixes. | 30 % | Stratified silts in Atlantic Constal Plain. Fine sandy silts with less than 50 % sand and gravel; 25% silt. 15-25% clay. L.L. 25-35%; P.I. 10 or less. | | me- Topography is generally flat. Drainage difficulty & location of water table are prime considerations. | | | - | • | | | | | | ## DEPARTMENTS ON THE FROST ACTION PROBLEM | State | construction practices and be | | nickness of subbase
se construction vary
opth of frost pene- | degree o | correlation between
of distress attribut-
frost action and
conditions? | Is research underway or contemplated in near future concerning freezing of bases, subbases, and/or subgrade soils? | | | | |--------|--|---|--|-----------
---|--|--|--|--| | | | bgrade Yes No
Soils | Give design thick-
ness for var. frost
penetration depths | | Remarks
 | Yes No | List research projects and
state if in progress or
contemplated | | | | Ala. | facing the ordi-
nery depth of frost
action in this
state. | to a depth
greater
than frost
will | Froat is a minor
problem ordinarily,
our base courses
are thicker than
froat penetrates. | | However, most of
our dunage comes
from a rainy
period followed
immediately by a
flash freeze. | x | None | | | | Ariz, | Use 4-6in. thick-
ness of base
course; well graded
nonplestic material
with maximum of 8%
passing No. 200 siev
Subbase material haing.P.I.no greater
then 5 and no more
than 12% passing Nc
200 sieve. Subbase
varies from 6. to 19 | treatment
i
ve
v- | (Thickness of base
and subbase de-
pends principally
on character of
subgrade soil. | | Little or no distress
from frost in altitude
below approximately
3500 ft. above sea
level. Progressively
worse above 5000 ft.
Approximately little
difference between
5000-8000 ft. Precipit
tion increases with in
crease of altitude. | :a- | Recent survey of bases taken from altitudes below 5000 ft. showed that some were prefromming satisfactory and some unsatisfactorily. The condition of the projects has been coordinated with a teast for froat susceptibility. Additional work will probably be done this year. | | | | Ark. | • | - x | - | × | Most damage by frost
action occurs in north
ern portion of state. | x
1- | None | | | | Calif. | No special effort is
made to eliminate
frost action becaus
evidences of such
trouble are compara
tively recent. | are removed.
se Affected
areas back | | x | The mountainous region
in the northeastern par
of the state are the
only places where acat
tered minor damage due
to frost action has
occurred. | · t | -
- | | | | Colo. | materials with a numplestic de filler binder. ti No. 200 material si controlled su within narrow pr | o attempt x ther than nsifica- ion of bgrade ils at oper oisture content. | One third of the pureighted value thick determines 1 total thickness depends on the depth of frost penetration in highly reactive frost areas, range is thickness is from 15in. to 27 in. | ial-
ÿ | If the soil conditions are favorable, there does not seem to be too much damage regardless of the climatic conditions. | × | Have underway a directly
related research job con-
cerning seasonal moisture
changes and affect on
seasonal density. | | | | Conn. | These are clean bankrun gravel 100% ass 5 in. sieve, 30 5 to 65% pass Kin., 5-30% passes No. 40,0-10% passes No. 100, portion passing No. 100 has no plasticity. Underdrain at 5 ft. below surface is in stalled where neede to drain subbase or lower water table or intercept side-hill seepage. |
d | 20 in pavement, bas & subbase where 24 interests in 25 ins. The control of co | se
K | Soil type is the most important factor Grow water conditions and frost penetration dept are next in importance | nd
h | 1. Variation of froat heaving with depth of warer table. 2. Aid given by weahed and underdrain backfill to capilary rise in silty soil. 1 hery rise in silty soil. 1 hery rise in silty soil. 1 hery rise in silty soil. 2 hery rise in silty soil. 2 hery rise in silty soil. 2 hery rise in silty soil. 3 hery rise in silty soil. 4 hery results in soil soil soil soil soil soil soil soil | | | | Dél. | ficient thickness a
to minimize p
damage by frost. d
r | eter table | Design thickness of
pavement + base
+ subbase = 20
in. | • | Distress is approxi-
mately proportional
to climatic conditions
for any particular
winter. | x | Heat transmission of soils (in progress). | | | ## TABLE 1. (Continued) | | • | | Bese | | Subgrade | | | | |-------|----------------------|---|---|--|--|---|----------|--| | State | Reported by | Is damage caused by
freezing or road
bases, subbases, and/or
subgrade soils a prob
lem in your state? | -ceptible to damage | % of State
area affect-
ed. (Eat.) | Give geological(or soil) formations, or major soil types most sus- ceptible to damage by freezing. | % of State.
area affect-
ed. (Est.) | to frost | areas susceptible
action, is the
elated to soil
development?
Remarks | | | | Yes No Major Minor + | | | | | | | | | | | Limerock base | 50 % | Not affected. | | x | | | Fla. | H. C.
Westhers | x x | Limerock base | 30 % | , , | | | • | | | | | | | | | | | | | | | • | | | ٠, | • | | | | | | • | • | | 25.00 | | | | | | | | | | • • | | | | Ga. | W. F.
Abercrombie | x x | Limerock | 50 % | | | | | | | | | | | | | | | | Idaho | L. F.
Erickson | x x | Silt or clay bound
bases with high %
pass. No. 200 sieve; i.e. | 80.% | Clay silts, silty
clay losms | 80 % | × | Higher grades be-
lieved best al- | | | Efficason | ••• | pass.No. 200 sieve; i.e.
excess 10% When % pass
40 is plastic, effects | + 1.7 | • • • • • | | | though total thick-
ness of base & | | | | | are worse & night voi. | | | | | subbase of great-
est imp. Grade
limits amt. of | | | | | change soils appear to
lose bearing capty
rapidly. | • | | • | • | water available for saturation. | | | | | | | | | | * * | | | | | | | • | | | • | | | | | , , | | | | | | | | | | | | | | | • | | | · | | | | • | | · . | | | 111. | H. W.
Russell | x x | Those having high % of matl. pass. No. 40 & No. 200 seive. | | Soils having a clay
content less than
30% with silt &
sand content seldom
less than 50%, L. L.
usually 13-26, P. L. | | | Damage mainly
due to condi-
tions in cuts
where several
types are | | , | | • | *** | | usually 13-26, P. L. usually 12-20, P. I. seldom more than 10; or having textural classification be- | | | crossed | | | | | | | tween a sand & a clay with silty & silty clay loams pre-
dominating. | | | · | | Ind. | F.F. Havey | ر
ا | Differential frost heaves
or noticeable detrimental
frost act. is not
apparent in bases or
subbases | | Wet or water bear. Silts and/or fine sand strata in the upper 3 ft. of the subgrade. | Localized
areas. | x | Gen, confined
to stratified
glac. drift &
outwesh. | | | | | annases | | ., | | | | | | | • | • | | | | | | | | | | | | • | | | | | | | | | | | | • | • | | Iowa | W.H. Root | | Boses & Subbases rarely
affected by Frost
Action. | | Predominately silty clay, silty clay loams, silty loams, black soils with organic matter greater than 1%, glac. clays with high silt | 50 % | * | In fill sections
correction is se-
cured by relative-
ly high grades. | | | | | | | content & clay loams with L.L. greater than 35 and P.I. greater than 10, | State Give current de construction premployed in min or eliminating | actices and base | construction vary degree | of distress attribut- | Is research underway or contemplation near future concerning freering of bases, subbases, and/or subgrade soils? | ed . | |---|--
---|--|---|------| | Boses &
Subbases | Subgrade Yes No
Soils | Give design thick. Yes No
ness for var. frost
penetration depths | Remarks | Yes No List research projects an
state if in progress or
contemplated | nd | | surfs.thick- er & more dense. Double course surf. trent.& re- trend with mineral seal have replaced single appli- cution S.T. | None x | The second secon | If excessive rain-
fall precedes a
freeze the damage
to limerock bases
is considerably in-
creased. | x | | | Ga. (1.1) | | The state of s | | x | | | Idaho Use non-plas-
tic bases &
subbase with
open drainage
characteris-
tics. Limit
No. 200 to
max. 12% pre-
fer max. of 6
or 8% & non-
plastic | lac sand blanket or 3/4in to dust cr. gravel or cr. rock blanket over fine grained soils showing P.I. over 5 and/or linear shrinkage over 50%. Blanket course considered a part of base or subbase thickness & is | Design total x thickness re-
lated to bear indirectly the indirect | Varies with amt, of moisture available and cycles of freezing & thawing. Exceed, wet fall or spring gives trouble for breakup. Use toll thickness of 8-15 in. Frost penet, range to depths of 4 ft. in some areas. | | | | III. Use of dense graded granular matis. in bases & sub-bases. | generally non-
plastic. Replace ques x tionable matls. with more stable soils or gran-
ular matls. Use drainage | ्रिक्ष च्या १५० ० ५ ५ ५५ | Damage attributed
to frost action
confined to northern
one third of state. | x: · | | | | to lower water table | And the second s | i su ente | | | | Ind. None | Depend on
conditions
treatment may
consist of
either or
both: exca-
vation and
replacement
of question-
able soils
with granu- | . x | Most frost damage
confined to north
half of state. | x Member of Proj. Com-
mittee No. 7, H.R.B.,
"Lond Carrying Capacity
of Roada sa Affected
hy Frost Action." | | | | ler matl. to
avg. depths.
of 3ft. & sub-
surf. drainage | | | | | | Iowa Bases & Subbases are rerely effected by frost ect bon. | 1. Mineral agg-
salvaged from
old roadbed, ac-
lect. gravel backs
backfiled backs
backfiled backs
backfiled backs
2. Frast leave on
2. Frast leave on
accavate subgrade
to depth. 2. 5-3 ft
& backfilled with
well comp., dense
graded cr. stone. | × | Only with respect to
sensonal rainfall. | x | | TABLE 1. (Continued) | • | | | Base | Subgrade | | |--------|---------------------|--|---|--|--| | State | Reported by | Is damage caused by
freezing of road
bases, subbases, and/or
subgrade soils a prob- | What type or types of % of State
base or subbase mate-
rials are most sus-
-ceptible to damage | Give geological(or soil) % of St
formations, or major area af
soil types most aus-
ceptible to damage by
freezing. | <pre>ffect- to frost action, is the st.) damage related to soil profile development?</pre> | | | | lem in your state? | by freezing? | reering. | Yes No Remarks | | | | Yes No.Major Minor | n · | | | | Kan. | No informa-
tion | | | | | | Ку. | W. B. Drake | x x | Bases not susceptible | Alluvial silts, Eden 15 %
shale origin,
Conemaugh | | | La. | H. L.
Lehmann | x | | | | | Ме. | L. D.
Berrows | х х | Gen.all soils with more 100 %
than 10% pass.No.200
sieve & where drainage
is inadequate. | Silty glac. soils & 75 %
any elluvial or marine
deposits which are fine
textured or have poor
internal drainage. | Rare- All horizons
ly act similarly
in general | | Md. | J.E.Wood | x . | Fine sands 20 % | A-4-silt coastal plain 50 % province A-7-clays-thru out state A-5-Micaccous silt-Picdmont plateau | x In areas of high water table and soils of high capillarity frost action damage usually occurs in sub- grade of cuts | | Мавз. | J. E.
Lawrence | x x x Secon- On prim dary roads Roads | Subbases containing more 65 + s. than 10% (by wt.) of silty material PRA class A-4 | Glaciofluvial % Glacio- 40 %+
lacustrine, alluvial
& fill deposita | x Due to inadequate
drainage capillary
attraction in
subgrade in
swamp areas. | | Mich. | A. E.
Mathews | x x | Silt and very fine sand Throughout state | Moreines and till plains Throug
out st | gh- Usua- Heavy "B" hori-
late lly zon of gravelly
more in a cont-
son of gravelly
son a late
cont
trouble | | M inn. | S.S.
Watkins | x x | Not particularly damag-
ing to bases and sub-
bases | Glacial drift silts: 90 % oclays & their various more combinations; wind blown silts; lacuatrine silts & clays | or x Differential frost heaving is quite definitely related to profile development | | | | ·. · | | | : | | Miss. | H. O.
Thompson | × | | | • | | Мо• | W.C. Davis | x very
minor | | Loessial (Marshall, 50 %
Knox) Glacial (Grundy)
Residual (Lebanon),
all silt loums | x Lebanon, an old, ataganant, thorough- ghly leached soil with almost a pure silt top soil which gives trouble at times. Marhasall, Knox & Grundy give trouble usually only where silty top soil has been concentrated in swags by colluvial | | State | State Give current design and construction practices employed in minimizing or eliminating damage. | | | - | degree of
able to fr | | ess attribut- in near future concerning fre
ction and ing of bases, subbases, and/o | | | | |-------|---|---|------------
--|-------------------------|--|--|---|--|--| | | Beses &
Subbases | Subgrade Yes
Soils | No No | Give design thick-
ness for var.frost
penetration depths | | Remarks | Yes i | No List research projects and
state if in progress or
contemplated. | | | | Kan. | | | | | | 7. | . , | · · | | | | Ку. | None | None | × | | x | Climate is fairly uniform | ; | | | | | La. | | , | | | | | . , | • | | | | Me. | Variation in
thickness of
base where
needed to
overcome se-
vere cond. | Base is thick-
ened when low
stability is
encountered
in subgrade
conditions. | • | 18-30 in. used de-
pending upon cli-
matic region | x , | Northern portion of
state is very much
more affected than
in southern part
where a milder cli-
mate exists | | (No title given) Project is
being carried out in coopera-
tion with Bureau of Public
Roads | | | | Md. | Proper drain-
age removal
of inferior
soils 2-12 in.
of well grad-
ed gravel to
insure free
drainage | No treatment
of Al, A2, or
A3 soils.
For low cost
roads blend-
ing of screen-
ings cr. run
or gravel with
existing soil | , x | | x | Repeated freezing
and thawing causes
severe damage | , | • | | | | Mass. | Increase
normal
gravel sub-
base from
12-18 in.
depth in
known silty
areas | No specifica-
tions regard-
ing borrow | x | Increase normal
gravel subbase
from 12 to 18 in.
depth in known
silty areas | . x | Short periods of
extreme cold alter-
nating with above
freezing tempera-
tures cause most of
the frost damage | x | South Hadley - Rt. 116 Calcium
Chloride experiment | | | | Mich. | Excavate & backfill with granular material. Raise grade with granular material | Excavate & backfill with granular material Raise grade with granular material | x | Frost heave penetr
tion varies from
2½ to 3 ft. in
southern portion
of the state to 3
to 4 ft. in the
northern part | 8-
X | Degree of distress
is in proportion
to depth of frost
penetration and
degree of snow
removal | * . | Determination of subgrade
support by measuring
slab deflection on
frozen and unfrozen
subgrades (in progress) | | | | Minn. | ÷ | Soils selection in grading. Density control. Thicker bases & subbases, load restrictions | | Treatment as deep as 6 ft. to e-liminate differential frost. heave. 2% ft. treament in southern part where frost penetration is 4 th 5 ft. & 3% to 4 ft in depth in northe part where frost penetration is 6 the first threament of the first penetration is 6 the first part where frost penetration is 6 the first penetrati | o
rn | The distress is
greater where
the moisture is
more abundant | x . | Loss of load carrying capacity
on roads due to frost action
(under way). Treatment of
subgrade soils with calcium
chloride to prevent frost
action (under way) | | | | Miss. | | | x | • | | | × | | | | | Mo. | | Undergrade 12 in. or more to e- liminate undesir* conditi_us and backfill with suit- able soil | | | x | Worst frost
trouble have
occurred at
time of spring
thaw after a
without of
cycle freezing
and thawing | x | | | | #### TABLE 1. (Continued) | | | | Base | | Subgrade | | | |--------|---|--|--|-----------------------|---|----------------------------|---| | State | | freezing of ro | what type or types o
and base or subbase mate
a, and/or rials are most sus-
a prob-ceptible to damage | area affect- | Give geological(or soil)
formations, or major
soil types most sus-
ceptible to damage by | area affect-
ed. (Est.) | In. soil areas susceptibl
to frost action, is the
damage related to soil
profile, development? | | | | lem in your st | sate? by freezing? | | freezing. | | Yes No . Remarks | | | * 2 | Yes No Major' | | | | * * | 75 - 75 - 75 - 75 - 75 - 75 - 75 - 75 - | | Mont. | R. H. Gagle | x Varies
from
yr.to
yr. | All types from A2 to
A7. A4 and A5 are
worst. | | | | x When the water
table height i
involved. | | Neb. | O, L. Lund | x x | Silty sands and sta-
bilized soil base,
courses with more, | | Peorian & Loveland
Locas, Glacial Till,
Pierre Shale, Nio- | 50 % | x Frost heave may
occur in any
subgrade except | | | | | than 10% passing No. 200 sieve especially those with high plasticity indi higher than about 4. | ces | brara Chalk, top
soils & subsoils de-
veloped in lake bot-
toms of the sand hills | | course sand & gravels when underlain by a more imperviou. formation with a distance of about 6 ft. of grade elevation | | Ne v . | F. H.
Morrison | × | x Granular bases | | Silts & silty loams | 2 % | × | | N.H. | P.S. Otis
aut/Fill - | X X
ST V N S
FORES N N N | | | All except Al and the
better A3 soils. Great-
est damage in A4 silts
and A-2-4 glacial tills
having high percentage
passing No. 200 sieve | 90 % | × | | • | | | • | • | | | | | | ₩. ≪ |
diameter was | | ." . | | . "
 | | | N. J . | 13 " 12 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " | program signal and an analysis of the second analysis of the second signal and analysis of the second signal and an analysis of the second signal and analysis of the second signal and analysis of the second signal and analysis of the second signal and analysis of the second signal and analysis of the second signal seco | Open crushed stone placed in a box sec surrounded by an impervious soil & grambank run math. continue creek them 12% n | tion
nular
nin- | Soil containing more
than 10% finer than
.05 mm. size. Environ-
ment & number of hvy.
load repetitions have
a considerable in-
fluence on suscepti-
bility to damage | 60 % ' | | | | • | | | | | • | .;i | u M. E.B. Boil | employed in minimizing wit | | | base construction vary 2. degree of distress attribute in hidepth of frost pene- i 2 able to frost action and a figure in the control of | | | | | Is research underway or contemplated
in near/future concerning freez-
ing of bases, subbases, and/or
subgrade soils? | | | | |----------------------------|--|---|---|---|----|--|--|---|--|--|--| | | Bases & Subbases | Subgrade Yes
Soils | No | Give design thick- Yes
ness for var. frost
penetration depths | No | Remarks | Yes No | List research projects and
state if in progress or
contemplated | | | | | Mont. | In areas having high water tables, profiles are kept high. Careful at- tention is given to in- sure proper drainage. | If subgrade soils are A4 to A7 these materials are blanketed with a sand choker course | , , | | | A dry season before
winter freeze mini-
mizes frost action.
Slow and intermittent
freezing and thawing
increases frost
damage. | , x | Will make some investigation, when conditions warrant it. | | | | | Neb. | Limit No. 200
material to
8 to 10%
P.I. equal
3 or 4 | Install sub-
surface drain-
age. Use of rel-
atively greater
subbase & gran-
ular base
thickness. | X:* | | | Greatest distress in
areas where low tem-
peratures coincide
with high rainfall. | × | Reduction of strength of
losses of soils and granular
session soils are to the
session soils of the
action. A laboratory experi-
ment.using the tringial
equipment to determine
strengths. | | | | | Nev. | Additional
bases added | | × | More base is used x in colder climates | | | × | | | | | | N.H. | Use clean gravel having max of 5% passing No. 200 sieve. Gravel shoulders to the full width of the section | Vary depth x with type of subgrade soil. Use 12 in over best A2 material 30 in. over poor A-2-4 soil. Extensive use of under drainage high profile where-ever possible. | | Gravel depths can x
be reduced about
din in a bholow
din in a shallow
construction of the second
construction of frost and higher
average winter tem-
perature | | A dry season before
winter freeze mini-
midwinter those pt
to increase frost
action. Rapid spring
thaving increases
spring breakup. | * | Reduction of load bearing capacity during the thewing period. | | | | | N.J. | Generally broken stone, slag, bankrun & commerical gravel combined in the less of from 8 in. to 12 in have a high % of sand & vere a stone a silt. Extra depth of subbase is a specified in areas where ground water table is in close proximit to the subbase where the sand is sind to the subbase where the bearing of the soil is low-soil low- | ing less than 10% pass No. 200 sieve. Cover soils having high ol clay content y with a selected borrow, or f excavation matl. have 15% or less pass. No. 200 sieve. | x | | * | Degree of distress
is attributable to
the no. of hyv.load
repetitions. Cli-
matic conditions
have not been scud-
ied very thoroughly | * ************************************ | Contemplate obtaining field CPR values on subgrade and subbases during thaw. Determination of resistance of various soil types, covered with model concrete slabs, to the penet. of plungers with var. unit loads, (in progress). | | | | | N.M. | soil is low. | | | | | | 1131 | | | | | # TABLE 1 (Continued) | | | | Base | · | Subgrade | | | | |--------------|---------------------------|---|---|---------|---|---|---|--| | State | Reported by | Is damage caused by
freezing of road
bases, subbases,
and/or
subgrade soils a prob | -ceptible to damage | | formations, or major | % of State
area affect-
ed.(Est.) | to frost a
damage rel
profile, de | | | | | lem in your state? | by freezing? | | 11.66.51.118. | | Yes No | Remarks | | N.Y. | George W.
McAlpin | Yes No Major Minor | "'Dirty" Bun of Bank
Gravel; that is, where
the percentage finer
than No.200 mesh is
greater then about
10 in. | | Tills with "Hardpan" or "clay pam" layer, morrainc soils, thin tills. Heave on lacustrine soils is minor and tends to be uniform causing comparatively slight damage, except on line sandy deposits. Heaves are trouble some on half bog, bog, bydromorphic and planosol: | | x | Nearly
always n
heave where "B"
horizon is
crossed in
zonal soils | | | | | | | hydromorphic and planosol; if grade is not kept high Heave sometimes occurs on outwash if the ground water is high and drainage not good. Northern districts have trouble with boulders heaving beneath the pavement. | ; | | | | | | | | | | <u>.</u> * • | | ·. | | N.C.
N.D. | L. D. Hicks
W. A. Wise | х
х х | Stabilized granular base containing high P.I. of 6-9 where excessive moisture is present. | . 100 % | A6-7, hvy.clays & A-4,6,& 7 - silty loams. | 70 % | , * | Heaving & swell ing occur in cold & wet weather resp. Instability occurs in thawing, & serious shrinkage during dry periods. | | Ohio | C. W. Allen | , x x | High silt content soils usually with 50% or more particles between .05 cm.P.1.less than 10 HRB Class. A-4. Occasionally bad & frost heaving on very fine lake sands in northern Chio. | | Glacial drift particularly moranic areas. Also some alluvial silt. | 75 % | | Not notice-
ably. | | Okla | G. E. McCamy | x 200-220 fr
free days
per yr. Avg
frost pen-
et. 5-10 i | | | art. Calaum time | 60 % | × | | | Ore. | J.H.
Schaub | x ' 'x | Soils containing
3-10% by wght.of
matl.less than
.02 mm. diam. | 60 % | Silty & clayer type
soils generally of
an alluvial charac-
ter. | | | · | | | | • | | | | | | | | | • | | ι. | | | | | | | _ | | | |-------|--|--|---|-------------------|--|-------------------|----|---------|--|-----|-----|---| | State | Give current of
construction p | - | | | ess of subbase | | | | relation between | | | rch underway or contemplated | | | employed in mi | | | | struction vary
of frost pene- | - | | | stress attribut-
t action and | | | future concerning freez- | | | or eliminating | | tration | | or riost pene- | | | | ditions? | | | ases, subbases, and/or
soils? | | | | | | | | | | | | | - | | | | Bases & | Subgrade | Yes No | | Give design this | | es | No | Remarks | Yes | No | List research projects and | | | Subbases | Soils | | | ness for var. fro | | | | | | | state if in progress or | | | | | | | penetration dep | ths | | | | | | contemplated | | N.Y. | Have incorporated a gradation for R.O. gravel in specifications requiring that less than 10% shall pass No. 200 sieve. | Removal o | ve le. f f ve er- re e. si- m il c- f t t t t t t t t t t t t t t t t t t | ; | In an empirical manner We have redesign thickness for any specific frost penetratic Our minimum thic ness of foundatic course is 6 in., avg. about 9 in. in extreme case have gone to 24 in., but this is not only for reasons of frost penetration averages 30in. with a max. of about 50 in. | on.
ck-
con | | × | Not from limited observation. Frost had observed on Frost had been controlled to the following of follow | | | Research into correlation of frost action with soil, perha on a pedological basis, and defore it possible the recipitation of the precipitation of freeze index. Now engaged in load being tests to determine the loss of strength in subgrade soils & flexible pavements do frost action. We contempla laboratory research into the effect of chemical additives to subgrade soils, effect of freezing & thewing on streng of mudisturbed & compacted of the subgrade soils, effect of frost on different gradation for foundation course. Field research on the amount of unform heave that takes place lacustrine soils, particular the sandier members, & the effect on pavement is now in progress. Effect of frost on | | N.C. | | | | | | | | | | | | slopes correlated to soil type
direction of slope & climate | | N.D. | Pit run
sand,
gravel or
scoria
granular
subbases
are used
having
open gra-
dation with
either no
binder con-
tent or
low binder
content. | Inferior
soils are
wasted whe
practical.
If infer-
soils are
used, gran
ular subbe
is increas
to satisfa
tory meet
ditions fo | se
sed
c- | i
i | Design thickness
varies as per
subgrade bear-
ing power de-
termimed by N.D.
cone device. | | | | No data avail-
able. | | • . | 'Load Carrying Capacity of
Roads as Affected by Frost
Action" (in progress) | | Ohio | Limit to
granular
matls cont.
not over
20% pass.
No. 50 sieve.
Limit amt.
pass. No. 200
sieve to
20 % | Deep drain (4-5 ft.) cated with 2 ft. of p ment edge replacemen with nonfr susceptibl granular matls. | in
ave-
&
t
ost | r
n
ir
l | 12 to 18 in. thiness. Attempt is made to provide nonheaving material to at least & the depth of frost pene-tration. | | | s
n | namage is more x
evere in
orthern part
if state. | i | | Plate bearing test made
at different seasons of
year. (in progress) | | Okla | • | | | | • | • | | | | | | | | | | | | | | • | | , | | | | Ore. | Use of 18-
24 in. of
base by
following
table for
% -No. 40 sieve % P.I. | Compaction
95% optimumoisture c
Some expermental dra
age in use
Cushioned
course of
subbase ma | m
ont.
i-
in- | 0 | pprox.¼ depth
of frost penet.
den 18-24 in. | × | | oc
ì | eatest distress
curs when there
s a wet fall
eason. | x | | | | | %
P.I.
0-3 -20
3-4 -15 | used whene
feasible. | ver | | | | | | | | | • | ## TABLE 1 (Continued) | | | • | Base | Subgrade | | |----------------|-------------------|--|---|--|---| | State | Reported by | Is damage caused by
freezing of road
bases, subbases, and/or
subgrade soils a prob- | | Give geological (or soil) % of State
formations, or major area affect-
soil types most susceptible ed.(Est.)
to damage by freezing. | In soil areas susceptible
to frost action, is the
damage related to soil
profile development? | | | • | lem in your state? | by freezing? | | Yes No Remarks | | | | Yes No Major Minor | | | | | Penn. | WH.
Herman | x x | Fine grained soils & 50 % soft shales with L.L. & P.1. over 10. | HRB Classif. 50 % A-2-7, A-4, A-5 & A-7. | x | | | | | • | | | | R, I. | No Answer | | | | | | s. c. | L. W. Heriot | x very
minor | | | | | | | | • | • | • | | S.D. | A.W.Potter | - | Bases & subbases now We have no
in use show no det- known base
rimental effects due failures due | Silty loam & silty clay 75 %
loams of glacial or
acolian origin with | x Failures pre-
dominate in
cut sections | | | | | rimental effects due to freezing. However, to frost, we consider that when P.I. is over 6 & amt. base itself. passing No. 200 sieve in greater than 10 a loss of density is caused by freezing. | P.I. below Do sich
water present. Also
heavy clays having
high capillarity. | but are also
present in
fill sections | | | | • | | | | | | | | | | | | Tenn.
Texas | No answer
L.O. | x During As a | Those having excessive 75 % | Very little damage in
subgrade. Most occurs | Negligible | | | Ortolami | severe rule
winters | fines (35-40%) or more, except materials with P. I. below 10 and S. L. below 20. Any condition causing subgrade to be highly permeable will | in top 2-6 in. of base
but sandy subgrades
that feed water to the
base contribute to the
base damage. | • | | | | | increase freeze damage. | | | | Utah | | x x | Fine sands, silts & 75 % clays | Fine sands, silts & 75 % ;
clays having access
to underground &
surf. waters. | K In most coses. | | | | | | | | | Vt | R. I. Rowell | x x | All construction carries
15 in24 in. of glacial
gravel base. | Clay & silty soils / 35-45 % | Due to hvy. frost act., all work carries constructed gravel subbases of 10-24 in. No pavements are laid | | V a. | D.D. Woodson | · * | Bases cont. high % 5 % of silt & clay size particles. | Triessic "Red Beds" 7 % x & carboniferous anndstone & sheles. | on natural subgrade | | | | | • • | • • • | | | State Give current design and construction practices employed in minimizing or eliminating damage. | | practices
inimizing | and bas | nickness of subbase
the construction vary
pth of frost pene-
? | tween
attrib | re correlation be-
degree of distress
utable to frost
& climatic conditions | in near | arch underway or contemplate
future concerning freez-
bases, subbases, and/or
e soils? | |--|---|--|----------------------------|--|-----------------|--|---|---| | | Beses &
Subbases | Subgrade
Soils | Yes No | Give design thick-
ness for var. frost
penetration depths | | o Remarks | Yes No | List research projects and
state if is in progress or
contemplated | | Penn. | Use of 6 in. min.dpth. of granular matl. over ent. grading width as insulation | None | x | | . x | | × | | | R. I. | | | | • | | | | | | S. C. | No change in
design due to
small area
affected. | • | | • | | | | | | S. D. | base are place full width. Base thick-nesses vary from 6 in. to 12 in. Subbase thicknesses using pit run gravel vary from 6 in. to 24 in. | ular subbase
in critical
cut sects.
Use 12 in.
granular subase for | b-
11
r-
e
ced | Give design thick-
ness for var. frost
penetration depths:
NOTE: Thicker bases
are used where hyv.
classes is predomi-
soils (50% silt or
greater) having P. I.
under 10 appear.
Thicknesses are not
directly established
by depth of frost
penetration. | | Degree of damage due to froat actic dependent largely the amt. of moists present in the soi at the time of freing. A wet fall, it lowed by a severe the control of cont | on
ire
l
ez-
ol-
pring
amage.
freeze
lay an | | | Tenn. | | | | | | _ | | | | Texes | Seal leaky
surfacing,
strengthen-
ing a few
ins. of the
top base. For
new material
keep P. I. belo
12, the % - 40
below 35 after
rolling. | * | x | | | Not definite in th
freeze damage area | | | | Utah | Elev. profile 4 ft. + water tables & pro- viding dense graded base course also provide underdrains. | lect gran- | x | , | • | Distress is most
severe in ab-
normally cold
weather. | . x | Construction of 2 projects
over areas of bad frost
heaving & breaking soils.
In progress. Have watched
for two years. | | Vt. | 15-24 in.' gravel sub- bases laid on old work. Dpth. depends on soil char- acteristics & road class. | Heavier grav
subbase laid
where silty
and/or clay
subsoils are
encountered. | | Frost penet. is more or less constant throughout the state. | × | | | | | Va. | Not taken
into acct.
in pres.
design
methods. | | × | x | , | High precipitation plus low temp. causes extensive damage. (Occurs about every 10 years.) | | Conducted Statewide Road
Condition Survey at time
of 1948 spring breakup. | ## TABLE 1 (Continued) | | Reported by | | Base | | Subgrade | | • | | |--------|--------------|--|---|-------|--|--|--|--| | State | | Is damage caused by
freezing of road
bases, subbases, and/or
subgrade soils a prob- | | | Give geological (or soil)
formations, or major
soil types most suscepti-
ble to damage by freezing. | % of State
area affect-
ed. (Est.) | In soil areas susceptible
to frost action, is the
damage
related to soil
profile development? | | | | | lem in your state? | by freezing? | | | | Yes No | Remarks | | | • | Yes No Major Minor | , | | | - | | | | Wash. | L. H. Morgan | x x | Sands, gravels contain
small to moderate amts.
of silty binder. Gen-
erally nonplastic or
feebly plastic. | 10 % | Glacial areas (glacial till) & loessial soil areas (Palouse series) | 25 % | | Usually poorly
developed in
frost damage
areas. | | W. Va. | R. F. Baker | ,
x x | No information | 50 % | No information | 50 % | . x | Much excava-
tion in solid
rock. | | Wis. | A.T. Bleck | | Any type having more
than 10-15.% - 200
matl. | 100 % | All soils except
those having less
than 10-15 %
- 200 mstl. | 75 % | x | Degree of
severity de-
pends upon
stratification
of soils column
& cheracter &
proximity of
bed rock for-
mations. | | | | | | | | | | • | M.A. VerBrugge x 5 % A-4, A-5, A-6, & A-7, Most damage occurs in alluvial valleys Bentonite causes some trouble. construction practices. Many of them indicated that where soil susceptible to frost action are encountered that they are excavated and a backfill is made with granular materials. The replies emphasized the importance of an elevated or raised profile, particularly in areas having a high-water table. The survey revealed a wide variety of specification employed by the individual states in minimizing or eliminating frost action damages. Only ten states replied that design thickness of subbase and base was varied depending upon depth of frost penetration. In some cases the states indicated that the characacter of the subgrade soil was the governing factor rather than the depth of frost penetration. The majority (31) noted a correlation between pavement distress attributable to frost action and climatic conditions. #### Research Fourteen states have research projects underway or contemplated in the near future concerning freezing of bases, subbase, and/or subgrade soil. Others replied that such studies have been made in the past. ### Acknowledgements : The writer wishes to acknowledge the assistance and to express his sincere appreciation for the cooperation given by a large number of individuals in supplying the data for this summary. It is understood that in some instances the field forces supplied data which in turn were summarized by the state contact man supplying the information. | State | construction practices
employed in minimizing
or eliminating damage. | | Loes thickness of subbase
and base construction vary
with depth of frost pene-
tration? | | Is there correlation between
degree of distress attribut-
able to frost action &
climatic conditions? | | | Is research underway or con-
templated in near future con-
cerning freezing of bases,
subbases, and/or subgrade soils | | | |--------|--|--|--|---|--|---|-----|--|---|--| | .• | Bases &
Subbases | Subgrade
Soils * | Yes No | Give design thick-
ness for var frost
penetration depths | | Remarks | Yes | No | List research pro-
jects & state if i
progress or contem-
plated | | | ₩ash. | Soil mortar
shall have
L.L. not
over 25:
P.I. not
over 1. | Additional surfacing used over frost susceptible areas. | Sometimes | Use from 1/3 to 1/2 of max.frost penet. depth in frost damage areas only. | x | Some areas are so
dry that frost
does no damage
even in silty
soils. | × | | Investigation of frost penetration in progress. | | | W. Va. | % passing
No. 200
sieve is
rarely
greater
than 10. | No parti-
cular de-
sign prac-
tice has
been used. | * | ٠ , | | No information | ٠. | x | Use of fly-ash as
an admixture for
soil stabilization
(Planned). | | | Wis. | Utilize full width pervious sand or sand gravel subbase courses are of crushed & graded gror atone, he ing less thi 10 % passing No. 200 sie Base course thickness ve from 6 to 12 depending or traffic. | avel
av-
an
3
ye.
aries
2 in. | x | | * | Intimately associated with the meterological conditions of the particular winter. | | | | | | w | 1100 400-0 | | | | | | | | | | Use dense graded Excavate x matls. of low acids. P.1. in both base & subbase. ing truces base. ing truces in to do backfill with antisfactory matl. Some increase in surfacing thickness.