
Chapter 1 

HYDRODYNAMIC APPROACHES 

PART I 

1 . 1 INTRODUCTION 

In recent years, numerous mathematical 
theories of traffic flow applicable to long 
crowded roads have been developed. Al­
though many of these theories involve a 
statistical approach, several are described 
in terms of fluid or hydrodynamic flows. 
The latter regard traffic as a compressible 
fluid having a certain density or concentra­
tion and a certain fluid velocity. Their 
analyses are based on a partial differential 
equation expressing the conservation of 
matter and an assumed empirical relation 
between the flow and the concentration. 
These analyses can be adjusted to fit flow­
concentration curves of particular high­
ways. The solution of the equation indi­
cates that discontinuities in traffic flow are 
propagated in a manner similar to "shock 
waves" in the theory of compressible fluids . 
It is, therefore, the purpose of this chapter 
to discuss the application of fluid flow prin­
ciples to the traffic stream. 

1.2 FUNDAMENTAL CONCEPTS 

Lighthill and Whitham prepared an out­
standing paper on the theory of traffic flow 
in which they discussed the behavior of 
shock waves in the traffic stream and de­
veloped a theory of the propagation of 
changes in traffic distribution. Part I is an 
elementary approach to this theory. 

Consider the movement of two distinct 
concentrations of traffic k1 and k2 along a 
straight highway (Fig. 1.1). The two con­
centrations k1 and k2 are separated by the 
vertical line S, which has a velocity of c. 
This velocity is considered positive if the 
line moves in the direction of positive x as 
depicted by the arrow. With the following 
notations: 
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u1 = Mean speed of vehicles in region A ; 
u2 = Mean speed of vehicles in region B ; 
Uri= (u1 - c) =Relative speed of ve-

hicles in region A to the moving 
line S; and 

Ur 2 = (u2 - c) =Relative speed of ve­
hicles in region B to the moving 
line S, 

it is evident that in time t the number of 
vehicles N crossing the dividing line S is 

or 

This equation is a statement of the con­
servation of matter applied to the vehicles 
that cross the line S and may be written in 
the form 

If the rate of traffic flow in region A is 
qu and the rate of traffic flow in region B 
is q2, 

(1.4) 

and 
(1.5) 

These relations follow from the definition 
of the quantities involved. In terms of the 
rates of flow q1 and q 2 , Eq. 1.3 becomes 

A 
• x 

Figure 1.1. Movement of two concentrations. 
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c = (q 2 - q 1 )/ (k 2 - k,) (1.6) The normalized concentrations 1/1 and 1/2 are 
given by 

If the rates of flow and the concentrations 
are nearly equal, 

(1.7) 

and Eq. 1.6 becomes 

c=Aq/ Ak=dq!dk (1.8) 

which is the equation for the velocity c with 
which small disturbances in the traffic 
stream are propagated. 

In the general case in which the differ­
ences in the concentrations on the two sides 
of the moving line S are not infinitesimally 
small, Eq. 11.3 may be written in the form 

So far, the elementary analysis has not 
considered any relation between the mean 
velocities u1 and u2 and the concentrations 
k1 and k2 • Greenshields (1) found in his 
study of traffic capacity that 

u1=u.(l-ri1 ) andu2 =u.(l-ri2 ) 

(1.10) 

in which U8 is the space-mean speed of the 
traffic stream, and 1/i and 'l'J 2 are the normal­
ized concentrations on both sides of the 
boundary line S. Substituting these values 
in Eq. 1.9 gives a wave speed of 

[k1us (l-ri1)-k2ii (l-'l'/2)] 
c=~~~~~~~~~~~~ 

(1.11) 
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Figure l.2. Small discontinuity in concentration. 

Figure 1.3. -Shock wove caused by stopping. 

(1.12) 

in which ki, the jam concentration, is the 
maximum concentration of vehicles when 
jammed at a stop. Both k1 and k2 may be 
eliminated from Eq. 1.11, the resulting 
wave speed being 

(1.13) 

which gives the velocity of the line S in 
terms of the normalized concentrations on 
either side of the moving discontinuity. 

1 .2.1 The Case of Nearly Equal 
Concentrations 

If the normalized concentrations 'l'/1 and 'l'/2 
on both sides of the boundary line S are 
nearly equal, the situation shown in Figure 
1.2 exists. The normalized concentration to 
the left of S is 'l'J, whereas the normalized 
concentration to the right of S is ( ri +'lo), 
where 'I'/+ 1/o.:::; 1. In this case, let 

(1.14) 

and 

[1- ('l'J1 +'l'J 2 )] = [1- (2'1'/+'l'Jo)] = [1-2'1'/] 
(1.15) 

in which 'l'/o is neglected. If Eq. 1.13 is sub­
stituted in Eq. 1.15, the wave of discon­
tinuity is propagated with a velocity of 

(l.16) 

Thi is the equation for the propagation 
of shock waves obtained by Lighthill and 
Whitham by a more elaborate analysis. 

1.2.2 Waves of Stopping 

Consider a line of traffic moving with a 
normalized concentration 'l'/i and a mean 
vehicle velocity of 

(1.17) 

At a position x=x0 on the highway, a traffic 
signal causes t he traffic to halt, and the 
stream immediately assumes a saturated 
normalized concentration of 'lli= l, as shown 
in Figure 1.3. To the left of the line S, the 
traffic is still moving with a mean velocity 
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given by Eq. 1.17 at the original concentra­
tion of TJ ,. Under these conditions, the 
shock wave velocity is given by substituting 
TJ 1 = TJ 1 and TJ 2 =1 in Eq. 1.13 to give 

which indicates that the shock wave of stop­
ping travels backward with a velocity of 
U8 TJ i· If the signal at x= x0 turns red at 
t = O, then in time t later, a line of cars of 
length U8 TJ 1 t will be stopped behind x 0 • 

1.2.3 Waves of Starting 

In order to discuss the nature of the 
shock wave produced by the starting of a 
line of vehicles, assume that at t=O a line 
of vehicles has accumulated behind a signal 
located at x = x 0 • Because this line of vehi­
cles is standing still, it has a saturated con­
centration of TJ 1 =1, as shown in Figure 1.4. 
Assume that at t=O the signal at x = x 0 

turns green and permits vehicles to move 
forward with a velocity of u2 • Because 
u 2 = U8 [l-TJ 2 ] there exists a concentration 
of 

(1.19) 

Therefore, a shock wave of starting forms 
as soon as the line of vehicles begins to 
move. The velocity of this shock wave is 
obtained by substituting TJ 1 = 1 and TJ 2 = ry 2 in 
Eq. 1.13, thus 

c=u. [1 - (1 +TJ2 )] = -u. T/2= - (u . -u2) 
(1.20) 

Therefore, the shock wave of starting 
travels backward from x 0 with a velocity of 
(u 8 -u2 ). Because the starting velocity is 
small, it is seen that the shock wave of 
starting travels backward with a velocity 
essentially equal to -u •. 

~~r,_= '~~~st==~~c -1~~2'---.X 
Xo 

Figure 1.4. Shock wave caused by starting. 

1.3 COMPARISON OF LIGHTHILL-WHITHAM 
AND RICHARDS THEORIES 

Richards (2 ) prepared a paper on the 
theory of traffic shock waves, covering the 
same material as Lighthill and Whitham, at 
about the same time and without knowledge 
of their work. 

Essentially these two theories are identi­
cal. Lighthill and Whitham center their 
attention on the discontinuities in the rate 
of flow q, whereas Richards centers his at­
tention on the discontinuities in the concen­
tration k, which he calls the density func­
tion D . In both theories the fundamental 
equation is the one that expresses the con­
servation of matter. However, because 
Lighthill and Whitham do not restrict them­
selves to any definite flow-concentratiop 
curve, their analysis is somewhat more 
general than that of Richards. 

Richards incorporates in his basic equa­
tions the straightline relation u=u8 (l-17) 
for the mean velocity of the vehicles. There­
fore, the conclusions reached by Richards 
are limited to situations in which this law 
of velocity and concentration hold. If this 
hypothesis is incorporated into the Light­
hill-Whitham theory, their theory is identi­
cal with that of Richards. The difference 
between the two theories is then seen to be 
only one of notation and graphical inter­
pretation. 


