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Chapter 2 

CAR FOLLOWING AND ACCELERATION NOISE 

2.1 INTRODUCTION 

Traffic phenomena are more a part of the 
behavioral than the physical sciences, for 
they result from the response of humans to 
various stimuli. Certain stimulus response 
equations can be analyzed, however, in the 
same manner that physicists analyze dy­
namic equations of motion. 

The average speed or travel time for 
smooth safe driving on a given road de­
pends on many phenomena (weather, me­
chanical condition of vehicles, driver be­
havior patterns, curves, hills, pedestrians, 
etc.). Two factors determine the mainte­
nance of a smooth safe trip-the motion of 
an isolated vehicle and the interference of 
vehicles with each other. 

Theoretically, traffic can be considered as 
the behavior of an assembly of vehicles 
which are influenced by their environment 
and by each other. Each vehicle is capable 
of either acceleration or deceleration. The 
"traffic problem" concerns the large-scale 
motions of these vehicles at high density. 
In this state they are forced to follow each 
other in lanes and they have only occasional 
opportunities to pass. Traffic theory in this 
regard then is the study of the acceleration 
and decleration patterns of these vehicles 
and the flows resulting when they are regu­
lated in various ways. 

2.2 THE ISOLATED VEHICLE 

When a car is driven on an open road in 
the absence of traffic, the driver generally 
attempts, consciously or unconsciously, to 
maintain a rather uniform velocity, but he 
never quite succeeds. His acceleration pat­
tern, as a function of time, has a random 
appearance. An acceleration distribution 
function can be easily obtained from such 
a pattern. This distribution is essentially 
normal. The random component of the 
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acceleration pattern is called "acceleration 
noise" (4, 5, 7). 

A measure of the smoothness or jerkiness 
of the driving is then given by the disper­
sion a of the acceleration noise. The mathe­
matical definition of this quantity is 

a 2 = - [a ( t)]2 dt 1 fT 
T o 

(2.1) 

in which a(t) is the acceleration (positive 
or negative) at time t, and T is the total 
running time. Alternatively, if one con­
siders that the acceleration is sampled at 
successive time intervals, t:J,.t, then 

1 
a2 = - ~[a (t)] 2 t:J,.t 

T 
(2.2) 

The dispersion, or standard deviation, a, is 
simply the root-mean-square of the accelera­
tion, and it has the dimensions of accelera­
tion. Its values are usually quoted in ft/ 
sec2 or as a fraction or multiple of g = 
32 ft/sec2 • 

Runs made on a section of the General 
Motors test track (an almost perfect road­
bed) by four operators while driving in the 
range of 20 to 60 mph yielded normal accel­
eration noise distributions with standard 
deviates of O.Olg ± 0.002g, which are about 
0.32 ft/ sec2 • This dispersion increases at 
extreme speeds greater than 50 mph or less 
than 20 mph. 

The acceleration noise of a driver will 
vary considerably as he drives on different 
roads or under different physiological or 
psychological conditions. The acceleration 
noise observed in a run in the Holland Tun­
nel of the New York Port Authority (with 
no traffic interference in the lane in which 
the run was made) was 0.73 ft/sec 2 • Al­
though the roadbed of the Holland Tunnel 
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is quite good, the narrow lanes, artificial 
lighting and confined conditions induce a 
tension in a driver which is reflected in the 
doubling of his acceleration noise dispersion 
from its perfect road value. Preliminary 
studies of the acceleration noise associated 
with runs on poorly surfaced, winding coun­
try roads indicate that dispersions of 1.5 
to 2 ft/ sec2 are not unusual. 

Both transverse and longitudinal accel­
eration noises exist, but no measurement of 
the transverse (left-right) noise has been 
made. The latter would be large on winding 
roads and in the pattern of drivers who 
change lanes frequently while driving in 
heavy traffic. Both components of the noise 
would be large in the case of an intoxicated 
or fatigued driver or in situations in which 

the attention of the driver is shared be­
tween the road and his traveling compan­
ions. Noise measurements have not yet been 
made in these situations. 

The dispersion of the acceleration noise 
of a vehicle was first measured by Herman 
et al. ( 4) by using an accelerometer to re­
cord on photographic film the car's accelera­
tion as a function of time. From an analy­
sis of the curve, the value of the dispersion 
a was determined. Although preliminary 
results were obtained by this method, the 
reduction of the data was rather tedious. 
Apparatus for automatically recording the 
acceleration in a form which can be con­
verted to digital data suitable for computer 
input has been developed by Herman and 
his group. This apparatus enables accurate 

0 

Figure 2.1. Sketch of a recording obtoined on the circular chart of Kienzle TCO SF tachograph. The concentric 
circles give the speed in mph; the scale on the outer circumference is in minutes. The inner trace is formed by 
an odditional stylus whose mode of vibration is chosen by the driver by operating a key on the tachograph. The 
record illustrates a period of comparatively smooth driving with some stops (medium acceleration dispersionl followed 

by frequent accelerations and brakings (large acceleration dispersion). 
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Table 2.1 Value af n2/ At 

At n=l n=2 n=3 n=4 n=5 n=6 n=7 n=8 

1 1.00
1 

4.00 9.00 16.00 25.00 36.00 49.00 64.00 
2 0.50 2.00 4.50 8.00 12.50 18.00 24.50 32.00 
3 0.33 1.33 3.00 5.33 8.33 12.00 16.33 21.33 
4 0.25 1.00 2.25 4.00 6.25 9.00 12.25 16.00 
5 0.20 0.80 1.80 3.20 5.00 7.20 9.80 12.80 
6 0.17 0.67 1.50 2.67 4.17 6.00 8.17 10.67 
7 0.14 0.57 1.29 2.29 3.57 5.14 7.00 9.15 
8 0.13 0.50 1.13 2.00 3.13 4.50 6.13 8.00 
9 0.11 0.44 1.00 1.78 2.78 4.00 5.44 7.11 

10 0.10 0.40 0.90 1.50 2.50 3.60 4.90 6.40 
11 0.09 0.36 0.82 1.45 2.27 3.27 4.45 5.82 
12 0.08 0.33 0.75 ;; 1.33 2.08 3.00 4.08 5.33 
13 0.08 0.31 0.69 1.23 1.92 2.77 3.77 4.92 
14 0.07 0.29 0.64 1.14 1.79 2.57 3.50 4.57 
15 0.07 0.27 0.60 1.07 1.67 2.40 3.27 4.27 
16 0.06 0.25 0.56 1.00 
17 0.06 0.24 0.53 0.94 
18 0.06 0.22 0.50 0.89 
19 0.05 0.21 0.47 0.84 
20 0.05 0.20 0.45 0.80 

estimations of the acceleration dispersion. 
An inexpensive and simple method of 

estimating the dispersion employs the 
Kienzle TC08F model tachograph* with a 
speed recording range of 0 to 45 mph. The 
speed is recorded by a stylus on a circular 
chart which revolves once in 24 min. A 
typical record is shown in Figure 2.1. The 
inner trace is formed by an additional sty­
lus that can vibrate in any of three modes 
of vibration. The choice of the mode is 
decided by the position of a tachograph key 
which can be operated by the driver. It 
enables him to indicate when he passes 
selected points on the highway. A stylus 
for recording distance traveled was not 
used, as the mileometer on the tachograph 
was more suitable and accurate. 

Inasmuch as times are proportional to 
angles on the circular chart, it is a simple 
matter to use a protractor to measure the 
travel time TT, the stopped time ST and 

•The Kienzle tachograph is distributed un­
der the name ARGO in the United States. 
Other tachographs are manufactured by VDO 
and Wagner. Various models are available. 
Some have circular charts; others use paper 
wound on spools. Models with slow-moving 
chiµ-ts are used by trucking and bus com­
panies. Those with fast-moving charts are 
ideal for many traffic enginem:ing purposes. 

1.56 2.25 3.06 4.00 
1.47 2.12 2.88 3.76 
1.39 2.00 2.72 3.56 
1.32 1.89 2.58 3.37 
1.25 1.80 2.45 3.20 

the running time RT ( = TT - ST). A spe­
cial analyzer is available from the tacho­
graph manufacturers which allows the rec­
ord to be mounted on a protractor and 
viewed through a magnifying glass. The 
acceleration dispersion was estimated by 
approximating Eq. 2.1 by 

1 ""'( t:.u ) 2 
IT2 :z T £,,.J flt At (2.3) 

or 

u2 = (Au)2 ""'~ 
T ,£,,.J At (2.4) 

in which At is the time taken for a change 
n AU in speed, n being an integer and Au a 
small speed interval taken constant through­
out the measurement of the record. The 
time T is taken as the running time RT and 
not the travel time. For a chart recording 
speeds in the 0- to 45-mph range, a value 
Au = 2.5 mph proved to be convenient. The 
record is first marked at speed intervals 
n Au, as indicated at the beginning of the 
record in Figure 2.1. The chart is then 
placed in an analyzer and successive values 
of At are measured. It is convenient to use 
a table of values of n 2 ! At (such as Table 
2.1) to enable the value of n 2

/ At to be cal-
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culated progressively on a desk calculator. 
To illustrate the method, the values of n, 
;J,.t and n 2/ ;J,.t for the beginning of the 
marked record in Figure 2.1 are: 

n ;J,.t n 2 //J,.t 

8 20 3.20 
4 15 1.07 
2 10 0.40 
0 0 
1 16 0.06 
1 6 0.17 
0 0 
2 14 0.29 

If ;J,.t is in seconds, the running time T in 
seconds, and /J,.u = 2.5 mph, then (;J,.u) 2 = 

( 2.5 x ~!) 
2

:::::: 13.44 ft2/ sec2
, which when in­

serted in Eq. 2.4 gives IT in ft/ sec2 • 

Some of the advantages of this method of 
measuring the acceleration dispersion are: 

1. The equipment is inexpensive. 
2. The chart requires no processing. 
3. The chart forms a convenient perma­

nent record of the test run. 
4. Travel times, stopped times and run­

ning times are easily measured from 
the chart. 

5. Small speed fluctuations are ignored. 

The main disadvantages are : 

1. Each record takes up to 30 min to ana­
lyze. 

2. The accuracy of the determination of 
IT is only about 10 percent. 

It must be emphasized that the accelera­
tion dispersion IT is suggested as a useful 
traffic parameter, enabling the comparison 
of different traffic situations. Although the 
error is about 10 percent, the estimated 
value is consistently smaller than the exact 
value because the subdivision of the record 
into speed intervals, which are multiples of 
IJ,.u, essentially replaces the speed-time curve 
by a set of linear segments. In any case the 
many factors contributing to the accelera­
tion noise denote that its dispersion varies 
from run to run, and the usual care must 
be taken to design a set of experiments with 
a sufficient number of runs so that signifi­
cant statistical tests can be made on the 
results. 

2.3 LAW OF CAR FOLLOWING AND 
VARIATION OF FLOW WITH DENSITY 

In this section the effect of the road is 
neglected, and consideration is given only 
to the interaction between cars. Consider 
a line of traffic so dense that passing is im­
possible and the driver of each vehicle is 
forced to drive slower than he would on his 
own volition. Also suppose that the road is 
excellent, so that the acceleration pattern of 
each vehicle depends more on the behavior 
of its predecessor than on its own natural 
acceleration noise. 

The acceleration of the nth vehicle at 
time t can be expected to depend on various 
relative characteristics of the (n - l)st 
and the nth vehicles. Some of these char­
acteristics are relative velocity and separa­
tion distance. The manner in which one 
vehicle follows another is referred to as the 
law of following (1, 7). 

Several qualitative features of the law 
are self-evident. First, a moving line of 
traffic must not amplify small disturbances. 
That is, if the first vehicle in the line slows 
down slightly and then speeds up to his old 
rate, this slight perturbation must not be 
amplified as it is transmitted down the line 
to the extent that a collision occurs far be­
hind the point of perturbation or that the 
cars sufficiently far back must stop to avoid 
collisions. Secondly, the law of following 
must not be such that a strong perturbation 
such as a sudden stop cannot sometime 
cause a rear-end collision, for such collisions 
occur rather frequently. Responses are 
never instantaneous. A certain time t 1 is 
required for a driver to notice that his rela­
tive speed and separation distance with his 
predecessor have changed. A time t 2 is re­
quired to decide on the proper response to a 
variation. A time t3 is required for the 
vehicle to act on the response. In practice, 
t 1 + t 2 + t3 is about 1.5 sec. 

As a standard from which perturbations 
are to be measured, consider a hypothetical 
line of traffic moving at constant velocity u 
with all cars separated by a distance s ( = 

distance from the front bumper of one car 
to the front bumper of the car behind it). 
The traffic in Figure 2.2 is postulated to be 
moving to the right and Xn (t) is the posi­
tion of the nth car at the time t. Then, if 
the origin is chosen as the location of the 
front bumper of the first car at time t = 0, 

Xn (t) = U t - (n-l)s . (2;5) 
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0 

Figure 2.2. Postulation of moving vehicles. 

Of course, cars in a real stream of traffic do 
not move with constant velocity, nor is the 
separation distance fixed. Let Xn (t) be the 
deviation from Xn (t) of the location of the 
nth car at time t and let Yn (t) be the actual 
location. Then 

Yn (t) = Xn (t) + Xn (t) (2.6) 

and the velocity of the nth car is 

Un (t) = Xn (t) + U (2.7) 

while the acceleration is 

an (t) = Yn = Xn (2.8) 

Suppose that the line of traffic flows al­
most in the described manner so that Xn (t) 
and Xn (t) are very small for all n. By 
accelerating and decelerating, each driver 
makes small compensations to arrive at the 
steady-stream velocity and spacing. Now 
examine several possible laws of following 
to see which might be realistic and then try 
to compare with experimental results. In 
the limit of very small xi (t) and xi (t), 
three possibilities might exist: 

(a) The nth driver accelerates or deceler­
ates by an amount proportional to 
the deviation in relative separation 
from the desired amount s. That is, 

an (t) = Xn (t) = µ. [x,._1 (t) - Xn (t)] 
(2.9) 

in which the parameter µ. would be 
determined from observations on rel­
ative motions of cars in the traffic 
stream. 

(b) The nth driver accelerates by an 
amount proportional to the difference 
in relative velocity of rith and 
( n-1) st cars, giving 

an (t) =Un (t) =a [un-l (t) - Un (t)] 
(2.10) 

If the (n-l)st car is moving faster 
than the nth, the nth driver acceler­
ates to compensate and reduce veloc­
ity differences and vice versa when 
un-1 ( t) < u,. ( t), the parameter a 
being chosen to be positive. 

(c) A linear combination of the previous 
two laws: 

an (t) == µ. [Xn-l (t) - Xn (t)] + 
a [un-l (t) - Un (t)] (2.11) 

All these laws are linear laws, which 
might be appropriate only for small devia­
tions from the desired state of traffic. The 
response of the nth driver is proportional 
to a deviation for which he wishes to com­
pensate. The parameters a and µ. are called 
sensitivities of the response to the devia­
tions. Large values of a and µ. correspond 
to strong compensation, and small values 
correspond to weak compensations. Experi­
ments have been performed to determine 
whether these possibilities are sensible. Be­
fore resorting to experimental evidence, 
however, determine if any of these laws 
can be ruled out on the basis that they 
violate the requirement that a line of traffic 
must not be an amplifier of small disturb­
ances. 

A standard way to investigate the effect 
of disturbances and of stability of linear 
systems is to make a harmonic (frequency) 
analysis of the disturbance to see how indi­
vidual frequency components are propa­
gated through the system. Assuming that 
the deviation of the motion of the lead car 
in a platoon is the source of the disturb­
ance, its motion can then be harmonically 
analyzed. When this is done in law (a), it 
turns out that a resonance exists at fre­
quency w = µ.Y.. That is, any frequency 
components at frequencies near µ.* are am­
plified strongly by the traffic, the law of 
amplification of the amplitude of the w com­
ponent being [1 - w 2 / µ.]-n. On the other 
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hand, law (b) damps out a disturbance as 

(2.12) 

for the nth car behind the source of the 
disturbance. Hence, law (b) is a reasonable 
one to investigate further while law (a) is 
not. If one investigates mixed laws such as 
(c) or any other law in which the accelera­
tion is proportional to the difference in ith 
derivatives of the separation distance be­
tween two successive vehicles, he finds reso­
nances (instabilities) in those laws which 
contain terms with even values of i. Inas­
much as it is doubtful that a driver could 
be sensitive to third derivatives, one is left 
with only law (b) as a possible one for 
investigation. 

Before law (b) is compared with experi­
mental data, additional features of the law 
must be examined. It will be recalled from 
the discussion at the beginning of this sec­
tion that responses are never instantaneous. 
Even though law (b) may be suggestive for 
further consideration, it should be amended 
to take into account the time lag between 
the time of the actual development of a dis­
turbance and the moment of effective re­
sponse; therefore, law (b) should now read 

a,, (t +A) = u,. (t +ti.) = 

a [u,._1 (t) - Un (t)] (2.13) 

in which the velocities on the right side are 
to be taken at time t to influence the accel­
eration of the left at time t + A. When 
time lags are incorporated into linear sys­
tems, instabilities may result. If one reacts 
too strongly (large a) to an event which 
occurred too far in the distant past (large 
response lag A), the situation at the mo­
ment of response may have changed to the 
point where the response is actually in the 
wrong direction. Hence, when lags are long 
there should be weak responses to insure 
stability. In fact, a line of traffic following 
Eq. 2.13 is stable, not amplifying small dis­
turbances, only when 

2 a A< 1 (2.14) 

A disturbance of unit amplitude is propa" 
gated back to the nth car so that its ampli­
tude at arrival is equal to or less than 

[1 + (w 2/a 2 ) (1- 2aA)J-n (2.15) 

It should be noted that a resonance appears 
when Eq. 2.14 is violated. 

Before comparing Eq. 2.13 with experi­
mental data, it is worth trying to extend 
the formula slightly so that it is applicable 
to cases in which, for some reason, rather 
large gaps have formed between cars. 
Clearly, when the separation distance is 
large one will not drive as sensitively as he 
would in a bumper-to-bumper situation. 
Hence a should depend on the separation 
distance in such a way that when two suc­
cessive vehicles are separated by an enor­
mous distance no interaction exists between 
them at all. One possible law is that the 
sensitivity a 0 should be inversely propor­
tional to the car spacing (distance between 
cars plus car length) so that 

an (t + A) = Yn (t + A) 

{
Yn-1 (t) - Yn (t)} 

ao Yn-1 (t) - Y,. (t) 
(2.16) 

in which a
0 

is a measure of sensitivity. 

A number of car-following experiments 
were performed on the General Motors test 
track, as well as in the Holland and Lincoln 
Tunnels in New York. Each of a number 
of drivers using an instrumented car was 
told to follow a lead car as he would in 
normal city driving. In each case a continu­
ous record was taken of the acceleration of 
the second car a ( t), as well as the relative 
velocitie.s u, (t) and spacing s(t) of the two 
cars. For each driver a best value of a and 
A was obtained in 

a(t +A) = a
0 

[ur (t)ls(t)] (2.17) 

which is equivalent to Eq. 2.16 so that 

~ [a(t +A) - a 0u,(t)ls(t)] 2 =min 
t 

(2.18) 

The results (5) of the car-following experi­
ments are summarized in Table 2.2. The 
correlation coefficients for the best values 
of a

0 
and A were usually greater than 0.9, 

and for some drivers as high as 0.97. If 
Eq. 2.16 were exact and no experimental 
error existed in the data, the correlation 
coefficients would be 1. Some deviation from 
1 must be expected because the acceleration 
noise contribution to a (t) has been omitted. 
There is some variation in the values of a. 
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Table 2.2 Summary of Car-Fallowing Experiments 

Locality 

General Motors 
test track 

Holland Tunnel 
Lincoln Tunnel 

Number 
of 

Drivers 

8 
10 
16 

and a for different drivers. For example, in 
the General Motors test track experiments, 
a varied from 1.0 to 2.2 sec, with one-half 
the drivers having a values between 1.4 
and 1.7. It would be interesting to find 
these constants on a given road for a large 
number of drivers. This would enable one 
to obtain reliable statistics on personal vari­
ations between drivers. In applying Eq. 
2.16 to a line of traffic, it is assumed that 
all drivers have the same characteristics; 
namely, the average ones. 

An interesting consequence of the law of 
following (Eq. 2.13) is that the formula for 
the rate of propagation of a disturbance 
down a line of traffic (in cars per second) 
is nit= a. 

Although a line of traffic is stable to small 
perturbations, it is well known that most 
rear-end collisions are due to local instabili­
ties in which one or more cars are unable 

0 .4 

/' 
0.3 ~ 

I 
J 

0.1 I 
0 

ao 
(mph) 

27.4 
18.2 
20.3 

a 
(sec) 

1.5 
1.4 
1.2 

to compensate for large disturbances ahead 
of them. It can be shown that no such local 
instabilities would occur in the law of fol­
lowing if the inequality a ea < 1 were sat­
isfied, a condition rarely exhibited in follow­
the-leader experiments. 

Although Eq. 2.17 was derived to form a 
basis for the law of following of one vehicle 
by another, it can also be employed to relate 
the flow rate of single-lane traffic to the 
traffic density (3). The flow rate q (say in 
vehicles per hour) is the product of the 
density k (cars per mile) and the velocity 
u (miles per hour). Thus, q = u k. Quali­
tatively the equation of state of the traffic, 
the name given to the flow-versus-density 
relation, can be expected to have the form 
given in Figure 2.3. When there are no cars 
on the road (k = 0) the flow rate is zero. 
At close packing (bumper to bumper) where 
k = ki, the density is greatest, but no cars 

-........ 

' I'\ 
I\ 

'\ 
~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

k/kj 

Figure 2.3. Normalized traffic flow versus density as obtained from 
Eq. 2.21. Curve compares with data obtained by Greenberg 

from experiments in the Lincoln Tunnel. 
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Figure 2.4. Acceleration noise of vehicles ot different 
locations in a platoon. 

can move (u = 0). At some intermediate 
density, a maximum flow rate exists. 

Eq. 2.16 can be integrated to yield 

Un (t + 6.) - u' = n . 

a0 log [Yn-l (t) - Yn (t)]!s'n 

(2.19) 

in which s' n = Yn-1 - y,. at time when veloc­
ities are u' n- Now choose s',. to be the close 
packing bumper-to-bumper distance. B~­
cause there is no motion under tliis condi­
tion, u' n = 0 and 

Un (t + 6.) = a 0 log [y . .,_1 (t) - Yn (t)]!s'n 

(2.20) 

Now suppose that the traffic flow has be­
come steady. Then its a~erage velocity at 
time t is about the same as that at t + 6. 
(6. being about 1.5 sec). Therefore, Un 

(t + 6.) can be replaced by the average 
velocity u, and [Yn-l (t) - y,. (t)] can be 
replaced by the average separation distance, 
which is the reciprocal of the average den­
sity, k-1

• Actually u is the arithmetic mean 
velocity and k the geomfltric mean density. 
Hence, 

(2.21) 

in which ki is the density at close packing 
(ki = l!s' .. ). 
The flow rate q is then given by 

This function, plotted in Figure 2.3 com­
pares with experimental data taken in the 
Lincoln Tunnel in New York. From a large 
sample of more than 24,000 vehicles (7) in 
the Holland Tunnel, the best fit value of 
ao was found to be 18.95 mph, which is to 
be compared with a 0 = 18.2 mph obtained 
in car-following experiments in the same 
tunnel (Table 2.2). This provides a good 
check for the theory. 

Notice that a0 is the velocity which gives 
a maximum flow rate. It has been observed 
that a 0 is small under hazardous driving 
conditions, such as poor lighting or narrow 
roadway with two lanes in tunnels, whereas 
it is large on good roads such as freeways 
with no turns. Because the expensive parts 
of a highway system, such as bridges and 
tunnels, are frequently its bottlenecks, the 
traffic engineer should make a0 as large as 
possible to increase the maximum possible 
flow rate and to regulate traffic so that for 
a given a0 this maximum is achieved. 

2.4 ACCELERATION NOISE OF A 
VEHICLE IN TRAFFIC 

In Section 2.2, the acceleration noise of 
an isolated vehicle was discussed. In Section 
2.3, several simple car-following laws for 
traffic in the absence of acceleration noise 
were exhibited. Clearly, the total accelera­
tion noise of a vehicle in traffic is a super­
position of its natural noise and its response 
to that of its predecessors through the law 
of following. In stable, smooth-flowing 
traffic the effect of the natural noise of a 
given vehicle dies out as it is propagated 
down the line. The total acceleration noise 
of vehicles at different locations in a pla­
toon has been measured by Herman and 
Rothery (6) (see Fig. 2.4). It is noted that 
traffic has broadened the acceleration dis­
tribution function so that the dispersion far 
down the platoon is about three times that 
of the lead car, which is effectively moving 
freely on the road. Figure 2.4 also shows 
that in the absence of any violent disturb­
ances the influence of the noise of a single 
vehicle is dampened out by the time the sig­
nal of its motion has propagated down to 
the fifth or sixth car behind it. Traffic 
broadens the acceleration distribution, the 
broadening being smaller for the conserva­
tive driver who is satisfied to follow the 

q = U k = k a 0 log. k/ k (2,22) stream than for the "cowboy" who by weav-
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ing attempts to drive 5 to 10 mph faster 
than the stream. This is shown in Figure 
2.5 for traffic on Woodward Avenue in 
Detroit (4). 

The traffic broadening is not large for 
smoothly flowing traffic, but the dispersion 
increases rapidly at the onset of congestion. 
For stop-and-go traffic the dispersion is 
small because cars are unable to accelerate 
to appreciable speeds. 

The broadening of the acceleration dis­
tribution by traffic depends on the param­
eters of the law of following. The accelera­
tion of the nth car at time t is a 
superposition of its natural acceleration 
noise and its response to the motion of its 
predecessor. In smoothly moving traffic the 
separation distance varies only slightly 
from the equilibrium distance s. Hence, 
Eq. 2.16 can be linearized so that addition 
of the natural acceleration (3 (t) gives 

Un (t +~)=a [un-t (t) - u,,, (t)] + (3 (t) 

(2.23) 
in which 

(2.24) 

The f3 (t) is a random function whose value 
at time t is not specified. It is determined 
by its distribution function f(a) so that 
f(a) da is the probability that (3 (t) has a 
value between a and a + da at time t. For 
simplicity, assume that (3 (t) has the same 
distribution for all drivers on the road of 
interest. One can use the standard methods 
of the theory of Brownian motion to deter­
mine the statistical differences of properties 
of an (t) =Un (t) from those of (3 (t) in 
terms of a and ~. If the acceleration noise 
is peaked in the low frequency range, one 
finds that the dispersion u of the distribu­
tion function of an ( t) (as n -+ oo ; i.e., for 
cars far from the beginning of a platoon) 
is related to the dispersion u 0 of (3 ( t) by 

u = <r.01 ( 1-2 a ~) 112 if 2 a ~ < 1 
(2.25) 

The stability condition (Eq. 2.14) again 
makes its appearance. The closer the traffic 
reaches the limit of stability (2 a~ -+ 1) the 
larger the traffic broadening of the accelera­
tion noise. 

If Eq. 2.24 is substituted in Eq. 2.25, the 
average spacing may be expressed as 

(2.26) 

,.. 
u 
c: 
Q) 
::J 
CT 
Q) 

it 

- I 0 

o-=0.07g 

2 

Acceleration in units of 0 .05g (~1.6 ft/sec2
) 

Figure 2.5. Acc eleration distribution functions for a 

driver (A) moving with a traffic stream at approximately 

35 mph and (8) attempting to drive 5 to 10 mph foster 

than the stream average. 

This equation was checked with the Holland 
Tunnel observations of Herman, Potts and 
Rothery. The traffic broadening of the 
acceleration noise dispersions ul u0 in the 
tunnel varied from about 1.50 to 1.75, de­
pending on the density during the experi­
ment. The value of a 0 was determined by 
fitting Eq. 2.15 to the observed fiow-versus­
density curve for the tunnel. The average 
time lag of 1.5 sec, which was observed in 
car-following experiments, was substituted 
in Eq. 2.26, as was the observed ratio ul u0 • 

The computed values of s were then con­
verted into appropriate densities (s = Vk), 
which were compared with the observed 
densities made at the same time as al u0 

was determined. These calculated values 
generally did not deviate from the measured 
ones by more than 10 or 15 percent. 
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