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Preface

What is “traffic flow theory” and why is it of interest to highway and
traffic engineers?

A theory is a set of scientifically acceptable principles that explain
phenomena—in this case, the phenomena of vehicular traffic flow. Traffic
flow theory—Ilike all theories—has developed as practitioners and theorists
contributed their findings to the general fund of knowledge.

The earliest contributors were practicing engineers who measured the
performance of motor vehicles on the highways and used these basic field
data in their search for an understanding of the characteristics of traffic
flow. These researchers, many of them still pre-eminent in their profession,
supplied the vast resource of data and knowledge that has enabled traffic
engineering to keep pace with rapid advances in motor vehicle transportation.

In recent years, other investigators from widely varying disciplines
have contributed immeasurably to the understanding of traffic flow. These
investigators are scientists—predominantly physicists, mathematicians and
psychologists—who are totally removed from the day-to-day problems of
the traffic engineer. Their orientation, born of an academic interest in
traffic engineering, is directed toward the understanding of relatively nar-
row problems in order that comparisons can be made between the experi-
mental approach of the traffic engineer and the theoretical approach of the
scientist. Contributions of scientists, however, are frequently published in
journals which do not circulate among highway and traffic engineers:
Biometrika, Operational Research Quarterly, and Quarterly of Applied
Mathematics, for example.

In these publications authors frequently use terminology and symbols
which are neither familiar to the engineer nor consistent among various
descriptions of the same phenomenon. Thus, the diligent reader seeking an
understanding of these theories is faced with a formidable task of reconciling
differences in basic vocabularies. This publication, therefore, is an attempt
to consolidate recent contributions to traffic flow theory and present them
in a related manner with a consistent set of notations.

It is hoped that the publication will encourage further testing and
validation of the theories presented. The theorist is frequently unable to
measure traffic flow or analyze the mass of data necessary to validate,
repudiate or refine his theories. Although tested, many of the theoretical
descriptions presented have not been completely validated. Additional veri-
fication and refinement are required before the theories can become useful
analytic tools.

" This cannot be accomplished in the laboratory. It is possible only
through the effort and interest of highway officials who have access to the
final proving grounds for all traffic flow theory—the operating highway
facility.

Carlton Robinson,
Automotive Safety Foundation
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DEFINITIONS AND NOTATIONS

Symbols and terminology familiar to the highway profession are used
throughout this publication wherever possible. The Special Committee found
it necessary, however, to adopt some new symbols and definitions in order
to standardize terminology in use among highway and traffic engineers. The
following terms and symbols are considered the most practical from the
standpoint of clarity and general acceptance:

Term

Acceleration

Wave speed

Density

Time headway

Total headway time

Concentration

Jam concentration

Optimum
concentration

Car length

Probability
Flow

Definition
The time rate of change of speed, d2x/dt2.
The acceleration of the nth vehicle.

The speed at which a wave of differing con-
centrations is propagated in the traffic
stream.

See “concentration” (k).

The time interval between passages of consec-
utive vehicles moving in the same lane
(measured between corresponding points on
the vehicles).

Headway between the (n—-1)st vehicle and
the nth vehicle.

The time interval between passages of the first
and the nth vehicle moving in the same
lane.

The number of vehicles occupying a unit
length of a lane at a given instant; often
referred to as ‘“‘density” when expressed in
vehicles per mile.

The maximum concentration of vehicles when
jammed at a stop.

The concentration when flow is at a maximum
rate.

The length of a vehicle.

The vehicle number.

Total number of vehicles.

The likelihood of occurrence of an event.

The number of vehicles passing a point during
a specified period of time; often referred to
as “volume” when expressed in vehicles per
hour measured over an hour.

vii
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DEFINITIONS AND NOTATIONS

Term

Maximum flow

Correlation coefficient

Spacing

Spacing

Time
Time
Speed
Optimum speed

Space-mean speed

Time-mean speed

Volume
Position
Increment

Normalized
concentration

Standard deviation

First derivative
(speed)

Second derivative
(acceleration)

Definition
The maximum attainable flow.

A gstatistical measure of the association be-
tween data and a regression line.

The distance between consecutive vehicles
moving in the same lane (measured between
corresponding points on the vehicles).

The spacing between the (n-1)st vehicle and
the nth vehicle.

An interval or index of time.

Total time.

The time rate of change of distance, dz/dt.
The speed when flow is at a maximum rate.

The arithmetic mean of the speeds of the
vehicles occupying a given length of lane at
a given instant.

The arithmetic mean of the speeds of vehicles
passing a point during a given interval of
time,

See “flow” (q).

An index of position.

The ratio k/k;.

A statistical measure of the dispersion of data
from the mean.

The differentiation of x with respect to some
independent variable; i.e., dx/dt.

The second differentiation of x with respect
to some independent variable; i.e., d2x/dt2.

Statistical variance.
Expected or mean value.
erv,

Probability of « given conditions a and b.
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Chapter 1
HYDRODYNAMIC APPROACHES

PART |

1.1 INTRODUCTION

In recent years, numerous mathematical
theories of traffic flow applicable to long
crowded roads have been developed. Al-
though many of these theories involve a
statistical approach, several are described
in terms of fluid or hydrodynamic flows.
The latter regard traffic as a compressible
fluid having a certain density or concentra-
tion and a certain fluid velocity. Their
analyses are based on a partial differential
equation expressing the conservation of
matter and an assumed empirical relation
between the flow and the concentration.
These analyses can be adjusted to fit flow-
concentration curves of particular high-
ways. The solution of the equation indi-
cates that discontinuities in traffic flow are
propagated in a manner similar to “shock
waves” in the theory of compressible fluids.
It is, therefore, the purpose of this chapter
to discuss the application of fluid flow prin-
ciples to the traffic stream.

1.2 FUNDAMENTAL CONCEPTS

Lighthill and Whitham prepared an out-
standing paper on the theory of traffic flow
in which they discussed the behavior of
shock waves in the traffic stream and de-
veloped a theory of the propagation of
changes in traffic distribution. Part I is an
elementary approach to this theory.

Consider the movement of two distinct
concentrations of traffic k&, and k, along a
straight highway (Fig. 1.1). The two con-
centrations k;, and k, are separated by the
vertical line S, which has a velocity of c.
This velocity is considered positive if the
line moves in the direction of positive « as
depicted by the arrow. With the following
notations:

%, = Mean speed of vehicles in region A;

%, = Mean speed of vehicles in region B;

U,; = (u; — ¢) = Relative speed of ve-
hicles in region A to the moving
line S; and

U,, = (u, — ¢) = Relative speed of ve-
hicles in region B to the moving
line S,

it is evident that in time ¢ the number of
vehicles N crossing the dividing line S is
N=U,kt=Uspk:i (1.1)
or
(uy —¢) by = (uy — ¢) ky (1.2)
This equation is a statement of the con-
servation of matter applied to the vehicles
that cross the line S and may be written in
the form

Uy oy — Uy by = ¢ (&g — k) (1.3)
If the rate of traffic flow in region A is

¢,, and the rate of traffic flow in region B
is g,

Q1=k1 Uy (1-4)
and

=k, u, (1.5)
These relations follow from the definition
of the quantities involved. In terms of the
rates of flow ¢, and q,, Eq. 1.3 becomes

—y f———>C

A B —u; |k

Figure 1.1. Movement of two concentrations.
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c = (qz - ql)/(kg - k1) (16)

If the rates of flow and the concentrations
are nearly equal,

(g—q,) =Aq, (k—k))=4Ak  (1.7)
and Eq. 1.6 becomes
c=Aq/Ak=dq/dk (1.8)

which is the equation for the velocity ¢ with
which small disturbances in the traffic
stream are propagated. ‘

In the general case in which the differ-
ences in the concentrations on the two sides
of the moving line S are not infinitesimally
small, Eq. 1’3 may be written in the form

c=(u ky—u, k,)/ (k,—k,) (1.9)

So far, the elementary analysis has not
considered any relation between the mean
velocities u, and u, and the concentrations
k, and k,. Greenshields (1) found in his
study of traffic capacity that

Uy =Uy(1—mn,) and u,=uy(1—1n,)
(1.10)
in which 4, is the space-mean speed of the
traffic stream, and », and 7, are the normal-
ized concentrations on both sides of the
boundary line S. Substituting these values
in Eq. 1.9 gives a wave speed of

o [k1 Ug (1*"11)—’52"2 (1_"72)]
(kl_kz)

(1.11)

S (R +ng)

n, .

Xo

The normalized concentrations », and 7, are
given by

7]1=k1/k], 7]2=k2/k] (1.12)
in which k;, the jam concentration, is the
maximum concentration of vehicles when
jammed at a stop. Both k, and k, may be
eliminated from Eq. 1.11, the resulting
wave speed being

C=123 [1_ (7]1+7]2)] (1-13)
which gives the velocity of the liqe S in
terms of the normalized concentll“atl_ons on
either side of the moving discontinuity.

1.2.1 The Case of Nearly Equal
Concentrations

If the normalized concentrations. 7, and 7,
on both sides of the boundary line S are
nearly equal, the situation shown In Elgure
1.2 exists. The normalized concentratxop to
the left of S is 5, whereas the normalized
concentration to the right of S is (9+7,),
where 5+7,<1. In this case, let

M=nN 5 N2= ["7+’70] (1.14)
and

1— (g +n,)]=[1— (2n+n,) 1=[1-279]
[1—(ni+9.)]1=[1—(2n+n,) (17{15)

in which 7, is neglected. If Eq. 1.13 i:} sub-
stituted in Eq. 1.15, the wave qf discon-
tinuity is propagated with a velocity of
e=1ig[1—27] (1.16)
This is the equation for the propagation

of shock waves obtained by Lighthil] and
Whitham by a more elaborate analysis.

1.2.2 Waves of Stopping

Consider a line of traffic moving with a
normalized concentration n, and a mean
vehicle velocity of

Uy =g [1—1,] (1.17)
At a position =2, on the highway, a traffic
signal causes the traffic to halt, and the
stream immediately assumes a saturated
normalized concentration of 7,=1, as shown
in Figure 1.3. To the left of the line S, the
traffic is still moving with a mean velocity
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given by Eq. 1.17 at the original concentra-
tion of #%,. Under these conditions, the
shock wave velocity is given by substituting
n,=n, and 7,=1 in Eq. 1.13 to give
c=0[1—(p+1)]=—dzm, (1.18)
which indicates that the shock wave of stop-
ping travels backward with a velocity of
%yn,. If the signal at =2, turns red at
t=0, then in time ¢ later, a line of cars of
length 4, 5,t will be stopped behind .

1.2.3 Waves of Starting

in order to discuss the nature of the
shock wave produced by the starting of a
line of vehicles, assume that at t=0 a line
of vehicles has accumulated behind a signal
located at x=x,. Because this line of vehi-
cles is standing still, it has a saturated con-
centration of »,=1, as shown in Figure 1.4.
Assume that at ¢t=0 the signal at z—x,
turns green and permits vehicles to move
forward with a velocity of u,. Because
u,=us[1—n,] there exists a concentration
of
ne=[1— (uy/ %) ] (1.19)
Therefore, a shock wave of starting forms
as soon as the line of vehicles begins to
move. The velocity of this shock wave is
obtained by substituting »,=1 and »,=7, in
Eq. 1.13, thus

e=u,[1— (1475,) 1= —tg ny=— (Hg—%s)
(1.20)

Therefore, the shock wave of starting
travels backward from x, with a velocity of
(#,—u,). Because the starting velocity is
small, it is seen that the shock wave of
starting travels backward with a velocity
essentially equal to —i,.

h=1 S———W )

Figure 1.4, Shock wave caused by starting.

1.3 COMPARISON OF LIGHTHILL-WHITHAM
AND RICHARDS THEORIES

Richards (2) prepared a paper on the
theory of traffic shock waves, covering the
same material as Lighthill and Whitham, at
about the same time and without knowledge
of their work.

Essentially these two theories are identi-
cal. Lighthill and Whitham center their
attention on the discontinuities in the rate
of flow q, whereas Richards centers his at-
tention on the discontinuities in the concen-
tration %k, which he calls the density func-
tion D. In both theories the fundamental
equation is the one that expresses the con-
servation of matter. However, because
Lighthill and Whitham do not restrict them-
selves to any definite flow-concentration
curve, their analysis is somewhat more
general than that of Richards.

Richards incorporates in his basic equa-
tions the straightline relation u=u4, (1—75)
for the mean velocity of the vehicles. There-
fore, the conclusions reached by Richards
are limited to situations in which this law
of velocity and concentration hold. If this
hypothesis is incorporated into the Light-
hill-Whitham theory, their theory is identi-
cal with that of Richards. The difference
between the two theories is then seen to be
only one of notation and graphical inter-
pretation.




PART I

Part IT (opposite page) is reprinted with permission of the Royal Society
and the authors. The original paper appeared in Proceedings of the Royal
Society, A229, No. 1178, 1955, 317-345. The style and notation of the
original paper does not conform with that established for this publication.
At the authors’ ingistence, however, the notation and the figure and equation
designations have been left exactly as originally printed. Therefore, the
following list of comparative notations is provided:

Lighthill & Whitham Established Standard

v = q¢/k = Mean speed of traffic. #. = Space mean speed.

n = Total number of vehicles. N = Total number of vehicles.

% = Time rate of change of dis-

U = Uniform speed.
tance.

vy = Free mean speed. %s = Free medn speed.
All other notations are as used elsewhere throughout the book and given on
pages vt and viti.



KINEMATIC WAVES. II

PART I

On kinematic waves:

II. A theory of traffic flow on long crowded roads

By M. J. LigaramL, F.R.S. axnp G. B. WHITHAM

(Department of Mathematics, University of Manchester)
(Received 15 November 1954—Read 17 March 1955)

This paper uses the method of kinematic waves, developed in part I, but may be read
independently. A functionel relationship between flow and concentration for traffic on
crowded arterial roads has been postulated for some time, and has experimental backing (§2).
From this a theory of the propagation of changes in traffic distribution along these roads may
be deduced (§§2, 3). The theory is applied (§4) to the problem of estimating how a ‘hump’,
or region of increased concentration, will move along & crowded mein road, It is suggested
that it will move slightly slower than the mean vehicle speed, and that vehicles passing
through it will have to reduce speed rather suddenly (at a ‘shock wave’) on entering it, but
can increase speed again only very gradually as they leave it. The hump gradually spreads
out along the road, and the time scale of this process is estimated. The behaviour of such
a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied
(§5), and methods are obtained for estimating the extent and duration of the resulting
hold-up.

The theory is applicable principally to traffic behaviour over a long stretch of road, but the
paper concludes (§6) with & discussion of its relevance to problems of flow near junctions,
including a discussion of the starting flow at a controlled junction.

In the introductory sections 1 and 2, we have included some elementary material on the
quentitative study of traffic flow for the benefit of scientific readers unfamiliar with the
subject.

1. INTRODUCTION

A new problem, which has arisen in the twentieth century, is how to organize road
traffic so that the full benefits of our increased mobility can be enjoyed at the
lowest cost in human life and capital. The problem has many sides—constructional,
legal, educational, administrative. The early lines of attack were largely intuitive.
But, more recently, there has been an increasing tendency to adopt scientific
methods, and try to assess the relative merits of different lines of attack by means
of controlled experiments. This has been done both by the various authorities
responsible for road lay-out, administration and propaganda, and also, more
comprehensively, by organizations like the Road Research Laboratory in Great
Britain, and the Bureau of Public Roads (formerly the Public Roads Administra-
tion) in the U.S.A. (Glanville 1953; Smeed 1952).

An important branch of the subject, with repercussions on all the other branches,
is the quantitative study of traffic flow. An account of the experimental methods
employed in this field has been given by the head of the traffic-flow section at the
Road Research Laboratory (Charlesworth 1950). They include methods for
measuring the means and standard deviations of vehicle speed at a point or journey
time over a stretch of road, and for measuring the low (number of vehicles passing
a given point per unit of time). Attempts to correlate these variables for roads of
particular mean width, mean curvature, etc., are made. Also, traffic performance
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is studied before and after some change in road conditions, and statistical technique
is used to find out whether the change significantly reduces journey times or
accidents. Extensive researches on similar lines are carried out in the U.S.A.,
notably by the Division of Highway Transport Research, and by certain university
departments such as the Post-graduate School of Highway Engineering at Yale.

In contrast to the well-developed character of traffic flow as an experimental
science, theoretical approaches to the subject are in their infancy. Wardrop (1952)
has given a valuable account of such theoretical investigations as have been made.
He emphasizes the need for theoretical ideas to be used in conjunction with
experimental data and the experience of individuals. It is well known, of course,
in all branches of science and technology, that judicious use of theoretical ideas
can save a lot of time by suggesting how experimental results obtained under one
set, of conditions can be extrapolated to another set of conditions. For example,
theory may suggest in what form a set of results should be graphed, to give a curve
likely to vary as little as possible with change of conditions. It may also suggest
what things can most usefully be measured.

The theories which Wardrop (1952) describes are, as might be expected,
statistical. First, the kinds of mean values which can be taken are discussed—
for example, a ‘space mean’over a length of road, or a ‘time mean’ over an interval
of time at a fixed point. The space-mean speed (which we use in this paper) is the
length of road divided by the average journey time of vehicles traversing it. It is
also the ratio of the flow (vehicles per hour) to the concentration (vehicles per
mile). The time-mean speed is somewhat greater because fast vehicles pass a fixed
point more frequently (relative to their distribution in space) than slow vehicles.

Wardrop discusses the effect of increase of flow on overtaking. The number of
‘desired overtakings’ might be expected to increase as the square of the flow, so
evidently, beyond a certain value of the flow, the proportion of desired overtakings
which are possible must decrease. (For detailed observations on this point, see
Norman, 1942.) This would clearly cause a reduction of mean speed with increase
of flow, which is observed. He discusses also how traffic with uniform origin and
destination may be expected to distribute itself over alternative routes, and he
gives useful applications of the ‘theory of queues’ to the problem of delay at
traffic lights (see also Tanner 1953).

In this paper we introduce a quite different method, suggested by theories of the
flow about supersonic projectiles and of flood movement in rivers. It is the method
of kinematic waves, introduced in part I (Lighthill & Whitham 1955); however, it
is not essential to have read part I to understand the account which follows.

Now, a theoretical approach to road-traffic problems using methods from fluid
dynamics is limited in advance to a restricted range of problems. Other ranges
undoubtedly require statistical treatment of the kind described above, based on
the theory of queues or the general theory of ‘stochastic processes’ (random time
series). The ‘continuous-flow’ approach represents the limiting behaviour of a
stochastic process for a large ‘population’ (total number of vehicles), and is there-
fore applicable to large-scale problems only—principally to the distribution of
traffic along long, crowded roads.

e
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This ‘arterial road’ problem is an important one, however, which would be almost
impossible to treat by purely statistical methods (though it may later be found
desirable to use the present approach only as a first approximation, passing to
higher approximations by means of a suitable blend with statistical ideas). To
illustrate the theory, we use it to predict (§4) the progress of a traffic ‘hump’in
a long main road (due to a period of increased inflow at the main feed point), and
(§5) the extent of the hold-up which results when such a hump passes through
a bottleneck, which is too narrow to admit the increased flow. We also apply
the method (§6) to junctions, especially controlled junctions, on long main
roads.

The fundamental hypothesis of the theory is that at any point of the road the
flow ¢ (vehicles per hour) is a function of the concentration & (vehicles per mile).
The evidence for this is discussed at length in §2. The hypothesis implies, as was
shown in part I, that slight changes in flow are propagated back through the
stream of vehicles along ‘kinematic waves’, whose velocity relative to the road is
the slope of the graph of flow against concentration. A driver experiences such
a wave whenever he adjusts his speed in accordance with the behaviour of the car
or cars in front of him—for example, on observing a brake light, or an opportunity
to overtake. It was seen also in part I that kinematic waves can run together to
form ‘kinematic shock waves’, at which fairly large reductions in velocity occur
very quickly. These too are very common on roads, notably at the rear of a traffic
‘hump’, and behind a bottleneck.

The properties of kinematic shock waves, and of continuous kinematic waves,
will be derived again, by purely descriptive arguments, in §2. The more mathe-
matical derivation, which some readers may prefer, will be found in §1 of part I.

The later sections are devoted to examples of the kinds already mentioned. The
predictions are found to agree qualitatively with experience, but the extent of
quantitative agreement is not yet known. Experiments to determine this are
being planned.

It should be mentioned that essentially the same methods and results apply
to pedestrian traffic of a congested character. The bottleneck theory (§5) is
particularly relevant to the movement of crowds through passages. However, the
following exposition is confined to the more serious problem of vehicular traffic flow.

2. THE FLOW-CONCENTRATION CURVE

Although the flow ¢ and the concentration k& have no significance except as
means, the purpose of the theory is to ask how they vary in space and time.
However, on & long crowded road this is reasonable, since the means can be taken
over relatively short distances or time intervals, and we are interested in variations
over much greater distances and times.

The precise definitions of ¢ and k, at a given point  on the road and a given
time £, are included in the following instructions for measuring them. Draw two
lines across the road, a short distance dz apart, to form a slice of road with the
point x in the middle. Take averages over a time interval of moderate length 7,
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with the time ¢ in the middle. The interval 7 must be long enough for many
vehicles to pass. Then the flow ¢ is

q=mn/t, (1)
where n is the number of vehicles crossing the slice in time 7. The concentration % is
xds

where 2d¢ means the sum of the times taken by each vehicle to cross the slice.

Thus % is the average number of vehicles (Xd¢/7) on the slice of road, divided by

the length dz of the slice; in other words, % is the number of vehicles per unit

length of road.

» A third important quantity is L4 s
=

(3)

Zde

S|~

This is the ‘space-mean speed’ of Wardrop (1952), being both the ratio of flow to

concentration and the ratio of length of slice to average crossing time. Thus it is an

average of vehicle speeds weighted according to the time they remain on the slice
i of road. (If conditions were uniform, on the average, over a much longer stretch
' of road, v would also be the average speed of all vehicles while they remain on that
stretch; the further averaging with respect to time would then be unnecessary,
since the fluctuations with time would become small for a long stretch of road.
This explains the name ‘space-mean speed’.) The time-mean speed, which we
shall not use, is the unweighted average speed of vehicles crossing the slice, namely
11X (dz/dt). This exceeds ». If speeds at a point are measured directly (as by
a Radar speedmeter), instead of in terms of times, one can still derive the space-
mean speed (Wardrop 1952) by taking the ‘harmonic’ mean of the observed

speeds, namely,
1 1 \1 dz
(— by ) = = . (4)
n " dz/de 11;2 dt

Most road-traffic observers have concentrated on measuring ¢ and v, as being
the quantities of greatest practical interest. The concentration £ must be obtained
from such measurements by division. Sometimes, however, k is observed directly
by taking photographs of the road from above. Such results are sometimes quoted
in terms of mean ‘headway’ (distance between the fronts of successive vehicles in
the same lane of traffic). The mean headway is N/k, where N is the number of lanes
travelling in the direction considered.

Vehicle counts are sometimes made by moving observers, especially (Charles-
' worth 1950; Wardrop & Charlesworth 1954) by observers in cars filtered into the
traffic. If an observer moving at uniform speed U records the number of vehicles
which pass him, minus the number which he passes, and divides the difference by
the total time of observation (say 7), the result is

q—kU. (5)
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(A number g7 of vehicles would pass him if he were stationary, but this is reduced
by k(Ur), namely, the average number of vehicles in the distance U which he
travels.) By measuring expression (5) successively for two values of U (in practice,
values with opposite signs), ¢ and k& may be separately deduced.

This experimental method is closely linked to the basic theoretical idea of this
paper. Consider two observers moving with uniform speed U, the second starting,
and remaining, a time 7 behind the first.* Suppose now that the flow and con-
centration are changing with time, but that nevertheless the observers adjust
their speed U so that the number of vehicles which pass them, minus the number
which they pass, is, on the average, the same for each. Then by (5), ¢—kU is the
same for each, and so

o =2
Ak’
where Aq and Ak are the change in flow and concentration after time .

Now, in the circumstances mentioned, the number of vehicles between the
observers must remain the same. But the number of vehicles passing any point
between the times at which the observers pass it is gr. Since 7 is fixed, it follows
that the flow ¢ remains unchanged along the path of observers travelling with the
speed (6).

In other words, when changes of flow are occurring, the waves which carry such
changes through the stream of vehicles travel at a velocity given by equation (6).
This velocity, relative to the road, may, as we shall see, be positive or negative.
However, it never exceeds + v, the space-mean speed ; hence the waves are always
transmitted backwards relative to the vehicles on the road.

Now, it has been conjectured by many authors that, on any uniform stretch of
a road, the flow ¢ is a function of the concentration k. If this is true, equation (6)
becomes especially valuable, since it shows that small changes of flow are pro-
pagated at the speed aj

G='d—},

(6)

(7)

which is known if & (or ¢) is known.

The relationship between flow and concentration has usually been stated in
rather different forms. At low values of the concentration, the mean speed v = g/k
has been regarded as a function of the flow ¢ (Normann 1942 ; Normann & Walker
1949; Glanville 1949, 1951). It falls off as ¢ increases, with a slope which is steep
for narrow roads but more gradual for wide roads. Wardrop (1952) ascribes the
effects of increased flow, in the main, to increased interference with overtaking,
which tends to reduce the mean speed to nearer the speed of the slowest vehicles
on the road. Doubtless, a general sense of the greater possibility of accidents also
contributes to the reduction in mean speed.

At high values of the concentration, however, most writers have regarded the
‘mean headway’ N/k as a function of the mean speed v = g/k. At v = 0, the mean

* Imagine them to be cyclists on an adjacent cycle track, so that they can maintain their
uniform speed U unimpeded, and in turn will not influence the observed traffic flow (we are
not suggesting this as & practical method of observation, but as a convenient way of thinking

about the flow).
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headway takes a value (around 17 ft. in Great Britain) only just greater than
the average vehicle length. As v increases, the mean headway increases almost
linearly (by about 1-2 ft. for each 1 mile/h increase in speed). Many authors (see,
for example, Normann & Taragin 1942) have interpreted such results by saying
that a driver allows just enough headway so that no collision will result if the
vehicle in front brakes suddenly, and he himself brakes after a certain ‘reaction
time’. Glanville (1949) points out that the observed rate of increase of headway
with speed would correspond to a uniform braking force, equal for both vehicles,
and a reaction time of 0-8 s. The reader may easily verify this. Attempts have been
made to apply such considerations also at low values of the concentration, but
then the greater freedom to overtake alters the situation completely.

Different experimental methods are appropriate for determining these two
kinds of relationship. Our contention, however, is that the information obtained
from these two sources should be combined into a single curve, and that the curve
which sums up all the properties of a stretch of road which are relevant to its
ability to handle the flow of congested traffic is a graph of the two fundamental
quantities, flow against concentration.

The form of such a curve must be as in figure 1. As the concentration & tends
to zero, the flow ¢ must also become zero. Again, in the limiting case of high con-
centration k = k; (j for jam) the vehicles travelling in a given direction are packed
tight on the part of the road where they are permitted to be; the flow ¢ is then
again zero. For some value of the concentration between these two extremes,
the flow ¢ must have a maximum g¢,,, which may be called the capacity of the road.

The deduction in the last paragraph (which a mathematician would call an
application of ‘Rolle’s theorem’!) does not seem to have been clearly made in the
traffic-flow literature, except perhaps by Greenshields (1935). Considerable effort
has been put into finding a suitable definition of road capacity, but it has not been
noticed that the very simple and relevant one ‘maximum flow of which the road
is capable’ is available.*

Experimentally, this was because flow at the particular concentration &,, corre-
sponding to this maximum flow is not often observed, for reasons which will appear
later. Flow at smaller concentrations is commonly observed, and described by
a speed-flow relation. (A description in such terms is inconvenient for the complete
range of speeds, since there are two speeds for a given value of the flow.) Flow at
concentrations near to k; is commonly observed, and described by a headway-
speed relation. (This description is unsuitable at low concentrations because
headway ceases to have significance when overtakings are prominent.)

To complete the curve satisfactorily, an independent measurement of ¢, and
k,, (flow and concentration for maximum flow) is desirable, since interpolation
between the two measured parts of the curve is very difficult without knowledge

* Normann (1942) introduced a ‘theoretical maximum capacity’, obtained by assuming
that the flow at all concentrations was governed by the theoretical speed-headway curve,
but he points out that observed flows are hardly ever more than about half of this ‘theoretical
maximum’. The maximum here discussed, on the other hand, is the real, experimentally

determined, meximum. Again, it should not be confused with a statistical ‘extreme value’,
since the flow-concentration curve represents the average relationship between the quantities.
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of some intermediate point. Fortunately, the theory of this paper provides a
special method of measuring these two quantities, as follows.

If a stream of vehicles is stopped, as at a traffic light, and then started again
after a considerable delay, as when the lights go green, a system of waves is
emitted.* Each carries a particular value of the flow ¢ and concentration %, and
hence also a particular value of the wave velocity ¢, and propagates with this
uniform velocity, some forwards and some backwards (see §6 below). One wave
alone remains stationary at the original stopping-point. Now this wave has ¢ = 0,
so by (7) it corresponds to a value of k for which dg/dk = 0, namely, to k = k,,, for
which g is a maximum. This shows that the mean flow and concentration measured

— _qm - e~ -~
-] ”
g 4000 /7 =
©
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concentration, k (vehicles/mile)

Fiaure 1. A flow-concentration curve.

at the stopping-point itself (after the stream of vehicles has started up, and. before
all those slowed down by the original stoppage have passed through—the need for
these restrictions will become clear in §6) are the required quantities g¢,, and k,,.

A typical flow-concentration curve constructed in the manner indicated is shown
in figure 1. The full line on the left is derived from speed-flow data, that on the
right from headway-speed data, and the central point (g, k,,) from measurements
at the stopping-point after a long line of traffic had been stopped and then allowed
to flow forward freely again. The curve refers to a certain one-way three-lane
section of the Great West Road, and the speed-flow data were obtained during
the period of peak evening traffic between 5 and 7 o’clock. The authors are grateful
to the Director of the Traffic and Safety Division, Road Research Laboratory, for
permission to use the unpublished results displayed on this curve.}

* A really long lane of vehicles must be stopped if the theory is to be applicable, as will
appear later (§6).

1 Mr Wardrop has recently indicated to the authors that he would now consider a rather
lower value (say 3200) more typical of the flow g,, past & stopping point on this particular
stretch of road than the earlier value (round 4700) supplied to the authors and quoted in
figure 1. However, R.R.L. measurements for single-lane traffic yield values of g,, of 1500 v/h.,
so that values of around three times this would be expected for three-lane traffic. If they
were not observed, the cars were probably not filling the three available lanes when stopped.
The flow g, will be achieved only if all available lanes are fully used.

13
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Another method of deriving the curve was used by Greenshields (1935), who
plotted v = ¢/k against  for one-lane traffic, as in figure 2, and drew a straight line
through his points. This involved a rather drastic interpolation since there is a large
intermediate range where there are no points, and where in fact the true curve
probably lies below the straight line. However, the method gives a simple and
probably not too inaccurate result, which led to the predicted existence of a
maximum flow on any road much earlier than had been inferred elsewhere, as
mentioned above. Greenshields introduced a ‘kink’ at the top of his graph, to

40
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‘ Ficure 2. Two examples of & speed concentration curve. @, Greenshields;
| b, Road Research Laboratory (see figure 1).

make the speed flatten out at the independently determined ‘free speed’ for the
road. A flat portion like this must be expected on any speed-concentration curve,
since the mean speed will be unaffected by concentration below a certain limiting
value. On a wide road like that of figure 1 this limit may be as much as 50 vehicles
per mile.

One may use the word ‘crowded’ to describe road conditions on which the con-
centration exceeds this limit. Then & road is crowded if any increase in concentra-
tion will lead to a reduction in mean speed. The theory of this paper is applicable
only to long, ‘crowded’ roads.

For comparison with Greenshields’s result the curve corresponding to figure 1 is
also shown in figure 2, with the densities divided by 3 to allow for the greater
number of lanes. In comparing the two curves, one must bear in mind the
differences between English and American driving habits and vehicle lengths.

The two curves are shown also in figure 3, as flow-concentration curves per lane
of traffic. That of Greenshields is the arc of a parabola with vertex upwards.
A portion of the arc near the origin is replaced by a chord through the origin. This
corresponds to a range of non-‘crowded’ conditions, in which the mean speed is
’ constant.
| To conclude this section it may be noted that the flow-concentration curve for

a particular stretch of road may vary from time to time (especially with the day
of the week, but also with the time of day), owing to changes in the proportion
of commercial vehicles on the road, or in the quantity of traffic travelling in the
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opposite direction. Some care is therefore needed in specifying the conditions
under which a particular determination of the curve has been made. Again, the
variations along a given road, due to differences of width, gradient, curvature,
population density, etc., between different stretches of the road, may be very
great. The velocity of a wave in any one stretch of road, however, will be given by
the slope of the flow-concentration curve for that particular stretch of road, as the
argument leading to equation (6) makes clear. The use of the theory in such cases
is possible, therefore, and will be fully illustrated in §5.

2000

1000

flow per lane (vehicles/h)

] | |
(] 100 200 300

concantration per lane (vehicles/mile)

Figure 3. Flow-concentration curves per lane of traffic. a, Greenshields;
b, Road Research Laboratory.

3. USE OF THE FLOW-CONCENTRATION CUEVE

To make practical use of the flow-concentration curve for a particular stretch
of road, a geometrical expression of the results of §2 is often valuable.

First, note that, corresponding to any point on the curve, the space-mean speed
v = g/k (under the conditions represented by that point) is the slope of the radius
vector from the origin (figure 4). The speed ¢ = dg/d% of waves carrying continuous
changes of flow through the stream of vehicles is the slope of the tangent to the
curve at the point (figure 4). This slope is the smaller,* provided that the mean
speed decreases with increase of concentration; in other words, if the road is

‘crowded’. For we can write
d dv
c d]c(’w) v+kdk, (8)
which is less than v if dv/dk is negative. The velocities ¢ and v are equal only at
low concentrations, below the limit (mentioned in §2) at which significant inter-
action between different vehicles on the road first occurs. At such concentrations,
dv/dk = 0.
To express velocities as slopes in this way is convenient if conditions on a road
are to be represented in a space-time diagram. If the road is represented as

* Meaning that waves travel backwards relative to the mean vehicle flow.
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stretching up the paper, with time travelling to the right, then a path on this
diagram, representing the motion of a wave or of a vehicle, will have a slope dz/d¢
equal to the velocity. Since lines of equal slope are parallel, it follows that a mean
vehicle path on this diagram must be parallel to the radius vector from the origin
to the relevant point on the flow-concentration curve, while a wave must be
parallel to the tangent to the curve.

A second use of the flow-concentration curve refers to discontinuous waves.
These are likely to occur on any stretch of road when the traffic is denser in front,
and less dense behind. For waves on which the flow is less dense travel forward

flow, ¢

concentration, &

Ficure 4. Use of the flow-concentration curve. Slope of radius vector (a) gives
average velocity of vehicles; slope of tangent (b) gives wave velocity.

k

Ficure 5. Use of flow-concentration curve to predict the local
conditions near a shock wave.

faster than, and hence tend to catch up with, those on which the flow is denser.
When this happens a bunch of continuous waves can coalesce into a discontinuous
wave, or ‘shock wave’. When vehicles enter this their mean speed is substantially
reduced very quickly. The wave is not totally discontinuous of course, but its
duration is not much longer than the braking time that each vehicle needs to make
the required reduction of speed.

The speed of a discontinuous wave, or shock wave,* is given by (6) as Ag/Ak,
the slope of the ckord joining the two points of the flow-concentration curve which
represent conditions ahead of and behind the shock wave. (Note that the argument

* In future we shall prefer the latter name, suggested by the very strong analogy with
shock waves in gases.

—
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leading to (6) is applicable, provided that the time interval 7 between the two
observers exceeds the duration of the shock wave. The number of vehicles between
two observers with the shock wave between them can remain constant only if they
travel at the speed of the shock wave.)

Figure 5 illustrates the use of the flow-concentration curve to predict conditions
near a shock wave. The shock wave is shown as a heavy line on the space-time
diagram on the right. Ahead of it the flow is denser and the waves (plain lines) are
drawn parallel to the tangent to the flow-concentration curve at 4. Behind it the
concentration is less and the waves travel faster; they are drawn parallel to the
tangent to the curve at B. The shock wave, generated by the running together of
these waves, travels at an intermediate speed, and must be drawn parallel to the
chord AB. The mean vehicle paths (not shown) would be parallel to the radius
vectors OB (behind the shock wave) and OA (ahead of it).

4. THE PROGRESS OF A TRAFFIC HUMP

As a first illustration of the method we apply it to a problem where the road is
uniform, so that all stretches of it have the same flow-concentration curve. In these
circumstances, each continuous wave is propagated at a constant velocity ¢, since
g is constant along it. In a space-time diagram the wave paths are straight lines,
each parallel to the tangent to the flow-concentration curve at the corresponding
point.

The source of traffic is taken to be at one end of the road, and we consider the
case when the inflow rises to a peak and then falls to its original value, producing
a traffic hump.* The rise and fall of inflow can be easily measured by an observer
at the feed point. A problem of some importance is then: How can the behaviour
of the hump as it passes down the road be predicted in advance? For example,
when will it reach a given point? Will it spread out, or become more concentrated,
and how fast? How will it affect average journey times?

The wave theory gives convenient answers to these questions. Figure 6 shows
the wave pattern in a space-time diagram. The wave path starting from the feed
point at any time is parallel to the tangent to the left-hand part of the flow-
concentration curve at the point which corresponds to the inflow at that time.The
waves travel more slowly inside the hump than outside it. Hence the wave paths
in figure 6 ‘fan out’ at the front and become concentrated at the rear, where they
must ultimately run together.

It must be emphasized that the lines drawn are ‘waves’ (lines of constant flow,
and hence also, for a uniform road, lines of constant mean speed) and not vehicle
paths. Vehicles go (on the average) faster than the waves, and most vehicles
starting at the rear of the hump will in time get through it. On entering the hump
a driver has to slow down fairly rapidly (since the lines of constant speed are

* Traffic humps (regions of increased concentration) generated in this way have con-
centrations remaining solely on the left-hand half of the flow-concentration curve. But humps
at the much higher concentrations corresponding to the right-hand half have similar pro-

perties; the only important difference is that the waves travel backwards relative to the road.
Examples of humps of this kind occur below, especially in the theory of bottlenecks (§5).
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bunched together on the right of figure 6), but on leaving it he can increase his
mean speed only slowly as he traverses the fan of waves on the left.

Figure 6 gives a clear answer to the question of the speed of the front of the
hump, which turns out to be the wave velocity associated with conditions in front
of it. Note that this may be considerably less than the space-mean speed (which
in turn is less than the time-mean speed) of the vehicles in this region. The other
questions noted above can be answered only after the path of the shock wave,
which results from the running together of the waves at the rear of the hump, has
been determined.

W

normal inflow increased inflow normal inflow
time (scale of order 1h)

distance (scale of
order 20 miles)

Fioure 6. Wave forms in traffic hump.

The shock wave starts at the point where two waves first run together, and its
progress after that is governed by the simple law stated in §3: at each point of
the shock, the two waves which meet there are represented by two points on the
flow-concentration curve, and the shock wave path must be drawn parallel to the
chord joining those points. This gives a straightforward geometrical step-by-step
method for constructing the path of the shock wave.

In practice it is convenient to note that the slope of the chord is approximately
the mean of the slopes of the tangents at its end-points, so that the speed of the
shock wave is approximately the mean of the speeds of the waves running into
it from either side. This approximation is exact for a parabolic arc with vertical
axis, such as Greenshields’s flow-concentration curve (figure 3). For other smooth
curves with nothing approaching a vertical tangent, the approximation is still
fairly good, as the known series for the slope of the chord,

k) —q(k — k)2
W =0 g+ k) - g

q" (ky) +q" (k) + oo (9)
shows. In view of the approximate character of the whole theory, the additional
approximation is probably worth making wherever it will make an effective
simplification.

It certainly makes the shock wave easier to draw in by eye, as no further
reference to the flow-concentration curve is then necessary. One has simply to

h——
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draw a path on the space-time diagram whose slope at any point is the mean of
the slopes of the waves running into it from either side. This process is illustrated
in figure 7; it can be mastered with only a little practice.

As an alternative, or as a check, one has the analytical solution for the shock
path (Whitham 1952) which again is based on the approximation noted above.
This also can be expressed as a geometrical construction, as follows.* Given the

distance car path shock
[ Ef:

/

time

FD B E

normal increased inflow normal inflow
inflow
F1cUurE 7. Progress of traffic hump with time.

variation with time ¢ of the inflow rate observed at the feed point, plot a graph
(figure 8) with the corresponding wave velocity ¢ (the slope of the flow-concentra-
tion curve for the observed value of the inflow) as ordinate, and its product with
the time, ct, as abscissa. Then the time at which the shock wave first appears is

* The present problem is somewhat simpler than that treated by Whitham (1952), in
which our ordinate ¢, the rate of change of « with respect to ¢ on a wave, is replaced by F(y),
the rate of change of ar — 2 with respect to kr#; and in which the abscissa is , the value of x
when r = 0. The analogous abscissa in our problem is evidently the value of —z when ¢ = 0.
For the wave which passes z = 0 at time f, with velocity ¢, this is ¢¢. Readers of part I should
note that another approach, in which ¢! and not ¢ replaced F(y), was found convenient
there (§4); however, that approach cannot be used if the flow-concentration curve has

a stationary point.




20

M. J. LIGHTHILL AND G. B. WHITHAM

given by the reciprocal of the slope of the tangent to this graph at its right-hand
point of inflexion A4 ; the value of ¢ (or t) at A also determines, through its velocity
(or time of origin, respectively), on which wave the shock wave first forms. To
determine the further progress of the shock wave, draw chords on the graph
(e.g. BC, DE, F@) which cut off lobes of equal area above and below between them
and the curve. Then the slope of any one of these chords is the reciprocal of the
time at which the shock wave absorbs the two waves on which ¢ and ¢ have the
values corresponding to the end-points of the chord.

It is evident from this construction that the shock wave initially grows in
strength, the maximum increase in concentration at the shock wave occurring
when one of the end-points of the chord is somewhere near the bottom of the graph
(see BC in figure 8, and also in figure 7, where the wave corresponding to each point
in figure 8 is marked with the same letter, so that points on the shock in figure 7
are marked exactly like the chords in figure 8 which correspond to them). At this
time vehicles entering the hump suffer instantaneously almost the full reduction
of speed associated with it. The path of such a vehicle is indicated by the broken line.

c

col

Co DB

1 ct

FiGure 8. Geometrical construction for the shock wave.

As time goes on, however, the left-hand end-point in figure 8 penetrates farther
and farther into the front part of the hump, so that the shock wave absorbs, one
after another, all the waves on which there is substantially increased density.
When this process is completed, the hump has disappeared and what remains of
the shock wave is negligibly weak. This happens after a time equal to the reciprocal
of the slope of F@ (figure 8), where F is a point at which ¢ is sufficiently near to
the value it takes on the left of the graph. Note, however, that the section of road
satisfying the conditions postulated may in many cases come to an end before the
hump is dispersed in this way.

Regarding the hump as a region of increased concentration, it may be asked
how the excess of vehicles can effectively vanish in this way. The answer is that
the region of increased concentration spreads backwards (relative to the front of
the hump, which has a constant mean speed), so that the excess of vehicles is
dispersed over a constantly increasing length of road. A quantitative estimate of
the process may be obtained if one knows the duration, say 7', of the increased
inflow at the feed point, the wave velocity ¢, outside the hump and the lowest
value, say c¢;, of the wave velocity inside the hump. Then the shock wave is at its

strongest at a time about T
| (10)
2(co—¢1)
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after the time of maximum inflow. At this time (corresponding to BC* in figures 7
and 8) the hump has hardly spread backwards at all; it has simply altered its
shape so that the increase of concentration is sudden and the subsequent decrease
is spread over the whole length of the hump. Later, the decrease of wave velocity
at the shock wave becomes a small quantity & after a timef

colco—¢y) T
o L"sr‘)— , (11)
and the length of the hump is then about
I = {co(co—cy) T}, (12)

which may be compared with its original length ¢, 7.

It is interesting to compare this result with the results of ordinary diffusion
processes. It corresponds to a diffusion coefficient of the order of cy(c,—c;) 7',
namely, the product of the length of the hump and the maximum reduction in
wave velocity within it. By comparison, any diffusion which may be present due
to statistical fluctuations with a mean free path, or due to a dependence of mean
flow on concentration-gradient as well as on the concentration itself (see part I,
and §6 below), would have a diffusivity independent of the length of the hump.
This indicates that diffusion by the wave process described in the present section
will at any rate be predominant for sufficiently long humps—in other words that,
for sufficiently ‘long, crowded roads’, the present theory is appropriate.

5. A THEORY OF BOTTLENECKS

We now consider a typical problem where the capacity of the road varies along
it. We suppose that some bottleneck is present, where the maximum possible flow
g falls to a lower value than on the main part of the road. Then, presumably, the
whole flow-concentration curve is reduced in its vertical scale. (It may well be
reduced in horizontal scale too (that is, k; may become less), but figures 9, 11 and 13
illustrating the theory have actually been drawn for the case where this does not
happen.) The local minimum value of g,, may be called the capacity of the bottleneck.

We consider first a stream of vehicles approaching the bottleneck at a flow rate
which remains always less than its capacity. Then each vehicle suffers simply
a temporary reduction in speed as it passes through. The waves are also reduced
in speed while in the bottleneck. For the flow ¢ remains constant on any wave,
as was shown in §2 independently of whether the flow-concentration curve varies
with position. Hence (figure 9) conditions on a wave as it passes through the
bottleneck are represented by points of flow-concentration curves all at the same
horizontal level. Since the tangent to the lower curves at a given horizontal level
has a smaller slope, the wave velocity is reduced inside the bottleneck, and the

* The quantities ¢y, ¢, and T are indicated in figure 8, and it is evident that the slope of
BC is approximately the reciprocal of (10).

t The area of the hump in figure 8 is about }(c,—¢,) ¢, T, and this will be equal to the area
above F@, namely, 18%, where ¢! is the slope of F@, if (11) holds. Here ¢,—4 is the value
of ¢ at F.
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wave paths behave as in figure 10. Under the conditions illustrated in this figure
the delay to each vehicle is relatively small.

Next, we consider the more serious hold-up resulting when, as time goes on, the
oncoming flow rate increases above the capacity of the bottleneck. Waves then
turn back before reaching the centre of the bottleneck and form a shock wave.
This passes back down the main road and forces vehicles to pile up behind the
bottleneck at a rate given by the difference between the oncoming flow and its
capacity. In practice, the oncoming flow would exceed the capacity of the bottle-

q speed of wave in main,road

speed of same wave at
centre of bottleneck

flow-concentration
curve on main road

flow-concentration
curves inside bottleneck

k

Figure 9. Variation of flow-concentration curve in a bottleneck.
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Ficurg 10. Passage of waves through a bottleneck, the capacity of which
exceeds the incoming flow rate.

neck only for a finite time, during which the oncoming traffic is in the form of
a hump. An important question is the duration of the hold-up resulting from the
passage of a given traffic hump through the bottleneck. This will be solved by
a detailed study of the shock wave paths.

To understand the formation of the characteristic ¢ bottleneck shock wave’, note
that no wave carrying a flow exceeding the capacity of the bottleneck can possibly
pass through it, since the flow must remain constant on the wave, and such a large
flow is impossible in the centre of the bottleneck. It is not important at which
precise point of the bottleneck the wave turns back, but theoretically (if the flow-
concentration curve varies continuously through the bottleneck) it should do so
at the point where the flow carried by the wave is the maximum possible flow;

L .
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for here only is the wave velocity (slope of the tangent to the flow-concentration
curve) zero. In figure 11, this point is B; the slope of the tangent at (' indicates
the speed at which the wave will come out of the bottleneck again. Compare the
points 4, B, C in figure 12, which shows in a space-time diagram the turning back
of such a wave. For short bottlenecks, the details of the predicted flow within the
bottleneck could not be relied on. However, the qualitative fact that the wave
turns back, and its progress beyond C, are predictions on which greater reliance
can be placed.

q velocity with which wave enters bottleneck

velocity with
which it leaves it

p
Figure 11. Illustrating the ‘reflexion’ of a wave from a bottleneck.

last wave with flow < capacit
of bottleneck

main road / / /

o

bottleneck

main road

Ficure 12. Formation of shock wave in the front of a hump
as it enters a bottleneck of inadequate capacity.

The need for waves to intersect is at once evident from figure 12, where the
beginning of the resulting shock wave is sketched in. This shock wave involves
a reduction of flow, so its velocity (the slope of the chord joining points on the
flow-concentration curve corresponding to conditions in front and behind) must be
backwards relative to the road. As soon as it passes back out of the bottleneck, it
must reduce the oncoming flow to almost exactly the capacity of the bottleneck.
This is because waves carrying flows less than this have passed through, and waves
carrying greater flows have turned back and been absorbed by the shock wave, so
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that only waves carrying flows approximately equal to the capacity of the bottle-
neck remain in its neighbourhood. Those just behind it are travelling backwards,
corresponding to a point (e.g. B in figure 13) on the right-hand half of the flow-
concentration curve for the main road, at a flow level corresponding to the capacity
of the bottleneck. The speed of vehicles in the slow crawl up to the bottleneck is
given by the slope of OB. Conversely, the waves just ahead of the bottleneck are
travelling forwards, corresponding to a point (e.g. F in figure 13) on the left-hand
half of the curve. Thus, vehicles after passing through the bottleneck are able to
accelerate up to a mean speed given by the slope of OF.

q average vehicle speed in oncoming flow

oncoming flow
in hump %\_A

capacity of F B
bottleneck

shock velocity

average vehicle
speed in ‘crawl’
behind shock
wave

0 k

FigurE 13. Illustrating ‘crawl’ produced by bottleneck and its final resolution.

normal inflow —

The growth of the queue of crawling vehicles behind the bottleneck is easily
calculated from the shock-wave path. For example, at a point where the oncoming
wave carries a flow specified by the point A4 in figure 13, the shock-wave velocity is
the slope of AB.*

How will the deadlock be resolved? Evidently the shock wave will continue to
move backwards until the point A falls below the level of B, in other words, until
the oncoming flow starts being less than the capacity of the bottleneck. If this
improved state of affairs continues for long enough, the shock wave will move far
enough forward to pass through the bottleneck. On doing so it will greatly increase
its speed, for conditions downstream of the bottleneck are respresented by the
point F in figure 13, so that the shock-wave speed will be the slope of a chord such
as CF. Thus, after it has passed back through the bottleneck, the shock wave will
be just like the ordinary shock wave in the rear of any traffic hump (§4).

These considerations enable the course of the hold-up, and its approximate
duration, to be determined graphically if the approaching hump is known, for
example, if the variation of flow with time has been measured at some upstream
point. The situation is little changed if there is already a shock wave in the rear
of the approaching hump, as is likely in practice to be the case. When this meets
the ‘bottleneck shock wave’, the two shock waves ‘unite’, a familiar process in

* The fact that increases of concentration from values well below k,, to values well above

it are normally made (as here) by means of shock waves, explains why (as noticed in §2) the
maximum flow ¢,, of a road is not often observed.
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gas dynamics. No alternative behaviour is possible, as whatever they become has
got to change the flow and concentration from their values behind the hump shock
wave to the values associated with the bottleneck crawl. This could not be done
by means of two shock waves, for example, because the one behind, which has to
make the first increase of concentration, would have a greater speed than the one
in front, which is responsible for the final increase to the crawl concentration;
this relationship between speeds follows inevitably from the fact that the flow-
concentration curve is convex upwards, but, on the other hand, is geometrically
impossible since both waves must start at the same time.

(LY

distance

bottleneck

time

Figure 14. Resolution of ‘crawl’ by arrival of the shock wave in the rear
of oncoming traffic hump.

The case when a bottleneck crawl is resolved by the union of the shock wave in
the rear of the approaching traffic hump with the ‘bottleneck shock wave’ is
illustrated in figure 14. The path of the shock wave formed by this union is easily
traced, since it is still governed by the condition that the flow in front of it is equal
to the capacity of the bottleneck—the concentration taking the greater of the two
values compatible with this flow rate upstream of the bottleneck, and the lesser
one downstream of it. It is important to notice that the only data required for
estimating the course of a bottleneck hold-up in this manner are the flow-con-
centration curve for the main road, the capacity of the bottleneck, and the
variation of inflow with time measured at some upstream point.

As a final theoretical point, it may be noted that the flow near the bottleneck
during the crawl is steady. It has often been remarked that the increase of speed
on the passage of vehicles (or crowds) through a bottleneck under steady con-
ditions is similar to the effect of a Laval nozzle on the flow of a gas. The above
analysis shows how close the similarity is. Upstream of the bottleneck the waves

25
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are propagated upstream (as sound waves can be in subsonic flow); downstream
of it they are propagated downstream (as sound waves must be in supersonic flow).
As the centre of the bottleneck is approached, the mean speed v is increased, and
the wave velocity relative to the mean vehicle speed (namely, v—¢) is decreased,
so that both are equal, just as the fluid velocity equals the velocity of sound in the
throat of a Laval nozzle. The only essential difference* between the two situations
is that the gas is able to transmit disturbances forwards as well as backwards
relative to the mean flow. It is this that made the above analysis of the fransients
in the traffic flow problem so much easier than it is in the problem of the Laval
nozzle.t

On a road with several bottlenecks in rapid succession, the one with least
capacity will define the greatest flow possible under steady conditions. An inflow
of vehicles exceeding this capacity can only pile up in a continually increasing
‘queue’ or ‘crawl’ in front of the bottleneck system. In the steady part of the
flow, the flow ¢ is uniformly equal to the capacity of this narrowest bottleneck,
while the concentration k takes the larger value appropriate to this flow upstream
of that bottleneck, and the smaller value downstream.

The transients could easily be worked out in this problem. As a hump enters
the system of bottlenecks, a shock wave is first formed at the narrowest one (at
least if the flow increases slowly enough), and begin to move upstream. If there
is a slightly wider bottleneck farther upstream, a shock wave might later form
there too, perhaps before the first shock wave had reached it. However, in due
course the first shock wave would catch it ap, as its speed backwards is greater,
and so the two would unite into a single shock wave reducing the oncoming flow
to the capacity of the narrowest bottleneck.

6. SOME NOTES ON TRAFFIC FLOW AT JUNCTIONS

In this section we attempt a preliminary study of how the method of this paper
might be used to predict traffic behaviour at road junctions of various kinds.
First, we consider junctions which are not ‘controlled’ (either by police or by
traffic lights).

The simplest junctions are those where minor roads introduce new traffic on to,
or abstract traffic from, such a long arterial road as has been considered in the
preceding sections. This is normally achieved without significant impedance to the
traffic on the major road. Vehicles wishing to enter it have to wait until they can
do so without causing obstruction. Vehicles leaving the major road have often to

* A less essential, though more spectacular, difference is that in the traffic problem the
typical ‘unchoked’ flow is totally supersonic, instead of totally subsonic. But in both problems
both possibilities exist.

t Students of gas dynamics may wonder, on reading this, whether a rough approximation
to the calculation of transients in a Laval nozzle might not be made by regarding them as
kinematic waves, on the approximation (accurate only for steady flow) that the stagnation
enthalpy is everywhere constant. This is found to give the wave velocity as » —a?/v instead
of v—a (where a is the local speed of sound), so that its quantitative value would be small,
but it might indicate qualitative behaviour reasonably correctly.

=
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slow down, or even stop for a time, before they can leave it, but they usually
signal their intention in time to enable vehicles behind to pass them on the
appropriate side with little loss of speed.

The effect of such a junction on a wave moving past it along the major road, is
then to change the flow carried by the wave by an amount equal to the ‘mean net
inflow rate’ from the minor road. This rate is defined as the difference between
inflow and outflow, smoothed (as a function of time) by averaging it over such
a time 7 a8 was considered in §2. If the road is ‘ ecrowded’, in the sense defined in §2,
the change in flow will change also the speed ¢ of the wave, as well as the mean
vehicle speed v. In a space-time diagram, therefore, the waves bend slightly at
junctions (backwards where the net inflow is positive, forwards where negative).
These rules enable the arterial road theory of §§4 and 5 to be corrected for minor
inflows and outflows at junctions.

However, there is a limit to the amount of inflow (especially) which is possible
under those conditions. Further, this limit becomes more and more reduced as
the flow on the major road increases. These are truisms. It might be thought,
however, that the limit was just that increase of flow which would be required to
raise the flow on the major road to the maximum possible. The real limit, however,
is always much less than this. For inflow under most conditions can occur only
when gaps in the traffic pass the junction. As the flow increases, such gaps become
rarer and rarer, and for large enough flows, but still well below the capacity of the
road, the gaps may be too rare to permit any significant inflow at all.

At cross-roads, where some traffic on the minor road seeks to cross the major
road, a closely similar limit exists on the foial flow originating from the minor road.
(This is the sum of the inflow and the cross-over flow.) Evidently, if the minor
road carries a flow exceeding this limit, the major road may act for the time being
as an effective bottleneck, for the flow on the minor road, which could then be
treated by the theory of §5.

It will now be clear why stoppages occurring at junctions under heavy flow
condifions can often be resolved by sending a policeman to control the junction.
If he stops successively the traffic on the major, and then on the minor, road, the
flow originating from each will be approximately the maximum for the road during
nearly all the period when the other road is stopped (see §2 above, and also the
discussion which follows). The total flow can therefore be made fairly near to this
maximum (or, if the capacities of the roads are different, to a weighted mean of
them), and this will be greater, as just explained, than what can be achieved under
uncontrolled conditions. To achieve best results, the policeman gives each road
a time allocation proportional to the flow originating from it. Where traffic lights
are installed, one can allocate times on the basis of a mean ratio of flows over an
extended period, or else use a vehicle-actuated system of a type calculated to give
a better approximation to the optimum at any instant.

Where major roads meet at the same level, a roundabout is preferable to a simple
controlled crossing. For this to remain effective under the heaviest traffic con-
ditions, the circular arcs of road which compose the roundabout should each have
a capacity equal to one-quarter of the sum of the capacities of the roads radiating

—




28

M. J. LIGHTHILL AND G. B. WHITHAM

from it. For on the average each vehicle uses half the total number of arcs, so that
the average flow in an arc will be half the total inflow, or one-quarter of the total
flow (inflow and outflow) on all the radial roads. When there are four of these, the
argument indicates a width for each arc equal to that of one of the radial roads.
Since excessive width for the arcs reduces safety, it may be that these limits should
be closely followed.

To conclude the paper, we describe an attempt to discover whether the theory
can be successfully applied to flows on a small scale, by using it to predict the
effect on the oncoming flow of the compulsory stops and starts at a controlled
junction.

First, consider the effect of a sudden stoppage (as when traffic lights turn red)
on a uniform oncoming flow. It sends a shock wave back into the oncoming
stream, at which the flow is reduced to zero and the concentration increased to
approximately k;, the maximum concentration of which the road is capable. (As
when the union of two shock waves was discussed in §2, there is no possibility but
a single shock wave in this situation, since if there were more than one wave
involved the velocity forwards of the wave making the first increase in concentra-
tion would have to be greater than that of the others, and this is impossible because
all originate at the same place and time, and the first wave must be at the rear.)
The speed of the shock wave is the slope of the chord on the flow-concentration
curve which joins the point representing the oncoming flow to the point (k;, 0).

A more difficult question, where the limitations of the theory become apparent,
is what happens when the traffic is permitted to flow forward again (as when the
lights turn green; we ignore, to start with, complications due to some vehicles
seeking to turn right or left at the junction). The solution, when the assumptions
of the theory are retained without change, will first be given in detail (it was
already indicated in §2) and afterwards criticized.

The front vehicle can accelerate unhindered to a speed characteristic of an
unimpeded road, but the theory ignores the time taken for adjustments of speed
(consequent on changes of concentration) to be made. Hence, it represents the
front of the stream as moving off instantly at a mean velocity equal to the ‘free’
mean speed vy. The wave velocity is also vy, both being the slope of the flow-
concentration curve at the origin. At the same time a wave starts backwards
through the stream of waiting vehicles, giving the signal to start. This has a
(negative) velocity equal to the slope ¢; of the flow-concentration curve at the
right-hand limit (corresponding to ‘jam’ conditions). In between these two
extremes there is room for waves of all intermediate velocities, each carrying
a corresponding mean vehicle velocity. Since in conditions when the wave velocity
is greatest in front there is no tendency for waves to run together and form shock
waves, we may suppose that only continuous waves will be present and so that the
increase in speed will be achieved through a fan of waves of all possible velocities.

Figure 15 shows the shock wave produced when the lights turn red, and the
postulated fan of continuous waves appearing when they turn green, in a space-
time diagram. A typical vehicle path is shown as a broken line. The stationary
wave which remains at the stopping point is that referred to in §2; the flow across
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this point is ¢,,. Figure 15 shows also the ‘weakening’ of the shock wave when it
is caught up by the fan; evidently, its speed must be rapidly reduced when the
flow behind it begins to climb up the flow-concentration curve.

If the period of stoppage (‘red period’) is 7}, and the period of permitted flow 7},
then on the average the total number of vehicles ¢,(7,+ 7)) coming up (at the
inflow rate ¢;) during the complete cycle will pass across the stopping point during

the time 7, only if
g y q’i(I‘r"—Ta) <qmq}1' (13)
This sets an upper limit T,
T+T, I (14)

to the inflow (from the road in question) which can be handled by the controlled
crossing, without leading to a queue of increasing length. This limit (14) is the
‘capacity’ of the controlled crossing, when regarded as a bottleneck.

distance

time

F1GUure 15. Uniform incoming flow stopped for a time and then started again.

If condition (13) is satisfied, that is if the inflow is less than the capacity, then
the maximum flow g, at the stopping point cannot be maintained during the whole
period 7}, but only for a reduced period of length 7 (during which the crossing is
running ‘full’) given by the equations

GTAT) =Ty, Tp= 10 (15)

Im— 4
After a time 77, then, the flow ceases to be that carried by the wave which remains
at the stopping point, and this must be because the shock wave in figure 15 has
moved forward again and passed through the stopping point. This is illustrated in
figure 16. Behind the shock wave the flow is the undisturbed inflow g,. After
passing through the stopping point it is just the ordinary shock wave in the rear
of any traffic hump (§4).

A simple construction for the path of the shock wave is obtained as follows. The
number of vehicles crossing a wave such as OA4 in figure 16 (on which the flow is
q and the concentration k, and whose speed is ¢) is (g — kc) ¢, by §2, if ¢ is the time
difference between O and A. This number of vehicles must equal the number
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¢,;(t+T,) going up to the stopping point in the time £+ 7}, since the stream was first
stopped, minus the number &, ct left at time ¢ in the distance ct between the stopping

point and 4.

Thus (g—Fke)t =q,(t+T.)— k;ct, (16)
_ 7T,

or t—qm—q,—C(k—ki)' (17)

This equation can be used, with « = ¢t, to trace the shock-wave path on the (z, ¢)
diagram, if in both k is varied from 0 to k;, the corresponding values of ¢ and of
¢ = dg/dk being deduced from the flow-concentration curve. (Note that equation
(15) is a special case of (17), with ¢t =T}, ¢ =0, ¢ =gq,,.)

distance

S

red green red g

L
green

Ficure 16. Wave pattern for traffic lights of capacity sufficient to admit
the incoming flow,

If the incoming flow begins to exceed the capacity of the controlled junction,
the shock waves of figure 16 do not get clear of it in time; each then collides with
the shock wave sent out at the beginning of the next stopped period. They unite,
and in turn collide with the next shock wave, and so on. If the excess incoming
flow is maintained, these collisions (of shock waves, not cars!) must occur farther
and farther back, and thus become a less and less significant feature of the
situation. When this has happened the residual behaviour indicated by the theory
is quite simple. Each shock wave (figure 17), on being formed at the stopping
point, reduces the full flow g,, to rest. As it moves backwards (e.g. at @) the traffic
it stops is travelling more slowly. From D onwards (figure 17) however, it does
not reduce the flow completely to rest. Finally, at a very large distance behind
the stopping point (e.g. at A) little reduction in vehicle speed occurs at shock
waves and their effect has almost been ironed out into a typical bottleneck crawl.

The quantitative details of this familiar oscillating-speed crawl behind a choked
controlled junction can be obtained by a device similar to that used above in the
unchoked case. At a point in figure 17 such as 4, a distance x behind the stopping
point, let the values of k, ¢ and ¢ carried by the waves which run into the shock
wave at A be distinguished by suffixes 1 (for the first) and 2 (for the second). Then

£ )

B —— T ———
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the difference in the number of vehicles crossing the whole of each of these waves
is equal to the flow across the stopping point during the time 7},; in symbols,

x x
(ql—'klcl)'(Tl)— (92"]‘5202)(_—6; =T (18)
! /” s & ,’, 7
7 r‘e‘(‘i preen o red : —fdreen s red -fgreen s red 4 sreen /s

Ficure 17. ‘Crawl’ generated by traffic lights when inflow exceeds capacity.

Note that the wave velocities ¢, and ¢, are negative, so that the times taken by
the waves to reach A4 are z/(—c¢;) and z/( —c¢,) respectively. Also, since these differ
by an amount 7+ 7,, we have

L I
(—¢) (=¢y)

Eliminating « from (18) and (19), we can write the result as

1 InTp \ _, _ 1 I Ty
ky 61(41—714_7;)—]‘72_02(42 T+T) . (20)
Geometrically, this means that a line drawn across the flow-concentration curve
at a level corresponding to the capacity of the controlled junction (figure 18) will
have the property that tangents drawn to the curve (e.g. 4B and AC, or DE
and DF') from points on the line have slopes equal to the slopes of waves meeting

=T,+1, (19)
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at points on the shock wave (e.g. A4 or D in figure 17) where there is a transition
between the states represented by the two points of contact of the tangents
(e.g. Band C, or £ and F'). When one of the tangents cannot be drawn, the point ¥
(where ¢ = 0 and k = k;) must be used as an end-point instead (see e.g. GH and GF
corresponding to the point & in figure 17).

The use of the theory on a small scale, which has been illustrated in the above
discussion of the flow behind a controlled junction, is open to many objections,
which are discussed below, one by one.

First, the time taken for each vehicle to accelerate to its desired speed is ignored,
whereas it may not be negligibly small compared with the time scale of the process
as a whole (say, with the period 7}, of permitted flow). This is especially true of the
front vehicle, which is supposed to pursue a path at constant speed vz, but

q

capacity
G Ty ) B B 4 D G
r.+1T,
of traffic
lights

9]

F k

Figure 18. Geometrical construction for the flow of figure 13.

actually has to accelerate from rest up to this speed, by which time it is a certain
distance, say v5T}, behind the path in question, and subsequently remains at such
a distance behind it. This difficulty has been met in earlier, queue-theoretic,
discussions of traffic light behaviour (Clayton 1941; Wardrop 1952) by regarding
the vehicle as ‘losing’ a time 77 after the lights have gone green. Its final path is
that which it would have if it accelerated to speed vy instantaneously after an
initial delay 7. It is possible, therefore, that the present theory may be reasonably
correct provided that the period of stoppage 7, is taken to include this ‘lost time’
T,, which must in turn be deducted from the period of permitted flow 7. The
‘lost time’ is of the order of 5 to 10s. The existence of this lost time is an important
argument for keeping the periods of stoppage and permitted flow fairly long, so as
to achieve a total flow at the junction as near to g,, as possible. Conversely too
great a period increases average vehicle delay, and Wardrop (1952) has shown that
there is in any given case a cycle length which renders this average delay a
minimum.,

A second objection is that the theory ignores the fluctuations in inflow over
times comparable with T, or 7,. It is just these fluctuations which lead to the
phenomena (alternating quiet and ‘busy’ periods) studied in the theory of queues.
Another way of phrasing the objection is to say that the times 7}, and 7] are not
large compared with the time 7 needed (§2) to obtain smooth mean values of flow
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and concentration. This objection is certainly valid under relatively easy traffic
conditions. It seems likely, however, that when the road is ‘crowded’ in the sense
used in this paper the general picture of the starting flow given above may be
relevant, the variations of inflow serving only to alter the positions of the shock
waves at any instant.

A third objection is that certain measurements of traffic stopped and started
indicate that under these conditions the mean concentration may be far less, and
the mean speed far greater, for a given mean flow, than the values taken from the
flow-concentration curve under more nearly steady conditions. Measurements on
these lines known to the author include an unpublished set made at the Road
Research Laboratory in 1954 and a study of flow in the road tunnel under the
Meuse at Rotterdam (Aangenendt, Van Gils & Boost 1951). Both sets of results are
summarized in figure 19, and a smooth curve drawn through all the points.
Dr Smeed has suggested to the authors that the cause of the discrepancy might be
variation in the acceleration of vehicles: if many vehicles in the queue cannot
match the acceleration of those in front, the mean headway will exceed the minimum
value tolerable under steady conditions. The present authors regard this and other
causes mentioned above as serious limitations on the quantitative accuracy of
their theory, but find the magnitude of the observed departures rather greater
than they would expect from such a cause. The front vehicles certainly have an
opportunity to accelerate very fast, which may not be allowed for adequately by
the theory of ‘lost time’; but in a long queue the acceleration required of the
vehicles towards the rear is very moderate, and few of them can be incapable of it.

Tt must be remembered, on the other hand, that the mean flows and concentra-
tions recorded in figure 19 were each measured at a fized point, and according to
the theory (see, for example, figure 16) the flow and concentration are changing
so rapidly at a point that such a method can at most obtain an average of a large
range of values. The method of measurement (§2) shows that in fact a time-
average of each would be taken. It is easy to see that such an averaging process
would in practice lead to a ‘flow-concentration curve’ somewhat like that of
figure 19. Far behind the stopping point the mean would be taken over a period
of very high values of concentration (and low values of flow) and (after the shock
wave has passed forward) a longer period of very low values of concentration (and
only moderate values of flow). The means would then be well in the left-hand half
of the area under the true flow-concentration curve, and near the bottom. But,
near the stopping point, there would be a longer period before the shock wave moves
forward, and for much of this period the flow would be near its maximum. When
averaged with a shorter period of low concentration this would give points in the
middle of the area under the curve, somewhat below the top.

Future experiments will perbaps show whether or not this is the major cause
of the discrepancy revealed in figure 19.* In the meantime, it is perhaps worth

* Very recent work by Wardrop has already gone some way towards confirming this. By
taking means over very short distances (only twice the headway) and replotting the flow-
concentration curve, he obtains points lying on e curve which is at least parallel (instead of
perpendicular!) to the ‘headway’ curve of figure 19, although somewhat below it.

e ———————
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noting one or two directions in which the present theory could be improved in its
application to small-scale flows. First, there is the ‘blend with statistical ideas’
suggested in § 1, but this is too difficult to be treated briefly, and the compounding
of this blend is postponed to a later paper.

A second extension is to exclude a ‘diffusion’ effect due to the fact that each
driver’s gaze is concentrated on the road in front of him, so that he adjusts his
speed to the concentration slightly ahead. This gives a dependence of flow on
concentration gradient, which leads to an effective diffusion exactly as noted in
part I, §6. Such diffusion ‘spreads out’ the shock waves; in fact, drivers do not
reduce speed instantaneously at shock waves, because they see them coming.

2000
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L 1 1 | | |
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Fiaure 19. Observed mean flows and mean concentrations in traffic stopped and started.
O, Rotterdam tunnel; x, Road Research Laboratory; %, ‘headway’ curve.

A third extension is to include an ‘inertia’ effect due to the fact that a driver
must apply accelerator or brake to reach his desired speed and neither is instan-
taneously effective.

When both the last-named extensions have been applied, one reaches an equation
of motion of a general form

2 2
8_q+c_8_q_+T§g_Daq

P =" (21)

where 7' is the inertial time constant for adjustments of speed, and D is the
diffusion coefficient, or decrement of flow for unit concentration-gradient. This is
very similar to the equation governing waves in rivers (part I) when higher-order
effects are taken into account. The new terms may be expected to introduce similar
additional effects in traffic flow on a small scale to those found in certain river flows.
In particular, something analogous to ‘roll waves’ might sometimes arise, in which
a uniform flow is unstable and tends to degenerate into a succession of rapid
accelerations and even more rapid retardations. This sometimes happens to a long
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convoy of vehicles
maintains a uniform speed.

which are expected to keep in line, even when the front vehicle

The behaviour of the flow behind a controlled junction could in principle be
evaluated on the basis of an equation such as (21), but until the experimental
information is clearer such extensions of the theory would seem to be premature.
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Chapter 2
CAR FOLLOWING AND ACCELERATION NOISE

2.1 INTRODUCTION

Traffic phenomena are more a part of the
behavioral than the physical sciences, for
they result from the response of humans to
various stimuli. Certain stimulus response
equations can be analyzed, however, in the
same manner that physicists analyze dy-
namic equations of motion.

The average speed or travel time for
smooth safe driving on a given road de-
pends on many phenomena (weather, me-
chanical condition of vehicles, driver be-
havior patterns, curves, hills, pedestrians,
etc.). Two factors determine the mainte-
nance of a smooth safe trip—the motion of
an isolated vehicle and the interfererce of
vehicles with each other.

Theoretically, traffic can be considered as
the behavior of an assembly of vehicles
which are influenced by their environment
and by each other. Each vehicle is capable
of either acceleration or deceleration. The
“traffic problem” concerns the large-scale
motions of these vehicles at high density.
In this state they are forced to follow each
other in lanes and they have only occasional
opportunities to pass. Traffic theory in this
regard then is the study of the acceleration
and decleration patterns of these vehicles
and the flows resulting when they are regu-
lated in various ways.

2.2 THE ISOLATED VEHICLE

When a car is driven on an open road in
the absence of traffic, the driver generally
attempts, consciously or unconsciously, to
maintain a rather uniform velocity, but he
never quite succeeds. His acceleration pat-
tern, as a function of time, has a random
appearance. An acceleration distribution
function can be easily obtained from such
a pattern. This distribution is essentially
normal. The random component of the
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acceleration pattern is called “acceleration
noise” (4,5,7).

A measure of the smoothness or jerkiness
of the driving is then given by the disper-
sion o of the acceleration noise. The mathe-
matical definition of this quantity is

/Ea (t)]zdt

in which a(t) is the acceleration (positive
or negative) at time ¢, and T is the total
running time. Alternatively, if one con-
siders that the acceleration is sampled at
successive time intervals, A¢, then

1
of =

= ? (2.1)

1
2 = 2
ot = > [a(t)] at

(2.2)
The dispersion, or standard deviation, o, is
simply the root-mean-square of the accelera-
tion, and it has the dimensions of accelera-
tion. Its values are usually quoted in ft/
sec? or as a fraction or multiple of g =
32 ft/secz.

Runs made on a section of the General
Motors test track (an almost perfect road-
bed) by four operators while driving in the
range of 20 to 60 mph yielded normal accel-
eration noise distributions with standard
deviates of 0.01g *+ 0.002¢g, which are about
0.32 ft/sec?. This dispersion increases at
extreme speeds greater than 50 mph or less
than 20 mph.

The acceleration noise of a driver will
vary considerably as he drives on different
roads or under different physiological or
psychological conditions. The acceleration
noise observed in a run in the Holland Tun-
nel of the New York Port Authority (with
no traffic interference in the lane in which
the run was made) was 0.73 ft/secz. Al-
though the roadbed of the Holland Tunnel
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is quite good, the narrow lanes, artificial
lighting and confined conditions induce a
tension in a driver which is reflected in the
doubling of his acceleration noise dispersion
from its perfect road value. Preliminary
studies of the acceleration noise associated
with runs on poorly surfaced, winding coun-
try roads indicate that dispersions of 1.5
to 2 ft/sec? are not unusual.

Both transverse and longitudinal accel-
eration noises exist, but no measurement of
the transverse (left-right) noise has been
made. The latter would be large on winding
roads and in the pattern of drivers who
change lanes frequently while driving in
heavy traffic. Both components of the noise
would be large in the case of an intoxicated
or fatigued driver or in situations in which
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the attention of the driver is shared be-
tween the road and his traveling compan-
ions. Noise measurements have not yet been
made in these situations.

The dispersion of the acceleration noise
of a vehicle was first measured by Herman
et al. (4) by using an accelerometer to re-
cord on photographic film the car’s accelera-
tion as a function of time. From an analy-
sis of the curve, the value of the dispersion
¢ was determined. Although preliminary
results were obtained by this method, the
reduction of the data was rather tedious.
Apparatus for automatically recording the
acceleration in a form which can be con-
verted to digital data suitable for computer
input has been developed by Herman and
his group. This apparatus enables accurate
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Figure 2.1, Sketch of a recording obtained on the circular chart of Kienzle TCO 8F tachograph. The concentric

circles give the speed in mph; the scale on the outer circumference is in minutes. The inner trace is formed by

an additional stylus whose mode of vibration is chosen by the driver by operating a key on the tachograph. The

record illustrates a period of comparatively smooth driving with some stops {(medium acceleration dispersion) followed
by frequent accelerations and brakings (large acceleration dispersion).
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Table 2.1 Value of n2/At

At n=1 n=2 n=3 n=4 n=2>5 n==6 n="7 n=28
1 1.00! 4.00 9.00 16.00 25.00 36.00 49.00 64.00
2 0.50 2.00 4.50 8.00 12.50 18.00 24.50 32.00
3 0.33 1.33 3.00 5.33 8.33 12.00 16.33 21.33
4 0.25 1.00 2.25 4.00 6.25 9.00 12.25 16.00
5 0.20 0.80 1.80 3.20 5.00 7.20 9.80 12.80
6 0.17 0.67 1.50 2.67 4.17 6.00 8.17 10.67
7 0.14 0.57 1.29 2.29 3.57 5.14 7.00 9.15
8 0.13 0.50 1.13 2.00 3.13 4.50 6.13 8.00
9 0.11 0.44 1.00 1.78 2.78 4.00 5.44 711
10 0.10 0.40 0.90 1.50 2.50 3.60 4.90 6.40
11 0.09 0.36 0.82 1.45 2.27 3.27 4.45 5.82
12 0.08 0.33 0.75 ., 1.33 2.08 3.00 4.08 5.33
13 0.08 0.31 0.69 1.23 1.92 207 3.17 4.92
14 0.07 0.29 0.64 1.14 1.79 2.57 3.50 4.57
15 0.07 0.27 0.60 1.07 1.67 2.40 327 4.27
16 0.06 0.25 0.56 1.00 1.56 2.25 3.06 4.00
17 0.06 0.24 0.53 0.94 1.47 2.12 2.88 3.76
18 0.06 0.22 0.50 0.89 1.39 2.00 2:72 3.56
19 0.05 0.21 0.47 0.84 1.32 1.89 2.58 3.37
20 0.05 0.20 0.45 0.80 1.25 1.80 2.45 3.20

estimations of the acceleration dispersion.

An inexpensive and simple method of
estimating the dispersion employs the
Kienzle TCO8F model tachograph* with a
speed recording range of 0 to 45 mph. The
speed is recorded by a stylus on a circular
chart which revolves once in 24 min. A
typical record is shown in Figure 2.1. The
inner trace is formed by an additional sty-
lus that can vibrate in any of three modes
of vibration. The choice of the mode is
decided by the position of a tachograph key
which can be operated by the driver. It
enables him to indicate when he passes
selected points on the highway. A stylus
for recording distance traveled was not
used, as the mileometer on the tachograph
was more suitable and accurate.

Inasmuch as times are proportional to
angles on the circular chart, it is a simple
matter to use a protractor to measure the
travel time TT, the stopped time ST and

* The Kienzle tachograph is distributed un-
der the name ARGO in the United States.
Other tachographs are manufactured by VDO
and Wagner. Various models are available.
Some have circular charts; others use paper
wound on spools. Models with slow-moving
charts are used by trucking and bus com-
panies. Those with fast-moving charts are
ideal for many traffic engineering purposes.

the running time RT (= TT — ST). A spe-
cial analyzer is available from the tacho-
graph manufacturers which allows the rec-
ord to be mounted on a protractor and
viewed through a magnifying glass. The
acceleration dispersion was estimated by
approximating Eq. 2.1 by

2
uw% (%) At (23)

or
(Au)z n?
T At

o2 =

(2.4)

in which At is the time taken for a change
n A in speed, n being an integer and Au a
small speed interval taken constant through-
out the measurement of the record. The
time T is taken as the running time RT and
not the travel time. For a chart recording
speeds in the 0- to 45-mph range, a value
Au = 2.5 mph proved to be convenient. The
record is first marked at speed intervals
n Au, as indicated at the beginning of the
record in Figure 2.1. The chart is then
placed in an analyzer and successive values
of At are measured. It is convenient to use
a table of values of n2/At (such as Table
2.1) to enable the value of n?/At to be cal-
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culated progressively on a desk calculator.
To illustrate the method, the values of =,
At and n2/At for the beginnhing of the
marked record in Figure 2.1 are:

n At n2/ At
8 20 3.20
4 15 1.07
2 10 0.40
0 — 0
1 16 0.06
1 6 0.17
0 — 0
2 14 0.29

If At is in seconds, the running time T in
seconds, and Au = 2.5 mph, then (Au)z =

2

2.5 x% =~ 13.44 ft?/sec?, which when in-
serted in Eq. 2.4 gives ¢ in ft/sec?.

Some of the advantages of this method of
measuring the acceleration dispersion are:

1. The equipment is inexpensive.

2. The chart requires no processing.

3. The chart forms a convenient perma-
nent record of the test run.

4. Travel times, stopped times and run-
ning times are easily measured from
the chart.

5. Small speed fluctuations are ignored.

The main disadvantages are:

1. Each record takes up to 30 min to ana-
lyze.

2. The accuracy of the determination of
o 18 only about 10 percent.

It must be emphasized that the accelera-
tion dispersion o is suggested as a useful
traffic parameter, enabling the comparison
of different traffic situations. Although the
error is about 10 percent, the estimated
value is consistently smaller than the exact
value because the subdivision of the record
into speed intervals, which are multiples of
Aw, essentially replaces the speed-time curve
by a set of linear segments. In any case the
many factors contributing to the accelera-
tion noise denote that its dispersion varies
from run to run, and the usual care must
be taken to design a set of experiments with
a sufficient number of runs so that signifi-
cant statistical tests can be made on the
results.

2.3 LAW OF CAR FOLLOWING AND
YARIATION OF FLOW WITH DENSITY

In this section the effect of the road is
neglected, and consideration is given only
to the interaction between cars. Consider
a line of traffic so dense that passing is im-
possible and the driver of each vehicle is
forced to drive slower than he would on his
own volition. Also suppose that the road is
excellent, so that the acceleration pattern of
each vehicle depends more on the behavior
of its predecessor than on its own natural
acceleration noise.

The acceleration of the wmth vehicle at
time ¢ can be expected to depend on various
relative characteristics of the (n — 1)st
and the nth vehicles. Some of these char-
acteristics are relative velocity and separa-
tion distance. The manner in which one
vehicle follows another is referred to as the
law of following (1, 7).

Several qualitative features of the law
are self-evident. First, a moving line of
traffic must not amplify small disturbances.
That is, if the first vehicle in the line slows
down slightly and then speeds up to his old
rate, this slight perturbation must not be
amplified as it is transmitted down the line
to the extent that a collision occurs far be-
hind the point of perturbation or that the
cars sufficiently far back must stop to avoid
collisions. Secondly, the law of following
must not be such that a strong perturbation
such as a sudden stop cannot sometime
cause a rear-end collision, for such collisions
occur rather frequently. Responses are
never instanteneous. A certain time ¢, is
required for a driver to notice that his rela-
tive speed and separation distance with his
predecessor have changed. A time ¢, is re-
quired to decide on the proper response to a
variation. A time ¢; is required for the
vehicle to act on the response. In practice,
t, + t, + ¢, is about 1.5 sec.

As a standard from which perturbations
are to be measured, consider a hypothetical
line of traffic moving at constant velocity %
with all cars separated by a distance s (=
distance from the front bumper of one car
to the front bumper of the car behind it).
The traffic in Figure 2.2 is postulated to be
moving to the right and X, (¢) is the posi-
tion of the wnth car at the time t. Then, if
the origin is chosen as the location of the
front bumper of the first car at time ¢ = 0,

X, @) =ut— (n-1)s (2.5)

L_
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Xn |

0 n ;

Figure 2.2. Postulation of moving vehicles.

Of course, cars in a real stream of traffic do
not move with constant velocity, nor is the
separation distance fixed. Let x, (£) be the
deviation from X, (t) of the location of the
nth car at time ¢ and let y,, (£) be the actual
location. Then

Yo (B) =, (O) + X, () (2.6)
and the velocity of the nth car is
U, (t) =%, (t) + % (2.7)
while the acceleration is
By (1) = Yo = &, (2.8)

Suppose that the line of traffic flows al-
most in the described manner so that «, (¢)
and %, (t) are very small for all n. By
accelerating and decelerating, each driver
makes small compensations to arrive at the
steady-stream velocity and spacing. Now
examine several possible laws of following
to see which might be realistic and then try
to compare with experimental results. In
the limit of very small x; (t) and #; (%),
three pogsibilities might exist:

(a) The nth driver accelerates or deceler-
ates by an amount proportional to
the deviation in relative separation
from the desired amount s. That is,

oy, (t) - C'v.n (t) = M [xn—l (t) — Xy (t)]
(2.9)

in which the parameter p would be
determined from observations on rel-
ative motions of cars in the traffic
stream. .

(b) The wnth driver accelerates by an
amount proportional to the difference
in relative velocity of #th and
(n—1)st cars, giving

@, (8) =1, (1) = @ [%,, (}) — %, (V)]
(2.10)

If the (n-1)st car is moving faster
than the nth, the nth driver acceler-
ates to compensate and reduce veloc-
ity differences and vice versa when
Uy (2) <wu, (t), the parameter «
being chosen to be positive.

(¢) A linear combination of the previous
two laws:

(129 (t) = [x'n—l (t) 7% (t)] +
[24 [un—l (t) — Uy (t)] (211)

All these laws are linear laws, which
might be appropriate only for small devia-
tions from the desired state of traffic. The
response of the nth driver is proportional
to a deviation for which he wishes to com-
pensate. The parameters « and p are called
sensitivities of the response to the devia-
tions. Large values of « and u correspond
to strong compensation, and small values
correspond to weak compensations. Experi-
ments have been performed to defermine
whether these possibilities are sensible. Be-
fore resorting to experimental evidence,
however, determine if any of these laws
can be ruled out on the basis that they
violate the requirement that a line of traffic
must not be an amplifier of small disturb-
ances. ' _

" A standard way to investigate the effect
of disturbances and of stability of linear
systems is to make a harmonic (frequency)
analysis of the disturbance to see how indi-
vidual frequency components are propa-
gated through the system. Assuming that
the deviation of the motion of the lead car
in a platoon is the source of the disturb-
ance, its motion can then be harmonically
analyzed. When this is done in law (a), it
turns out that a resonance exists at fre-
quency o = p%. That is, any frequency
components at frequencies near p*% are am-
plified strongly by the traffic, the law of
amplification of the amplitude of the » com-
ponent being [1 — o?/p]™ On the other
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hand, law (b) damps out a disturbance as

[1+ w/a2]™ (2.12)
for the mth car behind the source of the
disturbance. Hence, law (b) is a reasonable
one to investigate further while law (a) is
not. If one investigates mixed laws such as
(¢) or any other law in which the accelera-
tion is proportional to the difference in ith
derivatives of the separation distance be-
tween two successive vehicles, he finds reso-
nances (instabilities) in those laws which
contain terms with even values of <. Inas-
much as it is doubtful that a driver could
be sensitive to third derivatives, one is left
with only law (b) as a possible one for
investigation.

Before law (b) is compared with experi-
mental data, additional features of the law
must be examined. It will be recalled from
the discussion at the beginning of this sec-
tion that responses are never instantaneous.
Even though law (b) may be suggestive for
further consideration, it should be amended
to take into account the time lag between
the time of the actual development of a dis-
turbance and the moment of effective re-
sponse; therefore, law (b) should now read

ay (t+8) =u, (t+48) =

a [,y () —u, (t)] (2.13)
in which the velocities on the right side are
to be taken at time ¢ to influence the accel-
eration of the left at time ¢ + A. When
time lags are incorporated into linear sys-
tems, instabilities may result. If one reacts
too strongly (large «) to an event which
occurred too far in the distant past (large
response lag A), the situation at the mo-
ment of response may have changed to the
point where the response is actually in the
wrong direction. Hence, when lags are long
there should be weak responses to insure
stability. In fact, a line of traffic following
Eq. 2.13 is stable, not amplifying small dis-
turbances, only when

2aA<1 (2.14)
A disturbance of unit amplitude is propa-
gated back to the nth car so that its ampli-
tude at arrival is equal to or less than

[1+ (0?/a?) (1 —2aA)]™ (2.15)

It should be noted that a resonance appears
when Eq. 2.14 is violated.

Before comparing Eq. 2.13 with experi-
mental data, it is worth trying to extend
the formula slightly so that it is applicable
to cases in which, for some reason, rather
large gaps have formed between -cars.
Clearly, when the separation distance is
large one will not drive as sensitively as he
would in a bumper-to-bumper situation.
Hence « should depend on the separation
distance in such a way that when two suc-
cessive vehicles are separated by an enor-
mous distance no interaction exists between
them at all. One possible law is that the
sensitivity «, should be inversely propor-
tional to the car spacing (distance between
cars plus car length) so that

a, (t+A) =%, t+A) =
{I;n—l (t) = ‘.'./n (t)}
* W () — Y (B)

in which e, is a measure of sensitivity.

(2.16)

A number of car-following experiments
were performed on the General Motors test
track, as well as in the Holland and Lincoln
Tunnels in New York. Each of a number
of drivers using an instrumented car was
told to follow a lead car as he would in
normal city driving. In each case a continu-
ous record was taken of the acceleration of
the second car a(t), as well as the relative
velocities %, (t) and spacing s(¢) of the two
cars. For each driver a best value of « and
A was obtained in

a(t +A) = a, [u, ()/s(®)] (2.17)
which is equivalent to Eq. 2.16 so that

S [a(t +4) — au(t)/s(t)]* = min
t

(2.18)

The results (5) of the car-following experi-
ments are summarized in Table 2.2. The
correlation coefficients for the best values
of a, and A were usually greater than 0.9,
and for some drivers as high as 0.97. If
Eq. 2.16 were exact and no experimental
error existed in the data, the correlation
coefficients would be 1. Some deviation from
1 must be expected because the acceleration
noise contribution to a(t) has been omitted.
There is some variation in the values of «,
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Table 2.2 Summary of
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Car-Following Experiments

Number
of a, A
Locality Drivers (mph) (sec)
General Motors
test track 8 274 1.5
Holland Tunnel 10 18.2 14
Lincoln Tunnel 16 20.3 1.2

and A for different drivers. For example, in
the General Motors test track experiments,
A varied from 1.0 to 2.2 sec, with one-half
the drivers having A values between 1.4
and 1.7. It would be interesting to find
these constants on a given road for a large
number of drivers. This would enable one
to obtain reliable statistics on personal vari-
ations between drivers. In applying Eq.
2.16 to a line of traffic, it is assumed that
all drivers have the same characteristics;
namely, the average ones.

An interesting consequence of the law of
following (Eq. 2.13) is that the formula for
the rate of propagation of a disturbance
down a line of traffic (in cars per second)
isn/t = a.

Although a line of traffic is stable to small
perturbations, it is well known that most
rear-end collisions are due to local instabili-
ties in which one or more cars are unable

to compensate for large disturbances ahead
of them. It can be shown that no such local
ingtabilities would occur in the law of fol-
lowing if the inequality « e A < 1 were sat-
isfied, a condition rarely exhibited in follow-
the-leader experiments.

Although Eq. 2.17 was derived to form a
basis for the law of following of one vehicle
by another, it can also be employed to relate
the flow rate of single-lane traffic to the
traffic density (3). The flow rate ¢ (say in
vehicles per hour) is the product of the
density k (cars per mile) and the velocity
% (miles per hour). Thus, ¢ = u k. Quali-
tatively the equation of state of the traffic,
the name given to the flow-versus-density
relation, can be expected to have the form
given in Figure 2.3. When there are no cars
on the road (k= 0) the flow rate is zero.
At close packing (bumper to bumper) where
k = k;, the density is greatest, but no cars
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Figure 2.3. Normalized traffic flow versus density as obtained from
Eq. 2.21. Curve compares with data obtained by Greenberg
from experiments in the Llincoin Tunnel.
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can move (# = 0). At some intermediate
density, a maximum flow rate exists.
Eq. 2.16 can be integrated to yield

U, (L +A4A) —u', =

aglog [y, (t) — ¥y, (£)1/8,
(2.19)

in which ¢’, = y,_, — ¥, at time when veloc-
ities are u’,. Now choose s’, to be the close
packing bumper-to-bumper distance. Be-
cause there is no motion under this condi-
tion, %’, = 0 and

Uy, (t += A) = &, IOg [yvn,-l (t) — Yn (t)]/s’n
(2.20)

Now suppose that the traffic flow has be-
come steady. Then its average velocity at
time ¢ is about the same as that at ¢ + A
(A being about 1.5 sec). Therefore, wu,
(t + A) can be replaced by the average
velocity «, and [v,_, (¢) — ¥, (£)] can be
replaced by the average separation distance,
which is the reciprocal of the average den-
sity, k1. Actually u is the arithmetic mean
velocity and k the geometric mean density.
Hence,

% = a, log, k;/k : (2.21)
in which k; is the demsity at close packing
(k; =1/8",).

The flow rate ¢ is then given by

q=uk=rhalog, k;/k  (2.22)
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This function, plotted in Figure 2.3 com-
pares with experimental data taken in the
Lincoln Tunnel in New York. From a large
sample of more than 24,000 vehicles (7) in
the Holland Tunnel, the best fit value of
a, was found to be 18.95 mph, which is to
be compared with «, = 18.2 mph obtained
in car-following experiments in the same
tunnel (Table 2.2). This provides a good
check for the theory. ‘

Notice that «, is the velocity which gives
a maximum flow rate. It has been observed
that @, is small under hazardous driving
conditions, such as poor lighting or narrow
roadway with two lanes in tunnels, whereas
it is large on good roads such as freeways
with no turns. Because the expensive parts
of a highway system, such as bridges and
tunnels, are frequently its bottlenecks, the
traffic engineer should make «, as large as
possible to increase the maximum possible
flow rate and to regulate traffic so that for
a given «, this maximum is achieved.

2.4 ACCELERATION NOISE OF A
VEHICLE IN TRAFFIC

In Section 2.2, the acceleration noise of
an isolated vehicle was discussed. In Section
2.3, several simple car-following laws for
traffic in the absence of acceleration noise
were exhibited. Clearly, the total accelera-
tion noise of a vehicle in traffic is a super-
position of its natural noise and its response
to that of its predecessors through the law
of following. In stable, smooth-flowing
traffic the effect of the natural noise of a
given vehicle dies out as it is propagated
down the line. The total acceleration noise
of vehicles at different locations in a pla-
toon has been measured by Herman and
Rothery (6) (see Fig. 2.4). It is noted that
traffic has broadened the acceleration dis-
tribution function so that the dispersion far
down the platoon is about three times that
of the lead car, which is effectively moving
freely on the road. Figure 2.4 also shows
that in the absence of any violent disturb-
ances the influence of the noise of a single
vehicle is dampened out by the time the sig-
nal of its motion has propagated down to
the fifth or sixth car behind it. Traffic
broadens the acceleration distribution, the
broadening being smaller for the conserva-
tive driver who is satisfied to follow the
stream than for the “cowboy’” who by weav-
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ing attempts to drive 5 to 10 mph faster
than the stream. This is shown in Figure
2.5 for traffic on Woodward Avenue in
Detroit (4).

The traffic broadening is not large for
smoothly flowing traffic, but the dispersion
increases rapidly at the onset of congestion.
For stop-and-go traffic the dispersion is
small because cars are unable to accelerate
to appreciable speeds.

The broadening of the acceleration dis-
tribution by traffic depends on the param-
eters of the law of following. The accelera-
tion of the =nth car at time ¢ is a
superposition of its natural acceleration
noise and its response to the motion of its
predecessor. In smoothly moving traffic the
separation distance varies only slightly
from the equilibrium distance s. Hence,
Eq. 2.16 can be linearized so that addition
of the natural acceleration 8 (t) gives

Uy (0 +A) = a [ty (8) — %, ()] + B (2)

(2.23)
in which
a = a,/8 (2.24)
The B () is a random function whose value
at time ¢ is not specified. It is determined
by its distribution function f(a) so that
f(a) da is the probability that 8 (¢) has a
value between o and « + da at time £. For
simplicity, assume that 8 (¢) has the same
distribution for all drivers on the road of
interest. One can use the standard methods
of the theory of Brownian motion to deter-
mine the statistical differences of properties
of a, (t) =u, (t) from those of B (t) in
terms of « and A. If the acceleration noise
is peaked in the low frequency range, one
finds that the dispersion ¢ of the distribu-
tion function of a, (t) (as n — ©; i.e., for
cars far from the beginning of a platoon)
is related to the dispersion o, of B (¢) by
c=o0,/(1-2aA)1? if2aA<1
(2.25)

The stability condition (Eq. 2.14) again
makes its appearance. The closer the traffic
reaches the limit of stability (2« A — 1) the
larger the traffic broadening of the accelera-
tion noise.

If Eq. 2.24 is substituted in Eq. 2.25, the
average spacing may be expressed as

8§ =2aq,A/[1 — (g,/0)2] (2.26)

\

¢=0.03g
g
=}
4
s
= ) |
0-=0.07
5 g
g (8)
e
w
2 = 0 | 2

Acceleration in units of 0.05g (~1.6 ft/sec?)

Figure 2.5. Acceleration distribution functions for a

driver (A) moving with a traffic stream at approximately

35 mph and (B) attempting to drive 5 to 10 mph faster
than the stream average.

This equation was checked with the Holland
Tunnel observations of Herman, Potts and
Rothery. The traffic broadening of the
acceleration noise dispersions o/c, in the
tunnel varied from about 1.50 to 1.75, de-
pending on the density during the experi-
ment. The value of «, was determined by
fitting Eq. 2.15 to the observed flow-versus-
density curve for the tunnel. The average
time lag of 1.5 sec, which was observed in
car-following experiments, was substituted
in Eq. 2.26, as was the observed ratio o/0,.
The computed values of s were then con-
verted into appropriate densities (s = 1/k),
which were compared with the observed
densities made at the same time as o/0,
was determined. These calculated values
generally did not deviate from the measured
ones by more than 10 or 15 percent.
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Chapter 3
QUEUEING THEORY APPROACHES

3.1 INTRODUCTION

Highway and traffic engineers are charged
with many responsibilities. They must
work to reduce motor vehicle accidents.
But they also design and operate highway
systems which minimize delay for the
traveling public.

Delay is a direct product of congestion.
Therefore, a fundamental understanding of
delay is necessary to obtain the greatest
efficiency from existing and planned high-
way systems.

An observer of traffic on a highway net-
work cannot help but be impressed by the
variability which he sees. Vehicles of dif-
ferent types operated by drivers with dif-
ferent desires and characteristics are seen
in varying numbers. The action of any one
driver can create minor or serious conges-
tion problems. It is extremely difficult to
take into account all the information needed
to predict the detailed operation of such a
system.

Variable phenomena of this type are
called “stochastic” phenomena, and the
methods of probability and statisties pro-
vide a means by which it is possible to
predict some delay characteristics. For ex-
ample, knowledge of the characteristics of
arrival of main-street traffic and pedestrian
crossing demand can be used to predict
delays to pedestrians, thus helping to estab-
lish improvements and warrants for the in-
stallation of traffic control devices.

Probability models of congestion can vary
in complexity. Some simple models do a
rather poor job, which is not surprising.
On the other hand, there are simple models,
for which solutions are readily derived,
which do surprisingly well in predicting de-
lays observed in the field. As the models
are made more complex to account for such
things as driver variability, the solutions
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become more difficult. It must always be
remembered that mathematical descriptions
of system operations rarely account fully
for observed behavior and that the results
of mathematical analysis must be viewed
critically.

The purpose of this chapter is to present
some of the results of studies of probability
models of traffic delay. Section 3.2 briefly
describes some fundamental characteristics
of variable processes, as well as the impor-
tant assumptions governing the arrival of
streams of traffic at a given point and the
variability of gap acceptance of drivers and
pedestrians attempting to cross a traffic
stream. Section 3.3 presents a brief sum-
mary of some elements of queueing or wait-
ing-line theory, that branch of mathematics
dealing with congested systems. Sections
3.4, 3.5 and 3.6 present summaries of the
most significant published works relative to
delays at signalized and stop-sign controlled
intersections, passing on a two-lane road-
way, and a number of special topics such
as multiple queues, parking, and one-lane
bottlenecks.

The original papers upon which this
chapter is based are generally available in
journals found in the collection of a good
university library. The interested reader
can obtain these for further study. The
chapter necessarily avoids detailed mathe-
matical development, but does present the
theorist’s assumptions and some results of
interest.

Those interested in studying probabilistic
approaches to traffic flow theory should have
access to the work of Haight, of the Insti-
tute of Transportation and Traffic Engi-
neering, University of California, Los
Angeles, who recently published a book on
mathematical theories of traffic flow (27).
The reader is referred to that source for
further development.
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3.2 TRAFFIC DISTRIBUTIONS

Highway traffic characteristics are statis-
tical rather than deterministic in nature.
Therefore, traffic variables, such as volume,
speed, delay, and headways, can be described
by probability distributions. Examples of
“discrete” probability distributions which
occur frequently in traffic applications have
been given special names such as ‘“‘binomial
distribution,” “Poisson distribution” and
“geometric distribution.” Similarly, famil-
iar examples of “continuous” probability
distributions are the “exponential distribu-
tion” and “normal distribution.” Some fun-
damentals of probability distributions are
discussed in Section 3.2.1. Several impor-
tant traffic flow distributions are described
in Section 3.2.2. Section 3.2.3 presents in-
formation on gap acceptance distributions
for pedestrians and drivers waiting to cross
or merge with a conflicting traffic stream.

3.2.1 Fundamentals
Probability distributions can be described

P, (T)

I 2 3 4 5 6 7
Value of n

Figure 3.1. Poisson distribution,

[fm at

P(T= h<T2)——I:—:<:-—

Figure 3.2. Cumulative exponential distribution.

in terms of three important parameters:

(a) The frequency function f(¢).
(b) The mean t or E(?).
(¢) The variance Var(t).

The Poisson distribution is frequently
used as a model to determine the distribu-
tion of vehicular traffic on a highway. Out-
lined in the following are a few generalized
mathematical relationships describing this
distribution.

If P(n|g T) is the probability of exactly
n arrivals in T seconds and ¢ is the traffic
flow (see Fig. 3.1),

(q T)n 3-07'

P(algT) =———— (1)

The probability of no arrivals (r = 0) in
time T becomes

P0|gT) = e (3.2)

If there are no arrivals in a particular
interval T, there must be a time gap or
headway of at least T seconds between the
last previous arrival and the next arrival.
In other words, P(0|g T') is also the proba-
bility of a headway equal to or greater than
T, or

Ph2T)=eT (3.3)

The probability of a headway less than or
equal to any time ¢ is (see Fig. 3.2)

Phr<it)y=1—¢¢ (3.4)

usually called the “cumulative distribution
function” of the variable . The function
f(t), defined when the cumulative distribu-
tion function is differentiable, is called the
“probability density function” of {. Thus,
differentiating Eq. 3.4 gives the frequency
function or probability density function for
the exponential distribution (see Fig. 3.3):

f(t) =qe? (3.5)

Some immediate consequences for any

variable ¢ with probability density function
f(t) are

/f(t) dt = 1 (3.6)

or, in other words, the summation of all
probabilities is unity.

,‘
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A probability density function which de-
scribes the chances that a headway will lie
in any range of values between T, and T, is

T
P(T,<h<T,) =f £(t) dt
. (3.7

and, for the exponential distribution, sub-
gtituting Eq. 3.5 in Eq. 3.7 gives (Fig. 3.2)

Ts
P(T,<h<T, =/ q et dt
Ty

(3.8)

Eq. 3.7 may be extended to any variable,
such as delay, and any probability distribu-
tion, such as the normal distribution.

The general expressions for mean and
variance for any distribution are

= E(@) =f £E(2) dt (3.9)
and -

Var(t) =/ (t—D)2£(¢) dt  (3.10)

—00

Substituting Eq. 3.5 in Egs. 3.9 and 3.10,
the mean and variance for the exponential
distribution are

t=1/q (3.11)
and

Var(t) = 1/¢2 (3.12)

These parameters have significance as
measures of central tendency and disper-
sion, respectively. However, these are in-
complete descriptions of a probability dis-
tribution, and the frequency function or
cumulative distribution function is needed
to describe completely the characteristics
of the variable.

3.2.2 Gap Distributions

The Poisson distribution is the main
theoretical instrument for determining the
distribution of vehicular traffic on a high-
way. The assumption leading to a Poisson
distribution is that the total number of
arrivals during any given time interval is
independent of the number of arrivals that
have occurred prior to the beginning of
the interval. It can be shown that when the
Poisson theory is applied to the distribution
of time spacings, %, between adjacent vehi-
cles, the exponential distribution results are

f(1)

fit)=qe 3

Figure 3.3. Exponential distribution.

F(t)
10

e | J F(f)=|—€[=:?f_]
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Figure 3.4. Shifted exponential distribution.

P(h2>t) =et/t (3.13)
and

Ph<t)=1-— ¢t/ (3.14)
Although the results yielded by these equa-
tions agree well enough with actual observa-
tions for low free-flowing traffic volumes,
they differ greatly from observations of
high-volume conditions for the following
reasons :

(a) Vehicles are not points; they possess
length and must follow each other at
some minimum safe distance.

(b) Vehicles cannot pass at will.

The first difficulty can be partially over-
come by shifting the exponential curve to
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the right by an amount equal to a certain
minimum headway r. This, in effect, states
that the probability of a gap between suc-
cessive vehicles of less than r is zero, or
(Fig. 3.4)

Ph>t) =exp[—(t—7)/(t— )]

B> (3.15)

and
Ph<t)y=1—exp[—(t—7)/(—1)]
(3.16)

In considering the second difficulty regard-
ing passing, Schuhl (66) proposed that the
traffic stream be considered as composed of
a combination of free-flowing and con-
strained vehicles each of which conforms to
a Poisson behavior. This traffic stream is
described by

P(h>1t) = (1 — a) exp (— ¢/t,) +

aexp [—(t — )/ (t, — 7)1

(3.17)
and

P(h<t) = (1—a)[l—exp(—t/t)] +
a(l—exp[—(t— 1)/ —7)])
(3.18)

in which 7, is the average headway of free-
flowing vehicles, ¢, is the average headway
of constrained vehicles, , is the minimum
headway of constrained vehicles, and « and

100
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° |
+~ 20
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(1 — @) are the fractions of total volume
made up of constrained and free-flowing
vehicles, respectively. Figure 3.5 represents
Schuhl’s plots of Egs. 3.17 and 3.18 for a
total volume of 900 vehicles evenly distrib-
uted between free-flowing and constrained
vehicles, using arbitrary values of 7, = 0.5,
t, = 2.0 sec, and £, = 6.0 sec.

Kell (39) has generalized Eqgs. 3.17 and
3.18 by assuming that a minimum headway
7, exists for free-flowing vehicles as well
as for the constrained vehicles. This leads
to

Ph>t)y=(Q—a) exp [— (t—7,)/(EF—1) ] +
aexp [— (t—7y)/(T,—72)]
(8.19)

A theoretical distribution for the entire
traffic stream, which is essentially a sum-
mation of two subdistributions, has been
referred to in the literature as the compos-
ite Poisson or composite exponential distri-
bution. Morse (50) termed the special case
of the distribution, described by Eq. 3.19,
in which there is no shift (r, = 7, = 0), the
“hyper-exponential distribution.” One of its
discrete distributions was named the “hy-
per-Poisson.”

Haight (29) suggested that gaps less
than the minimum headway, =, should be
considered improbable, but not impossible.
The exponential and hyper-exponential dis-
tributions, on the other hand, represent
curves which find their maximum probabil-
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Figure 3.5. Schuhl's composite exponential distribution.
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ity at the origin and then decline as ¢ ap-
proaches infinity. This implies, erroneously,
that the smaller the gap the more likely it
is to occur. To overcome these difficulties,
the Pearson Type III gap distribution is
proposed. This distribution is sometimes
called the Erlang or gamma distribution,
a two-parameter generalization of the ex-
ponential family obtained by multiplying
the function in Eq. 3.5 by some appropriate
power of £. Thus (Fig. 3.6),

tK—l
(E—1)!

If K=1, Eq. 3.2 is obtained. As K goes
to infinity the variance approaches zero,
which suggests a constant rate of flow cor-
responding to high volumes of traffic. Thus
Eq. 3.20 represents the distribution of vehi-
cles for all cases between randomness and
regularity. The associated discrete distri-
bution is called the generalized Poisson dis-
tribution. It states that the probability of
no arrivals in the interval T is the sum of
the first K terms of some Poisson series;
that the probability of one arrival is the
sum of the next K terms of the same Pois-
son series; etc. Stated mathematically,

(3.20)

£() = q¥ et

(n+1) K —-1 i #
Pag) = 3 (aDem
| i =nf 3'!

(3.21)

In order to apply Eq. 3.21, one must decide
on a value of K. This estimation of param-
eters, as well as a more complete treatment
of the generalized Poisson distribution, has
been discussed by Haight (29, 22).

It is apparent that the correspondence be-
tween gap (continuous) and counting (dis-
crete) distributions has great practical sig-
nificance, as it is much easier to count
vehicles than it is to measure gaps. There
are two techniques for measuring the count-
ing distribution in the field. In the usual
procedure, traffic counts are started and
terminated at given clock times independent
of traffic flow. This is referred to as the
asynchronous case. The second technique,
the synchronous case, occurs when the
counting period starts immediately follow-
ing the arrival of a vehicle. Except for the
case of random flow, the two counting dis-
tributions are never the same. The synchro-
nous counting distribution is often referred

0] l
K_
4 K -at
q f(ﬂ'(K—l)!g e
K=00
\K=3
\K=2
K=l
0 ' 1

Figure 3.6. The Erlang gap distribution.

to as the generalized Poisson (22) and has
also been studied by Goodman (19) and
Oliver (58). The asynchronous distribution
was studied by Morse (50) and has been
discussed by Jewell (36). A comparison of
the two is given by Whittlesey and Haight
(76). '
Figure 3.7 is a time-space diagram illus-
trating the synchronous counting procedure.
Two locations are considered: location A at
a point downstream from a signalized inter-
section timed such that arrivals at A can be
assumed to be regularly spaced, and location
B far enough downstream from A so that
arrivals are random (Poisson). This illus-
trates that the mean rates of arrivals at A
and B are equal to the number of arrivals
n divided by total time T. Thus,
4=q =q =n/T (3.22)
Because the chance of occurrence of an
arrival at B is independent of the time of
the preceding arrival according to the as-
sumptions of a Poisson distribution, the
probability of no arrivals in time ¢ is the
same for both the synchronous and asyn-
chronous cases, and is
P,(t) = e (3.283)
However, at location A the probability of no
arrivals in the counting interval ¢t for the
synchronous case depends on whether or not
t is less than or equal to and greater than
t,
(E<t)

P,y —1 (3.24)

P,(t) =0 (t>1%) (3.25)
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Distance

t . Synchronous

at location B

t _!_Synchronous
at location A

T

Ny,
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Figure 3.7. Time-space diagram illustrating synchronous counting procedures at two locations: A, regular arrivals,
and B, Poisson arrivals.

On the other hand, if at point A the count-
ing period t is chosen at random (asyn-
chronous case), the probability of no ar-
rivals is

P,(t) =1 — (¢/t) (¢<t) (3.26)
P,(t) =0 (t>1t) (3.27)

This information is summarized in Table
3.1.

The queueing approach provides a dis-
tinct method for explaining the bunching
tendency of constrained vehicles. In a
queueing process, with random arrivals at
a rate ¢ per unit time and constant service
time B (see Section 3.3), the probability
that » units will be served during some
period P, follows a Borel distribution (58) :

- e—an (an) n-1

Py
n!

M=1,2;5:s)
(3.28)

Tanner (68) extended this concept to the
general case to show that the distribution
of the number of units served in a busy
period starting with an accumulation of r
units is

P(n|r) =

(n—17)! n

e—nﬂq(an)n—r< r )

n=rr+1,. .. (3.29)

This is close to the Poisson form of Eq. 3.1.
If constrained vehicles on a highway are
considered as platoons or queues, the
Borel-Tanner distribution can be used as a

Table 3.1 Comparison of the Synchronous and Asynchronous Counting Procedures
Applied to Two Distributions of Arrivals

Probability of No Arrivals in Counting Interval

. Distribution
Location of Arrivals Synchronous Case Asynchronous Case
16 t>t bt b5
A Regular P,(t) =1 P,(t) =0 P,(t) =1— (t/t) P,(t) =0
B Random P,(t) =e P, (t) =e P, (t)=¢e1 P,(t) =e®

_—
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model for the distribution of the queue
lengths of constrained vehicles. This model
is obtained if one starts with a random
positioning (or set of arrival times) of
vehicles, considers all vehicles within a dis-
tance B of the one ahead as queueing, and
then moves these queueing vehicles back so
that they are exactly B distance apart. At
the same time, additional vehicles within B
distance of the end of the queue are in-
cluded. The probability that a queue has
exactly n vehicles is given by

n-1
pn-1 g-1n

n

(3.30)

In this derivation, the parameter r is given
by r = B k, with k being the concentration
of vehicles.

In a similar treatment, Miller (46) as-
sumed that vehicles may be considered as
traveling in platoons or queues, where a
queue may consist of only one vehicle and
where queues are independent of each other
in size, position, and velocity. His criteria
for determining queues were:

(a) The time interval between queueing
vehicles should be less than 8 sec.

(b) The relative velocities of queueing
vehicles should be within the range
—3 to +6 mph.

The gaps between queues are assumed to
be exponentially distributed and a one-
parameter continuous distribution has been
fitted to the number of vehicles in a queue
as follows:

(n—1)!
(m+mn+ 1)!

(3.31)

in which m is the parameter of the Beta
distribution. Miller stated that the distri-
bution of Eq. 8.31 fits observed frequencies
of queue lengths about as well as the Borel-
Tanner distribution given by Eq. 3.30.

P,=(m+1) (m+1)!

3.2.3 Gap Acceptance

In using mathematics to estimate delay
when two streams of traffic interact, it is
necessary to make assumptions regarding
the time required for vehicles in the minor
stream to cross or merge. It is assumed
that the waiting driver or pedestrian meas-
ures each time gap, k, in the traffic on the
major highway. He crosses (accepts the
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