
ACCESS AND LAND DEVELOPMENT 

M O R T O N S C H N E I D E R * 

The starting point of this paper is a modest mathematical observation con
cerning the relation between the number of trips emanating from any ele
mentary area and the geography in which the area is embedded. It has been 
possible, or has seemed so, to trace out from that beginning a line of thought 
—intercalating an assumption here, forcing an argument there— l̂eading to 
a more or less coherent view of how people move about and where they 
build their works. 

The framework of ideas given here is complete in the sense that one can 
think of fleshing it out into a working, computerized model for calculating ex
pected patterns of floor area accrual and traffic on facilities of all modes, as 
indeed one has thought of doing. But it is by no means perfectly clear that 
these ideas are really tenable. There is still a certain amount of computational 
sneaking up on a full scale model to be done, and it is the purpose of this pa
per to lay a basic, if diffident, case rather than to report on a methodology or 
to stumble around in a clutter of possible complications. The treatment here 
will stick mostly to main features and long, untroubled perspectives on the 
grounds that, for the time being, enough is enough. 

ACCESS AND TRIP GENERATION 

It is quite usual, in analyzing travel, to suppose that every piece of the earth's 
surface has some stipulated supply of trip ends per day, and to assert that the 
number of trips between an origin place and a destination place is proportional 
to the number of origin trip ends, to the number of destination trip ends, 
and to a function of the separation between origin and destination. A slight 
generalization of this is 

^ (1) 

Where V is number of trips, F is the function of separation, and / , is XF^, Rj 
(or, more neatly, / = jFdR). R is an undefined quantity measuring that 
which attracts people to a place; it will not become defined until much later 
on in the paper, if then. If V„ or something proportional to it, were substi
tuted for R„ E q . 1 would represent virtually every trip interchange formula 
ever used. However, the distinction is not as trivial as it looks. 
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Viewed as a destination place, any small area receiving trips from the rest 
of the world according to Eq . 1 will receive some very definite number of 
trips, and this must be essentially the same over the course of a period such as 
an average day (neglecting migration effects) as the number of trips it sends 
out. It appears, then, that if Eq . 1 has any vahdity—and it is so general it al
most has to— t̂he generation of trip origins or destinations cannot really be pre
scribed by arbitrary manipulation, but is subject to some kind of natural equi
librium. The obvious next step is to add up all of the trips received by an area 
in order to see how many must originate there; but it is a great deal less 
obvious just how to go about this in any meaningful way. As it happens, 
though, the problem yields with astonishing ease to a little simple-mindedness. 

One condition, reasonably well supported by both intuition and data, which 
logically guarantees the equality everywhere of origins and destinations is that 
trip movements between any two points be symmetrical; that is, that V,} 
always equals Vj,. If this is taken to be true, then, working Eq . 1: 

A I, 
If it is further assumed that F is symmetrical, that = F j , . The F's cancel 
out and this can be restated as: 

R,I, R,I, 
( 3 ) 

But this cannot hold for all pairs of points unless each side of the equation is 
separately equal to the same constant, a circumstance that gives rise to the 
general and possibly important result 

V 
— = cl (4a) 
R 

or, passing to notation more comfortable for dealing with indefinite but rela
tively fine partitioning, 

dV 
cl (46) dR 

So with hardly any trouble at all, it develops that trip density at a point in 
terms of origins (or destinations) per unit of R, whatever R may be, is pro
portional to something that can very naturally be called the access integral 
around the point. By integrating Eq. 4b, the constant of proportionality can 
be seen to be a special kind of average density: 

(5) jIdR 

where VT is total trips in the system. This constant will be evaluated in a 
somewhat different, but equivalent, form later on from other considerations. 
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Another way of stating Eqs. 4a and 4fc, in words, is that the number of tnps 
at a point is proportional to the accessibility of the point and to its attractive
ness to people; trip ends appear at a place because people can and want to get 
there. This is a small shift from the customary point of view in which trips are 
thought of as occurring to satisfy the craving for fulfillment of trip ends. The 
usual proposition that travel is formed by trip ends groping for each other has 
never seemed to have much explanatory feel to it; as it turns out, it does not 
seem to have much mathematical feel to it, either. If R is replaced by V, re
verting to the standard formulation, everything breaks down; the sent-received 
balance described by Eq . 2 can then obtain only in a world so uniform that 
every access integral has the same value An attempt to introduce correction 
factors—to use quantities proportional to the K's rather than the F's them
selves—works well enough as far as Eq . 2 is concerned; it is just that the 
required correction factors are precisely those which convert the K's back into 
R's, according to Eq. 4. (It can also be shown that permitting F to be non
symmetrical does not help this state of affairs.) In other words, whether or not 
one likes the shadowy stuff called R, one is stuck with it. 

The function F, which distributes trips from an origin place among all des
tination places, is amenable to a simple argument. It has been said above that 
R measures that which attracts people to a place. Taking that at its word, the 
easiest supposition about where people are going when they leave some origin 
area is that they are going everywhere in proportion to the i?-values found 
there. But this would result in an infinite average trip length, or as nearly infi
nite as the circumference of the earth will tolerate. There is one most 
conspicuous constraint operating: trip lengths cannot get out of hand: It is not 
too hard, however, to compound this constraint into the first supposition by 
means of a little rephrasing. If the /?-value of an area, now, is taken to meas
ure the a priori probability (i.e., without regard to travel time or cost) that a 
trip will go there, then that easy first supposition can become the easy second 
supposition: trips leaving an origin area tend to distribute themselves among 
destination areas in the most probable way, subject to the condition that their 
average length must remain finite. A perfectly definite function can be derived 
from this statement.' If travel occurs in the dimensions of time and cost, this 
function is 

F = e-(^i'+i2"' (6) 

where t is travel time and u is travel cost; the A:'s are constants governing av
erage length. And, to recapitulate, the access integral becomes 

/ = e-(*i'+i2"0 dR (7) 

where the integration, of course, is over the whole surface of the earth or 
some other large region. 

^ See the section on the Distribution Function in Morton Schneider, "Direct 
Estimation of Traffic Volume at a Point," Highway Research Record 165, 1967. 
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An interesting aside is the relation of all this to the method of calculating 
traffic described in the reference cited above. The arguments there, with one 
exception, can be carried out exactly as before merely by replacing integration 
over trip ends with integration over R The exception is a crucial one, how
ever: it is no longer permissible to arbitrarily place a single trip destination in 
the vicinity of the traffic stream. It is necessary, instead, to place an arbitrary 
amount of R there and let it generate its own proper number of destinations 
(or, the same thing, the correct amount of R to generate one destination). 
When this is done, the formulation is altered in such a way that its one appar
ently fundamental flaw miraculously vanishes. In its original form, the formula 
calculates systematically diflferent (but not greatly different) traffic volumes at 
different points along a bridge; altered, it produces exactly the same volume at 
every point. Another, perhaps more generally interesting, connection is that 
the revised traffic equation contains the constant c of Eqs. 4 and 5, but no 
other explicit dependence on trip ends. In principle, c could be numerically 
evaluated as a kind of activity constant from a study of traffic flows, and 
travel could then be calculated without once mentioning trips. 

It is not very usual, in analyzing travel, to speculate on the exact meaning 
of the word trip, but it really cannot be avoided forever. Trips here are used 
to some extent as concepts of convenience, neither very interesting nor very 
observable in themselves, having whatever properties the mathematical treat
ment generates and being roughly similar to, though far more inclusive than, 
those things reported in an origin-destination survey. There is more to it than 
that, however. One property a trip must have, if only to give meaning to the 
terms travel time and travel cost, is that of defining travel: knowledge of an 
origin and destination must imply knowledge of the travel path between them. 
This suggests, as does common understanding, that the end points of trips are 
set apart from all the other points along the way and that perhaps these other 
points are there only to be traversed as easily as possible. Which is to say that 
trips follow minimum paths because it is very hard to think of any other rule 
that allows the trip concept to be useful. So trips can be defined strictly, if un-
sentimentally, as segments of a person's total travel trajectory that lie entirely 
on minimum paths, and those points at which departures from minimum paths 
occur are necessarily trip ends. The travel times and costs in the trip distribu
tion function (Eq. 6) are to be measured along minimum paths, since if the 
trips take any other paths, they are not trips. 

Now that the question, "what is a trip?" has been settled, it becomes possi
ble to move on to the next issue. What is a minimum path? 

MODE OF TRAVEL 

For the purposes of this paper, it appears inescapable to speak simply of 
minimum paths in order to speak of parameters such as time and cost separat
ing points in geography. But just what is it that a minimum path, in the trip 
defining sense, minimizes? If travel time alone, everyone would charter heli-
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copters; if travel cost, everyone would walk. More likely, the quantity to be 
minimized is some combination of time and cost. But the distribution function 
(Eq. 6) has already stated that trip making is sensitive to a linear combina
tion of time and cost, so what better bet than that this is the path 
discriminating measure? The minimum path between any two points can now 
be selected from among all possible paths: it i^^e one for which the expo
nent m Eq . 6, k^t + k,u, has the least value 

Incidentally, travel time and cost are coi '^'IjTcd throughout this paper to 
be the only generally significant distances, as s-. .ms to be the case empirically. 
Everything could, however, be extended to include other dimensions. 

Minimum paths are now clearly defined and only one difficulty remains. In 
the real world, trips between two points do not by any means always choose 
the same path, nor can this always be explained by dispersion of indeterminacy 
of travel times and costs. However, the quantity kit + kji suggests that the 
path selected as a minimum depends on the values of kx and k^, and this leads 
to the conjecture that there are different trip groups which respond to different 
values of the A:'s, weighing time and money and the trade-off between them 
differently. Running through spectra of values for the two A:'s, it appears that 
between any two places there might very well be more than one path that 
could function as a minimum during some intervals of A:-values, but not all 
conceivable paths could so function. The test is this: if a path is both slower 
and more expensive than some other path, no values of the *'s can ever make 
a minimum of it and, presumably, no tnp will ever use it. Paths which pass 
this test, which can hope to be used, can be ranked in order of increasing 
travel time and then in order of decreasing travel cost, and will have the same 
rank in both cases. Proceeding down such an ordered list of paths—call them 
path a, path b, etc.— ît is easy to see that path a, which is the fastest and most 
expensive path (involving, perhaps, an airplane), will be the minimum path 
as long as 

0 < ^, < ki ~ (8fl) 
( " a - Ub) 

path b will become the minimum in the range 

ki < *2 < * i (86) 
( « a - Wft) ( « i , - « c ) 

and so on down to the slowest, cheapest path {e.g., walking) 

^ < * . < o o (8c) 
(«», - «n) 

In general the breakpoints—the A:-values at which one path stops being a min
imum and the next takes over—occur when 

_ A„„i (8d) 
"2 ; " i 
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Paths of this sort seem to deserve to be called modes, though the term takes 
on a slightly exotic meaning. A mode, in this sense, will not necessarily retain 
its identity from one pair of points to another, and it will not necessarily cor
respond to ordinary usage; an expressway route and an arterial route between 
two points, for example, might very well function as competing modes. 

If the distribution of trips with respect to values of and h.—^the probabil
ity of a trip falling within an interval dk^ dk^—could be established, all of this 
would begin to form an intelligible picture. The problem can be attacked in 
much the same way as that of the distribution function in the preceding sec
tion, although it fights back a little harder. Essentially the same constraint 
operates here as in that case: however trips may be distributed among k-
values, it must be in such a way that over all average trip length stays within 
reason. If the distributions with respect to ATI and k^ are assumed to be inde
pendent of each other (not a strictly necessary condition), it should be possi
ble to develop each distribution separately, as though the other were not 
there. Adopting this attitude of ignoring one dimension when dealing with the 
other, the crucial parameter directly controlling average trip length for any 
particular value of A: is \/k, and it is plausible to think of applying the con
straint in the form 

~ fine's constant 

At the same time it is plausible to think of \/k, which has the dimension of 
length, as constituting a one-dimensional space within which trips are equally 
likely, a priori, to distribute themselves everywhere. And the plausible result, 
finally, is 

dV = ^2 e-'* dk (9a) 

or, adding the other dimension, 

rfK = 7^ e-«'*i 7^ e-w*2 dk.dk^ (9b) 

where a and b are constants of the distribution. 
With a little semantic exertion, all of this can be carried out at the same 

time as the derivation of Eq . 6, and the distribution function becomes 

Other variations on this theme are entertainable, but it appears at the moment 
that they would not and should not give strikingly different results. This one 
follows the principle of least complication without good reason for more. 
Good reason might, of course, turn up at any time. 
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The complete distribution function as it operates between two points, refer
ring to relations (Eq. 8 ) , is 

• ^ i o f G = Fdki + 

0 V J 0 J 
Fdk, + + )• Fdk^ dk, (11) 

where the F is, of course, that of (Eq. 10) and the Z's are the mode break

points of Eq. id, Z„, ku 

The integrals are broken into pieces as the travel paths shift f rom one to 
another, causing the times and costs to change. I f the transportation network 
is symmetric, if the same paths exist m one direction as the other (as has been 
tacitly assumed all along), then the mode points wil l be the same in both di
rections and G wi l l be symmetric, allowing the trip generation argument to go 
on as before. The only difference is that the / of Eqs. 4 and 7 must be re
placed with 

/ = GdR (12) 

I f a transportation system consists of distinct, noninterconnecting uniform 
networks, each network wil l constitute a mode in both the special and the or
dinary sense, and trip generation at any point by each mode wil l be 
proportional to that mode's respective piece of Eq. 11 integrated out over the 
world of R. Examining this closely reveals an interesting and fortunate char
acter: if a new mode is added to the system, it wi l l attract trips from its neigh
boring modes but i t wil l also increase the total trips generated However, the 
closer it is in speed and cost to some other mode, the less the increment of 
trip generation. Thus as more and more modes are added, crowding in on 
each other, they wil l more and more be merely competing for each other's 
trips rather than generating new ones of their own. Also, i t goes almost with
out saying that the highest trip generation for a mode occurs at those places 
especially well served by the mode. 

The case in which the above transportation system has only one mode is of 
special interest for purposes of trial calculating, getting the feel of the thing, 
and even practical approximating. In this case, the function (Eq. 11) simpli
fies to: 

Fdk^ dk, (13) 

and this, if the author's rheumatic mathematical agility has not betrayed him, 
is integrable, giving 

(14) 
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Ki is conventional notation for the modified bessel function of the second 
kind, order one. 

The argument that trips vary in their sensitivity to time and cost has led to 
a distribution function substantially different than the simple exponential of 
Eq. 6, quite aside from any question of mode. Even i f only one dimension of 
distance were used (implying only one mode), the distribution function would 
still have the form of Eq. 14, but without terms in the other dimension. The 
general behavior of this function is to descend more rapidly than an exponen
tial at short distances and more slowly at long. 

Thus, the large problems of travel activity—the generation of trips by mode 
and their distribution through a transportation system, also by mode—^have 
been solved, or at least laid to f i t ful rest. Now, if only someone knew what R 
was. 

LAND DEVELOPMENT 

As far as this section of the paper is concerned, what has gone before is pro
logue. Its purpose has been to establish the role of the stuff called R in human 
activity, to define a relation between trip generation and access, and to give an 
exact, computable meaning to the term access. The brave purpose of this 
section is to introduce capital improvement of land and to tie everything to
gether. 

The first step is to ponder the nature of R. From Eq. 4, i t can be said that 
the amount of R at a place is proportional to the trips arising there divided by 
the access of the place (access refers to the all-mode access of Eq. 12, not to 
that of Eq. 7, and so wil l the symbol / when it appears). This brings up the 
possibility of calculating R at various places where data exist to see if i t can 
be identified with anything visible. I f that were fairly easy to do, it would 
probably be worth trying, but it would actually be a very formidable piece of 
work for several technical reasons, not the least of which is the fact that the 
access integrals themselves depend on R. Besides, any relationship that is not 
fairly well anticipated is most unlikely to be found in that sort of a campaign. 

Speculating on the identity of R, two immediate possibilities come to mind. 
One is that R is just proportional to land area, modified perhaps by the intrin
sic desirability of the land for human purposes (oceans, swamps, glaciers, etc., 
would certainly have low rates of R per square foot) but basically a kind of 
geometric concept referring to the surface of the earth, to the space in which 
people locate. But if this were the case, the only thing that could account for 
the very high rate of trip generation of, for example, Manhattan, would be, 
according to Eq. 4, a very large access integral. While Manhattan is at the 
center of a dense, extensive, and many-moded transportation system, i t does 
not seem conceivable that this alone could supply the leverage for that kind of 
differentiation. How different can access integrals be when land area is the 
only thing to be accessed? 
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The other first glance possibiUty is that R is proportional to floor area, 
which seems intuitively to be something that attracts people. Again, Eq. 4 
doubts i t , because trips per square foot of floor area would then be propor
tional to the access integral. Places of high accessibility would show higher 
trip generation rates than places of low accessibility, and a place like Manhat
tan would have an enormous number of trips per square foot of floor area 
since the access integration this time would be over a highly differentiated sur
face. But evidence from origin-destination and land use surveys apparently de
nies this. There seems to be no systematic variation in person trip generation 
rates per unit of floor space from place to place, and even Manhattan is about 
average in this measure. Of course, the trips in Eq. 4 include many events 
which would never be reported in an O-D survey and do not correspond ex
actly to survey definitions anyway. Even so, the generation due to the longer 
distance part of the integration in Eq. 4 ought to be at least roughly the same 
as survey trip generation, and although this part of the integral may not vary 
as much as the whole thing, i t would still vary a great deal in a floor area sur
face. 

Rather than reject land area and floor area out of hand—^they are almost 
the only sensible candidates—it is reasonable to wonder if R might be some 
combination of the two. I t cannot be a multiplicative combination, since that 
would imply that land without structures on i t could never attract trips, and 
the world could never have gotten started moving. The simplest acceptable 
combination is a linear one. With this in mind, a line of reasoning begins to 
emerge. 

I n what follows, a piece of land is regarded as a kind of abstract element of 
spatial location, attractive to people in much the same way that an element of 
volume in a box is attractive to gas molecules. Floor area is used as a conven
ient, meaningful, and measurable (as well as measured) surrogate for capital 
improvement of all kinds. Possible differences in attractiveness from one piece 
of land to another and from one unit of floor space to another are not ruled 
out, but they are not stressed, either. Various costs, congestion effects, and 
other odds and ends that no doubt complicate the real world are considered to 
be largely beside the point of this paper. 

Imagine a piece of vacant, but accessible, land lying fallow. I f there are 
people in the vicinity, they wil l inevitably find some reason to go there and to 
do something on that land. This implies, by Eq. 4, that the land has some 
value of R. As people use the land, there wi l l be a tendency for improvements 
to appear to accommodate them, to serve and augment their inscrutable pur
poses. But these improvements (which are in the form of floor area) wi l l in 
turn tend to attract still more people. This implies that the floor area, too, has 
some value of R, which is easiest to think of as an additive increment. So R in 
^nera l can perhaps be defined as 

R =Ra+R, (15) 
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where Ra is proportional to land area and Rf is proportional to floor area, 
though the proportion need not be the same for both R's 

The increment of people attracted by the increment of floor area wi l l in 
their turn foster yet another increment of floor area, and so on, although this 
does not have to go on forever. 

Although there is no pretension that the simple and occasionally labored 
considerations of the first two sections can really account for all the fine struc
ture of human activity, they do seem to apply in their crude way to relatively 
microscopic movements; the trip generation of Eq. 4 might be construed as a 
close measure of activity or average occupancy of small areas—activity which 
determines the amount of floor space required for its accommodation. Even 
on the macroscopic scale of the O-D survey, as was mentioned earlier, trips 
are more or less proportional to floor space. Trip generation per square foot 
of floor area is scattered, but it seems always to be scattered around the same 
mean. 

I f i t is assumed that, in the way the world works, there is some proper 
amount of floor space per trip, then the growth of floor space described above 
moves to an equilibrium, an equilibrium strictly governed by the access of the 
site. From Eqs. 4 and 15, 

y = cIR = cIRa + cIRf (16a) 

but also, now 

V = sRf (166) 

Putting these together gives 

From Eqs. 16a and I6b, i t can be seen that 

. = f (18) 

the promised counterpart of Eq. 5; i?p is proportional to total floor area in the 
region and / is a notational convenience, 

IdR (19) 

Substituting in Eq. 17 produces the final expression for equilibrium floor area 
at a site: 

R^^R.. (20) 

This is a rather subtle expression, and it may be well to elucidate some of 
its elementary properties. When the access, / , is small compared to the aver
age, the floor area wi l l be essentially proportional to the access. As / grows 
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large, however, the denominator in Eq. 20 becomes small, exerting a powerful 
leverage on floor area, powerful enough, probably, to explain a phenomenon 
such as Manhattan. I f the world has completely uniform access everywhere, / 
becomes 

IdR = IdR. + I dRf = IRA + IRF 

and Eq. 20 reduces to 

R; = RF 
R, 

RA 

(21) 

(22) 

The floor space on any site is just its share of total floor space based on its 
share of total land area. 

I t is difficult to compute realistic cases, even highly simplified oneb, f rom 
Eq. 20 without moderately elaborate computer techniques because of the in-
terdependencies of the floor area equilibria throughout the region. One 
extremely simple example that can be worked out by hand and that reveals 
some of the behavior of the scheme is this. Imagine six villages of equal floor 
area scattered about a wilderness so: 

These villages are virtually isolated, the transportation being just rudimentary, 
slow trails. Now let someone come in and build a transportation system an or
der of magnitude faster than the old trails, thus 
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I f the floor area is portable, but the total amount cannot change, Eq. 20 pre
scribes a new equilibrium (after a suitable time) in which the center village 
wil l have become the largest while the outer villages wi l l have decreased. The 
poor village at the top, left out of things, wi l l have declined most of all. I f , 
now the transportation network is extended. 

the center village wil l shrink, though it wi l l remain larger than any other, 
while the outer connected villages will grow. The neglected, and by now prob
ably unfriendly, village at the top wil l decline still more than it already has. 

I t is possible to carry this further, and m a vague, qualitative way, trace the 
evolution of cities. A city getting started in the days before powered 
locomotion would most likely nucleate, according to Eq. 20, on or near a wat
erway—almost the only thing that could give it an access advantage. I t would 
tend to grow in a dense fashion, because the only sites with unusually large 
access integrals would be those very close to already developed sites With the 
appearance of the railroad, operating an order of magnitude faster than any
thing else, places along the rail line would suddenly have very large access in
tegrals, and new floor area would gravitate to the rail territory. I f the railroads 
centered on the original city, and if the secular growth of floor area were great 
enough, the central city might also experience a growth of relative access. But 
now throw ubiquitous roads and automobiles into the picture, and everything 
changes. Access integrals everywhere increase greatly, a growth so extensive 
that the relative access of the center and of the rail territories almost certainly 
must decline. Moreover, the automobile inserts itself into the mode integral 
(Eq. 11), cutting off a large part of the railroads range of influence there and 
decreasing its absolute contribution to accessibility. New floor area, following 
Eq. 20, migrates to the vacant land, now much more accessible than it used to 
be, even though the older areas are still the most accessible. The very exten
sive increase in access integrals causes / in Eq. 18 to increase faster than total 
floor area, and the constant c grows smaller, implying a decrease in traffic be
tween any two places whose growth in floor area is less than average. This ef
fect expresses the redirecting of travel patterns, and tends to cause traSic on 
railroads, whose territories are mostly slower growing, to decline, entirely 
apart f rom mode competition. 
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Cities that have done most of their growing during the automobile age— 
Detroit and Los Angeles are excellent examples—look quite different from 
older cities. Presumably, this is due to persistence of history. I f Eq. 20 were 
to start with nothing but the transportation system in the New York area and 
build the city f rom scratch, it would be most unlikely to create the central city 
as it now is. The processes leading to the equilibrium of Eq. 20 are slow, and 
to a great extent a city is what it used to be. As a matter of practical apphca-
tion, this does not seem too troublesome. I t is easy enough, in forecasting de
velopment, to require existing floor area to stay where it is and to expect new 
floor area to occur in an equilibrium condition. Or, perhaps better, existing 
floor area can be allowed to disappear at the rate of 1 or 2 percent a year (or 
even at a rate appropriate to its actual age), and the amount that disappears 
can be treated as new space, free to seek out a new equilibrium in a new 
place. 

I n fact, this can easily enough be generalized in a working model, if one is 
ever produced, to allow any kind of constraints—planning, legal, physical—of 
a form that limits or requires development in particular locations. One output 
might then be a measure of the utilization that might be expected in these 
constrained places. 

The model, in its perfected form, would produce, then, expected floor area 
by, say, square mile, and traffic on facilities of all modes; because of con
straints, trip generation by square mile would probably also be desirable. I n 
puts would be existing floor area, the expected transportation system, and 
constraints. The floor area estimates would be generalized things, intended to 
let the planner understand the bounds within which to work; i t would still be 
up to him to figure out what it would actually look like. 

A most interesting possibility is that of working out some system of ac
counts which would set up a criterion to distinguish a better region f rom a 
worse. The model, which predicts what will happen under a given set of con
ditions, could then be turned around to help find those conditions that would 
yield a better region, in other words to plan. Also, there is no evident reason 
why the model cannot be applied on a national scale to worry about things 
like airline traffic, high speed ground traffic, and the growth of cities—^the lat
ter probably implying something about migration. 

I t might be mentioned that several parameters in this theory, if it may so be 
called, depend on large social states. The constants in the distribution func
tion, a and b (Eq. 10), might be termed value of time and money, 
respectively. As a society grows wealthier, it can be presumed that b wi l l grow 
smaller; as the world grows more interesting and enjoyable, and as people be
come less willing to spend their time in the kind of travel which, by the defini
tion of a trip given a long way back, is in itself just a nuisance, a may very 
well grow larger. Also, the coefficient s of Eq. \6b et seq., which converts 
floor space (or capital improvement) to trips, is perhaps not greatly different 
than the inverse of wealth per capita. 
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In summary, a few very simple ideas have been put, sometimes hammered, 
together in a way that seems qualitatively to explain a great many things, f rom 
the decline of commuter railroads to the opening of the West. The equations 
here can all be turned into real calculations, some easy, some very hard to 
perform (the reader is invited to guess which is which). I t wil l take quite a 
few of these calculations to find out whether or not any of them are worth 
doing. 


